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function fiekds and to investigate ;he_pdasibﬂity;ﬂf"thuacterizing rational elements via these
expansions. By function fields; we refer to ¥, ((p(z))) and F, ((1/z)), the completions of
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CHAPTER I
INTRODUCTION

In 1987, A. Knopfmacher and J. Knopfmacher, [3], introduced a new algorithm
that leads to a representation for any real number greater than 1 as an infinite
product of rational numbers. A similar algorithm was later given in [2], [4], [5] and
[6] leading to a unique infinite product representation for a given p-adic integer
with leading coefficient 1. In another direction, in [7], [8], the Knopfmachers intro-
duced an algorithm which leads to various unusual and unique series expansions of
p-adic numbers as sums of rational numbers. Both the algorithms for product and
series expansions can be extended to any discrete-valued non-archimedean fields,
and brief discussions were given in [2], [4], [5] and [7]. A natural question posed
by the Knopfmachers is whether there are any simple characterizations of rational
elements via these expansions. For series expansions, in [8] one such character-
ization is given which asserts that a p-adic number is rational if and only if its
Engel-type expansion, with coefficients belonging to an appropriate digit set, is
finite. Recently, [9], another characterization, answering an open problem of the
Knopfmachers, [7], for Liroth-type expansions is given for both the p-adic num-
ber field and the function fields. As for product expansions, apart from many
examples, no satisfactory characterization has been given so far.

In this work, we confine ourselves to the case of function fields. In the next
chapter, we give definitions of valuation, completion and fractional parts of ele-
ments in the completions. We list some basic properties, without proofs, to be
used throughout the entire thesis. In Chapter III, the Knopfmachers’ algorithm
for series expansions in this setting is given. In short, the algorithm for series
expansion starts by writing each elements A in its canonical Laurent series expan-
sion. Taking the first coefficient, ag, to be the fractional part (A), and subtracting

the first coefficient from the canonical representation, we get the tail part, whose



valuation is less than 1. Inverting this tail part, we take the second coefficient, aq,

1
A—ag

to be its fractional part < > Inverting the second coefficient, subtracting it

from the tail part and multiplying by the quotient of two parameters %, we obtain
an expression of the form (A —ag — a—11> %, which we take as our next tail part and
repeat the procedure. The coefficient a,, are referred to as “digits 7. Apart from the
description of the general algorithm, we give detailed proofs of their convergence,
uniqueness, degrees of approximation and provide some interesting examples. We
end this chapter with a characterization of rational elements, similar to the one
proved by the Knopfmachers for p-adiec numbers, [8]. This characterization states
roughly that subject to a technical assumption on the algorithm parameters, a
series expansion is finite if and only if it represents a rational element. This tech-
nical assumption, though applicable to many known examples in the p-adic case,
is subject to a restriction on the p-adic digit set. As we shall see, the situation
in the series fields is more favorable because such technical assumption applies to
most well-known examples without any restriction on the digit set. This is due
to the fact that there is no “carry” for multiplication in the series field. Chap-
ter IV treats the product expansions for elements so normalized that the leading
coefficient in its Laurent series is 1. There are three types of product expansions
considered, each of which has different but similar algorithm. The algorithm of
Type I products, is based on an identity connecting them with series expansions of
Type 4. The algorithms for the remaining two product types are not related to se-
ries expansions. The ideas consist of cleverly inverting certain product, expanding
the inverted expansion, and grouping terms to get a new expression of the same
shape. The chapter ends with a complete characterization of Type I products and
some sufficient, conditions for rationality of the remaining types. As in the case
of series, the results on rationality characterization via product expansions proved
here for the two function fields are more satisfactory than in the p-adic case, where

only some sufficient conditions are known.



CHAPTER 11
PRELIMINARIES

In this chapter, we shall give some definitions, notations and results in the first
section, mainly without proofs, to be used throughout the entire thesis. Details
and proofs can be found in Bachman [1]. The second section deals with the com-
pletion @@, with respect to the p-adic valuation of (Q and the last section treats the
completion Fy ((p(z))) and K, ((1/z)) with respect to the p(z)-adic valuation |-| )

and the infinite valuation || of I, (z), respectively.

2.1 Basic Definitions and Results

Definition 2.1. A valuation of a field K is a real-valued function || : K — Ry
which satisfies the following conditions : for all o, g € K,

(i) |a| > 0 and |o| =0 < a =0,

(i) || = |af|8| and

(iii) |o + B < lof +{B]:

There is always at least one valuation on KA, namely, that given by setting
la| =1 if a € K\ {0} and |0] = 0. This valuation is called the trivial valuation on
K.

Definition 2.2. A valuation |-| on K is called non-archimedean if the condition
(iii) in Definition 2.1 is replaced by a stronger condition, called the strong triangle
mequality

|+ B < max{[af, |5} .

Any other valuations on K is called archimedean.

Example 2.3. 1) The usual absolute value |-| is an archimedean valuation on Q.



2) For the field of rational numbers Q, p a prime number. Every o € Q\ {0}

can be written in the form

where v, (o) € Z, a € Z\ {0}, b € N, such that p { ab. Define |-|,: Q — Ry by

0], =0, lal, =p™* if a#0.

p

Then, |-|p is a non-archimedean valuation on Q called the p - adic valuation.

3) For IF, (), the field of rational functions over F,, the finite field of ¢ elements.
We introduce two types of valuations on IFy(z).namely the p(z)-adic valuation |-| .,
and the infinite valuation |-| _ as follows :

i) Let p(z) be an irreducible polynomial of degree d over F,. Then any o €
F, (z)\ {0} can be written uniquely in the form

where m € Z, r(z), s(z) € F,[z]\ {0} such that p(z) 1 r(z)s(z). Define the
p(z)-adic valuation |-[,,, by

—md

Oy = 0s ledy@y =4
ii) Define the infinite valuation |-| by

— degf(z)—degg(z) ’

b= [

o0

where f(z), g(x) € F; [z} \{0}:

It is well-known that both ||, and [-[,, are non-archimedean valuations on
[F, (z) and the infinite valuation can be considered formally as the (1/x)-adic val-

uation for the field F, (1/z) (=F,(x)).

Theorem 2.4. Let |-| be a non-archimedean valuation on a field K and o, € K

such that |a| # |5|. Then

|+ B = max {[e], | 5]} -



Let |-| be a valuation on a field K. We define a distance function p : K x K —
Ry by
p(Oé, ﬁ): ‘Oé_ﬁ"

It follows immediately from the definition of valuation that p satisfies the following
properties : for all o, § € K,

1) p(a,8) > 0 and p(«, B) = 0 if and only if a = 3,

2) p(a,3) = p(B,a) and

3) p(e, B) < p(a,7) +p (7. 0) for v € K.

Hence K is a metric space with respect to the metric p defined above.

The statements concerning limits familiar in real and complex numbers hold in
our more general situation since the valuation satisfies the same conditions that
the usual absolute value does and which are needed in proving those statements.

If K is a complete field with respect to a valuation ||, we introduce the notion
of convergence of an infinite series > | @, and an infinite product [[), a,, in the
usual way. It follows immediately that if >~ @, converges, then lim,_, a, = 0.
It is useful to note that if |-| is non-archimedean, the converse statement holds,

namely :

Theorem 2.5. If K is a complete field with respect to a non-archimedean valuation
||, and if {a,} is a sequence of elements of K such that lim, .. a, = 0, then

o0
Yo G converges.

Theorem 2.6. Given a field K and a valuation |-| on K, there exists a field K
(unique up to an isometric isomorphism); called the completion of K with respect
to |-|, such that K is a complete field with respect to a valuation extending |-|, and
K is dense in'Ix. Moreover, the field K has the same characteristic as K, and if

the given valuation 18 non-archimedean, then so is the extended valuation on K.

Example 2.7. 1) The completion of Q with respect to the usual absolute value is
the field of real numbers R.

2) The completion of Q with respect to the p-adic valuation |-[, is denoted by
Q, and called the field of p-adic numbers.



3) The completion of the field F,(z) of rational functions with respect to the
p(z)-adic valuation |-| ) and the infinite valuations |-[,, are denoted by F¥ :=
F, ((p(z))) and FY/* .= F, ((1/x)), respectively, we shall refer to both fields as the
function fields.

2.2 The completion Q,

Let Q be the field of rational numbers, p a prime numbers, and Q, the field of p-
adic numbers with the p-adic valuation |-| . The extension of |- to the completion
Qy is still denoted by ||, and it is non-archimedean.

For A € Q,, we define the order v(A) of A by |A] = p~™W, with v(0) = +oo.
Then the order v (A) has the properties

(1) v(AB) =v(A) +v (B),

(2) v(A/B)=v(A) —v (B) if B # 0 and

(3) v(A+ B) >min{v(A),v (B)} with equality when v (A) # v (B).

It is well known that every A € Q, has two unique up to the digit set series

representations of the form
A= Z enp”, cn €40,1,2,...,p—1}
n=v(A)

and

= —1
A= 5" b, bac {0,i1,i2,...,j:pT}.
n=v(A)

Each representation is unique and we call the finite series

0
(A) = Z cnp” ifw(A) <0, and 0 otherwise,
n=v(A)

and

0
((A)) = Z b,p" if v(A) <0, and 0 otherwise

n=v(A)

the fractional parts of A. Let

Sp:={(4);AeQ} CQ



and

S ={({4)); A€ Q} cQ

2.3 The completions F” and F/*

Let F? := F, ((p(x))) and FY/* := F,((1/x)) be the function fields with respect
to the p(x)-adic and the infinite valuations, respectively. The extension of the
valuations to F? and FY/* are also denoted by Hp(l,) and |-|  and they are non-
archimedean.
For A € FP, respectively, B € EY/*, we define the orders v(A) of A, respectively,
u(B) of B by |A],, ¢ B| = ¢ P with v(0) = +oo = p(0). Then
the order v (A) and 1 (B) have the properties : for A, B € F?, respectively, A, B €
Fl/*.

(1) v(AB) = v (A) + ¥ (B),

(2) v(A/B) = v (A) - v(B) if B#0,

(3) v(A+ B) > min{v (A),v (B)} with equality when v (A) # v (B)
and

(1) p(AB) = p(A) + u(B),
(2) 1 (A/B) = u(A) = u(B) if B # 0,
(3) n(A+ B) = min{p(A), u(B)} with equality when u (A) # p (B).

It is well-known that each A € FP, respectively, each B € FY* are uniquely
representable in the form

o

A= " ba(@)p()", bu(x) € Fyla], degbn(x) <d, byay(x) #0,
n=v(A)
respectively,
oo 1 n
B = Z Cp, (E) , Cp G]Fq, Cu(B) 7§ 0.
n=pu(B)

The fractional part (A) ., of A, respectively, the fractional part (B), )z of B, are

p(z)



defined as the finite series
0
(A)pw) = Z by (z)p(z)" if v(A) <0, and 0 otherwise,
n=v(A)

respectively,

0 n
1
(B)1)e = E Cn (—) if (B) <0, and 0 otherwise.
x

n=p(B)

Define the digit sets to be the two sets of all fractional parts by
o) - {(A}p(z) cA € Fp} CTF,(z)

respectively,
Sy = {(B)W Be Fl/z} C F,(z).

We say that S, respectively S, /., is multiplicatively closed if <A>p(x) (B) p(@) €
Sp(z), respectively, <A>1/x <B)1/m € 9y, forall A, B € F?, respectively, A, B € Fl/e.
It is easy to see that S, is multiplicatively closed and so is Si/,. However if
degp(z) = d > 2, then S, is not multiplicatively closed. Let f(z) = 2% ! + 1.
Then f(x) € Sp). Since

f(x)Z L (xdfl o 1) (xdfl e 1) = x2d72 _ 2xd71 4 17

we see that deg f(z)? = 2d —2 = d+d —2 > d. Thus there exist polynomials ¢(x)

and r(z) over F, such that

fl@)* = q(x)p(z) +r(2)

where 0-< degr(z) < d. It-follows-that deg ¢(z) = d —2.<.d and so f(x)* & Sp()-



CHAPTER III
KNOPFMACHERS’S SERIES EXPANSIONS AND
CHARACTERIZATIONS OF RATIONAL ELEMENTS

In this chapter, we give a general algorithm to construct series expansions for
elements in function fields. Apart from the description of the general algorithm,
we give detailed proofs of their econvergence, uniqueness, degree of approximation
and provide some interesting examples. In the last section, a characterization
of rational elements, similar to the one proved by the Knopfmachers for p-adic

numbers, [8] is derived.

3.1 Series Expansions

I. The general algorithm for elements in the field F? proceeds exactly as in the
Knopfmachers’ algorithm for p-adic numbers. For A € F?, let ag := (A)
Define Ay := A —ag. If A, #0 (n > 1) is already defined, put

1 1
O )
A, p(z) Qp ) Tn

if a, # 0 (in this case v (a,) < 0), where 7, s, are non-zero rational functions

p(z) € SP(I) )

which may depend on a4, .., a,. Then

1

T rl T T 1 Ty
A= ap+4A :Go+a—+ ! ! ! 1
1

r1
—A2 = ...= a0+_+__+' <t — 1+ An+1-
S1 ay S G2 S1°*Sp—10n  S1°**Sp

The process ends in a finite expansion if some A,y = 0. If some a, = 0, then

A, 41 is not defined. In order to deal with this, we note that

A17§0:>V(A1)21:>a17é0,V(al):V(AL)S—l. (3.1)

Next
A, #0=v(a, Ay —1) > v (A, + L (3.2)



10

Since A, # 0, writing 1/A,, = a,, + Zcr(:r;)’p(x)”, say, we get
r>1

v(a,An—1)=v (An Z CT(x)’p(x)7"> > v(A,) + 1.

r>1

Since a, = (1/An), ) and v (Ani1) = v (an Ay, — 1) = v (ay) + v (sn) — v (1) , then

A, #0, a, #0=v(ay) = —v (A, V(Ap) > 1—2v(a,) +v(s,) —v(r,).
(3.3)
Thus, if
vsn) = v (rn) > 2v(ay) — 1, (3.4)

then v (A,4+1) > 0 and 80 a,41 # 0 provided that A,y # 0. Therefore, (3.4) is a

sufficient condition for the expansion to exist in F?.

II. The general algorithm for elements in the field FY/* also proceeds as above. For
B € FY*, let by := (B)y,, € Si/e. Define By := B =by. If B, #0 (n > 1) is
already defined, put

1 1\ v,
bn =\ 5 Bn — Bn - 7 | —
<Bn>1/x = ( bn) Un

if b, # 0, where u,,v, are non-zero rational functions which may depend on
bi,...,b,. Then

& A 1 w1l Uy Up—q1 1 UL Uy
B=by+tB; =by+—F—By=...=bpt—+——f +— Loyt
bi v bi v by Vi Upot by V10,

By

The process ends in a finite expansion if some B, ; = 0. If some b, = 0, then
B, is not defined. In order to deal with this, we note that

By # 0= u(By) > 1= b #0, u(h)zu(é) < =1

1

Next
By #0 = p(bBy — 1) > p(B,) + 1.

1 T
Since B,, # 0, writing 1/B,, = b, + Z ¢, (—> , say, we get
x

r>1

(b By — 1) = p <Bn > (i)) > u(Bn) + 1.

r>1



11

Since b, = (1/Bn),, and p(Bpi1) = p(bpBn — 1) — pu(by) + p(vn) — p1(un), then
By, #0, by # 0= pu(bn) = —p(Bn), 1t(Bps1) = 1 = 2u(by) + p(vn) — p(un).

Thus, if
p(vn) = plun) = 2p(by) — 1, (3.5)
then p(By41) > 0 and so b,11 # 0 provided that B,;; # 0. Therefore, (3.5) is a
sufficient condition for the expansion to exist in F'/%.
In the next section, we show that every A € F” has a unique finite or convergent

(relative to |-| ) expansion of the form

o
1 TRl T .
A=agd—+>y ———
a1 b1 S1 0 Sp Qpt1

where ag = (A4),,)» @n € Sp(a), Tny $n € Fo(x)\{0} which may depend on as, ..., ay,
and every B € F/* has a unique finite or convergent (relative to |-|,) expansion

of the form
Uy 1

1 ol Rk
F=P,+ -\ B
L5550 w4

where by = (B>1/x,bn € S /g, Un, vy € Fy(x)\{0} which may depend on by, ..., b,.

)
bn+1

The above two series are called the Oppenheim-type expansions. Such a representa-
tion is said to be periodic if there are indices m and [ such that a,, = a,y, 7 = Ty

and s, = s, for every n > m.
3.2 Convergence Uniqueness and Degree of Approxima-

tion of Expansions

For convergence, we need one more auxiliary result.

Lemma 3.1. Any series

1 TLcc Ty 1

— 4 Z 1 .

€t 775175 Cng
with ¢, € Sy and

vicy) < =1, v(cps) <2v(c,) — 14 v(r,) —v(sy), (3.6)
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converges to an element C' € FP such that v(C) = —v(cy). Furthermore C # 0
and ¢ = (1/C), )

Proof. By equation (3.6) and v(c,) < 0, we get —v(cui1) > 1 —v(c,) + v(sy) —
v(r,) (n>1), and so

” <Z—: : c;ﬂ) > 14 (%) (n>1). (3.7)

It follows that

coer, 1 P |
V(Tl ., >21+I/(%-—)2...2n+1—>00 (n — o00)
S1° " Sn Cn+1 S1° " Sp—-1 Cp

which implies
T E* B

S1 54 8Snt Cpya
relative to |-| ). Since F” is a complete metric space with respect to ||, which

is a non-archimedean valuation, the series converges to an element C' € F?. Then

C =lim,_. S,, where

and equation (3.7) implies

» T <)) - (5)
v(Sy)=minsv{— |, v|l—-—),..., v|———  — =v(—|.
(@] S1 C2 S1°:8Sp—1 Cn (&1

By continuity of |-| ), we obtain

v(C) ==log. |C]

play =108 | 1im S

2 lim AS)) = v (l)

p(z) N0

where ¢ = q%. Then C # 0. Now

1 R A 1
C=- :

;
Cn+1

and so
1 c1 Ty Th 1

c C ‘510 S Cral
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Thus
Ly ryccocT, 1
1
= 2wlen) + (2 ) = 2wl vl = ols0) ~ vlea) 2 1,
S1 Co
by (3.6), and so ¢ = (1/C), - O

Theorem 3.2. Every A € F¥ has a finite or convergent (relative to ||, ) expan-

sion
1 X "]
e N Do 3.8
! ax ;31"'Snan+1 (38)
where ag = (A), ) an € Sp) and 1,8, € Fy(x)\{0} which may depend on
Qi ...,y and
v(ar) S )= 20 (an) = o lay) — v(52) (39)

provided that
v(sp) —v(ry) 2> 2v(a,) —1 for n> 1.

The expansion is unique subject to these conditions on a,, T, and s,.

Proof. Let A € FP. Then using the above algorithm, we get

1 ry 1 Ty Tpoq 1 LT
A=eqpy+—+—1—+...+ —— +
(93] S1 A2 S1° " Sp—10an 51 Sp

Anii (3.10)

where ag = (A>p(x) s U € Sp(z), Tny 8 € Fg(2)\{0} which may depend on ay, ..., a,
and

via )< =l w(a 1) <2v(ay) —14+v(rm) —vis,)— (n>1).

By equation (3.9), —v(ant1) > 1 —v(a,) +v(s,) —v(r,) (n>1), or

u(r—” 1)21+y(i) (n>1).

Sn Qp41 Qp,

Thus

T Th Ty Tp ]_
p (2 g ) =0 :
818y, S1°+8p an+1
1 Thot1 1

21+V(—~—> >...>n+1l—-00 (n— o)
S1+ Spo1 Gn
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which implies

Ty
—— Ay — 0
Sl...sn

relative to |-| ., and shows that the right hand sum in (3.8) converges as asserted.

p(z)
Next, we prove uniqueness. Suppose that A has two expansions

1 riceern 1 1 Ty 1
/ 1
A=a+—+) : =ay+ -+ - o
— _ % 7 !/ / ! / !/
where r; = ri(a,...,a;), $; = si(ar,...,a;), ri=ri(a},...,a;)and s, = s;(al,. .., a;)
. = ; . . _ o
subject to the above conditions for a; and a;, respectively. Since ag = (4),,) = ay,
we have
1 T, 1 1 ryeer 1
A=A, ::—+§ : :—,+§ 1 T
a >l ST FF Srs At ay ~ S1 S, an-i—l

If A7 # 0, then Lemma 3.1 implies that @ = (1/A}) ) = a;. 1t follows that

ry = 7"1(@1) 7 7’1((1'1) i 7"1> 51 = Sl(al) = Sl(all) =3

and so
1 To * - Th 1 1 r/‘__,},,/ 1
homloynth Ll v
Qo noo 89t 8y Qpyl Aoy s Sy -+ 8 an+1
If A # 0, by Lemma 3.1, we obtain ay = (1/A3) .y = a5 Thus

In the same way, we have a,, = a.,, r, = 1., s, =s, for all n > 1. Therefore the

n

expansion is unique. O

In order to derive a degree of approximation; we introduce the notation

. A i
p—:a0+—+ ;—, and ¢, = ayaz---a, (n>1). (3.11)
4n ay 5 510 Si-1G

Theorem 3.3. For n > 1, the rational approximation p,/q, to A € F satisfies

1

< -
— (n+1)d ’

4n

p(z)
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Proof. We proved by induction on n. First, for n =1,

V(A—@) :y(ﬂAg) —v(r) —v(s) —v(as) >1—2v(a) >2—v(a).

q1 S1
So
—dv(A— 1
‘A b _—d (A Pi) < qid(zfu(al)) _ W'
N Ip(a) 191 p(a)

For n > 2, assume that [A — pn1/@n-1],y <1/ (q”d ]qn,1|p(z)>. Then

‘A_& :uAn—i-l - Tl‘”rn(A"_i>8_n
An | p(z) S1: 0 Sn p(@) Ol —— (n /) Tnlp(e)
Tat T o] ( 1 ) /4n
fr— aTL —_— — —_—
S1 Sn—1 An Ay, p(x)
_ —dv(an— 4= 1 1 T'n—1 A
@hlyey 18107 < sam1” i)
1 = i 1
< SEEE ,  since v <an ) >1
g anlyn) n=1 lp(x) A
1
~ q(rL+1)Cl |q |p(x)7
by induction hypothesis. O]

For the field FY/*, since the infinite valuation can be formally considered as
(1/x)-adic valuation, the results of Lemma 3.1, Theorem 3.2 and Theorem 3.3

translate into :

Lemma 3.4. Any series

1 Uy - Up 1

Ka] + .

b ; V1 Un [bnar
with b, € Sy and p(by) < =1, pu(bny1) < 20(bn) = 1+ p(un) — pu(vy). converges
to an element B' e FY such that w(B') = —u(by). Furthermore B' # 0 and

by = (1/B'),,-

Theorem 3.5. Every B € FY/% has a finite or convergent (relative to |-|..) expan-

sion
Uy, 1

1 2 Uy - Uy,
B=by+ — _
O+bl+;vl"'vn

Y
bn+1
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where by = (B),,, by € Sijz and un,v, € Fo(x)\{0} which may depend on
bi,...,b, and

p(br) < =1, plbngr) < 2u(bp) — 1+ pa(un) — pu(vn) (3.12)

provided that
p(on) = plun) = 20(by) =1 (n > 1).
The expansion is unique subject to these conditions on by, w, and v,.

For the degree of approximation, we have

Theorem 3.6. Forn >'1, the rational approximation

Dn 1 g g 1
=) F s —_——
n 0+b1 ;Ul"'vi—lbi

with g, = byby - - - b, to

1 TP A | 1
B=g - = 4 L8 Apl/e
0+bl+;?}1"'vz‘bz‘+1
satisfies
P 1
B—-—— <—
' dn | o qn+1|Qn|oo

3.3 Examples

We turn now to specific examples.

Type 1, (Sylvester-type). Taking 7, = s, = 1 in Theorem 3.2, we deduce

that every A € F” has a unique finite or convergent series expansion of the form

A:ao—i-f:ai
n=1 "

where ag = (A), )+ an € Spr) and v(a,) <1-2" v(ap1) < 2v(a,)—1 (n > 1).

Its degree of approximation is

1 n
7 <A — p_) = —v(apy) > 2" — 1.
’p(r)

Pn
‘A T = gntDd 40 0

an

p(z)
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Proof. Let A € F?. Sincer, = s, = land v (a,) < 0forn > 1,0 =v(s,)—v(r,) >
2v(a,) —1 (n>1). Thus, by Theorem 3.2, A has a unique finite or convergent

(relative to |-| ) series expansion of the form

where ag = (A4),,),an € Sp), and v(ay41) < 2v(a,) —1 (n > 1). Next, we
will show v(a,) < 1 — 2" for m > 1 by induction on n. First, if n = 1, then
v(ap) < —1=1-2"Dby (3.1). For n > 1, assume v(a,) <1 —2". Then

V(an 1)< 2w(a,)~1<2(1—2") —1=1-2"+"

If we define p, /g, and g, as above, then by Theorem 3.3, we have

Pn 1
A—— L
‘ dn ooy 4V dnlya)
Therefore v (A — p,/qn) = V(Ani1) = —v(a, 1) > 2" — 1. 0

Type 2,,) (Engel-type). Taking 1, = 1, s, = a, in Theorem 3.2, we deduce

that every A € F? has a unique finite or convergent series expansion of the form

A 1
A A NS
0 ;GIGQ"'an

where ag = (A) an € Spy and v(a,) < —n, v(a,1) <via,) —1 (n>1).

Its degree of approximation is

p(z)

1 ; 1(n+2
S a0 Y (A - p_) = =v(qn+1) > (n )2(n+ )
paf) CT0 i) G

Proof. Let A € F?. Sincer,, = 1,5, = a, and v (a,) < 0forn > 1,v(s,)—v(r,) =
v(a,) > 2v(a,) =1  «(n > 1). Thus, by Theorem 3.2, A has a unique finite or

-
4n

convergent (relative to ||, ) series expansion of the form

o)
1
A:a0+ E —_—,
a’la2..'an
n=1

where ag = (A), ;) @n € Sp(), and v(az41) < v(a,) —1 (n > 1). Next, we will

show v(a,) < —n for n > 1 by induction on n. If n =1, then v(a;) < —1 by (3.1).
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For n > 1, assume v(a,) < —n. Then v(a,1) <v(a,) —1<-n—1=—(n+1).

If we define p, /g, and g, as above, then by Theorem 3.3, we have

2] g
an

pay) 4T o)

and

(4= 22) = — )+ 4 i)} = ()

an
(n+1)(n+2)
5 :

21+2+ -+ (mhd)=
O

Type 3, (Liiroth-type). Taking r, = 1, s, = a,(a, — 1) in Theorem 3.2, we
deduce that every A € F? has a unique finite or convergent series expansion of the

form
o0

1
A=ag+ —+ :
K ay ; ar(ay — 1)+ -anq(an1 — 1)a,

where ag = (A), ), an € Sp) and v(a,) < —1 (n > 1). Its degree of approxi-

p(z)
mation is

A
4n

<, V(A—— ] = (1) —v(g) > 2n+ 1.
q(n+1)d |Qn|p(x) Qn

p(z)
Proof. Let A € F¥ and r, = 1,8, = ay(a, — 1) (n > 1). First, we will prove
that v(a,) < —1 for n > 1. We have seen that v(a;) < —1. For n > 1, assume
v(a,) < —1 which implies v(a, — 1) = v(a,). It follows that

v(any1) <2 (a,) = 1 —v(a,)— v(a, — 1) =—1

by (3.9). Then v(s,) —v(r,) =2v(a,) > 2v(a,) — 1 (n >1). Thus, by Theorem
3.2, we deduce that A has a unique finite or convergent (relative to |-|,,,) series
expansion of the form

o

1 1
A=ay+—+ ;
M ; ai(ar —1) -+ an_1(an1 — La,
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where ag = (A) )+ an € Sp), and v(a,) < =1 (n > 1). If we define p, /g, and

¢n as above, then by Theorem 3.3, we have

1

Pn
/L B S
' MESTI Sl U M

an

and

v (A - &) = —{v(a) + -+ vlan)} — {v(a) + - +v(an)}

dn
= _V(anrl) g V(Qn) 2 2n e 1=

]

Type 4,,). Taking r, =a, + 1, s, = a, in Theorem 3.2, we deduce that every

A € F? has a unique finite or convergent series expansion of the form

1 i 1 1 1
a0+a1+2( +a1> < +an_1)an

n=2

where ag = (A) ;) @n € Sp@) and v(a,) < 1-2%, v(an41) < 2v(a,) -1 (n > 1).

Its degree of approximation is

dn

1 Pn n
S W, v (A i —) = V(An+1) = —V(an+1) Z 2 +1_ 1.
p(z) nlp(z)

Proof. Let A € FP.and r, = a, + 1,8, = a, (n > 1). First, we will show
v(a,) <1—2"for n > 1 by induction on n. If n = 1, then v(a;) < -1 =1-2!
by (3.1). For n > 1, assume v(a,) <1 —2". Then v (a, + 1) = v (a,) and so

ani) <2v(aq) —1<2(1—2") =1=1-2"

It follows that v(s,) —v(ry) =¥ (an) —v (an + 1) = v(a,) = v(a,) = 0> 2v(a,) —

1 (n >1), since v(a,) < 0. Thus, by Theorem 3.2, A has a unique finite or

convergent (relative to ||, ) series expansion of the form

1 > 1 1 1
a0+a1+z< +a1) ( +an1> ~
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where ag = (A)
Pn/qn and g, as above, then by Theorem 3.3, we have

p(x)  @n € Sp(), and v(ani1) < 2v(a,) —1 (n > 1). If we define

Pn 1
A— == <
‘ G lp@) ~ 4" Nl )
Therefore
DPn ai + 1 (07 s 1 n+1
viA-——|=v Apa ) = v(Anp) = —v(an41) 2277 — 1.
dn ai (07

]

Type 5. Taking r, =a¥ (k€ NU{0}), s, = 1 in Theorem 3.2, we deduce that

every A € F? has a unique finite or convergent series expansion of the form

(al an)
AFE do fH—+
i a ; An41

,n € Sp(z) and v(anyy) < (K +2)v(a,) — 1, v(a,) < —(k+2)"+1

where ag = (A) ) ket 1

(n > 1). Its degree of approximation is

an

oy L dnlpy

Proof. Let A € F?. Since r, = a*,s, = 1 and v(a,) < 0 for n > 1, u(ak) =

kv(a,) < 1—2v(a,). Thus v(s,) — v(r,) = —v(af) = 2v(a,) -1 (n > 1).

n ="

Hence, by Theorem 3.2, A has a unique finite or convergent (relative to ||,)

series expansion of the form

191 & 8.l =D
A=agt—+)y ——1-
0 a1 nz:; Anp41

where g = (A) 1) 1 @n € Sp), and v(ani1) < 2v(an) —1+v (ak) = (k+2)v (a,) —
1 (n >'1). Next, we will show v(a,) < (=(k+2)"+1)/(k+ 1) for n > 1 by
induction on n. First, if n = 1, then v(a;) < -1 = (—(k+2)+1)/(k+ 1) by
(3.1). For n > 1, assume v(a,) < (—(k+2)"+1) /(k+1). Then

—(k:+2)”+1_1_ —(k+2)"*tt +1
k+1 B k+1 '

V(ani1) < (k+2)v (a,) — 1 < (k +2)
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If we define p, /g, and g, as above, then by Theorem 3.3,

1

P

) R
— n+1)d

‘ s 4" )

dn

[]

Note that the case where k = 0 of the Type 5,(,) coincides with the Sylvester-
type (Type 1)) representation.

Type 6, (radix-type 1). Taking s, = 1 and r, = r, where r € F(x), v(r) <1,
in Theorem 3.2, we deduce that very A € F” has a unique finite or convergent series

expansion of the form

where v(a;) < -1, v(a,1) < 2v(ay), and v (a,) < —2"' (n > 1). Its degree of

approximation is
1

ORI Sl 7e)
Proof. Let A € F¥ and s,, = 1.7, = r € F (x) such that v(r) < 1. Since v (a,) <0

forn>1,v(s,) —v(r,) = —v(r) > —1>2v(a,) — 1. By Theorem 3.2, A has a

l _Dn
An

unique finite or convergent (relative to |-| p(z)) series expansion of the form

oS 1
Al = Qo “F Z
n=1 n
where v(ay) < =1, v(an.1) < 2v(a,) — 14+ v(r) < 2v(a,) (n > 1). Next, we
will show that ¥ (a,) < =277 for n > 1. If n = 1, then v (a;) < —1 = =271 by
(3.1). For n > 1, assume that v (a, )< —2""'. Then v(a,.1) < 2v(a,) < —2". If

we define p, /g, and g, as above, then by Theorem 3.3,

1

(n+1)d

PR —
p(z) |q|

4n
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Type Ty (radix-type 2). Taking r, =1, s, = s € Fg(z), v(s) > —2 in The-
orem 3.2, we have every A € F? has a unique finite or convergent series expansion

of the form

=1
A=ay+ ,
0 ;Sn—lan

where v (a,) < —1, and v (ap+1) < 2v(a,) — 1 —v(s) (n>1). Its degree of

approximation is
1

Pn
A—— < —
‘ p(g;) q(n+1)d ‘Q’n|p(x)

4n

Proof. Let A € F? and r,, = 1,5, = s € F () (n > 1), where v(s) > —2. First,
we will prove that v(a,) < —1 for n > 1. We have seen that v(a;) < —1. For

n > 1, assume v(a,) < —1. Then
V(an1) <20 (a,) —1—v(s) < —1.

Thus we have v(s,) — v(r,) = v(s) > =2 > 2v(a,) =1 (n >1). By Theorem 3.2,

A has a unique finite or convergent (relative to || ) series expansion of the form

= 1
st 3
n—1 4
n:ls n

where v (a,) < -1, v(ape1) <2v(a,) —1—=v(s) (n>1).If we define p,/q, and

¢n as above, then by Theorem 3.3,

1

&
— 4(n+1)d |

p(z)

]

Type 8,). Taking s, = a,, m1 = 1, r, = ay—1 (n > 2)-in Theorem 3.2, we
deduce that every A € F? has a unique finite or convergent series expansion of the

form
oo

1

1
A=ay+—+ ;
ApQn+1

3]

n=1
where v (ay) < v (a1)—1, and v (api1) < v(ap) +v(a,—1)—1 (n>2). Its degree

of approximation is
1

< -
— (n+1)d ’

4n

p(z)



Proof. Let A € FP. Since s, = a,, 1 =1, mp = a,—1 (n>2), v(s1) —v(r1)
v(ap) > 2v(a;) —1and for n > 2,v(s,) —v(ry) = v(a,) — v(an—1) > v(ay,)

v

2v (an) — 1. This choice leads to a unique finite or a convergent (relative to ||, )

series expansion of the form

[e.e]

1
A:Cl0+_+
ay

1

)
ApQn+1

n=1
where v (ag) < v(ay) — 1, and v (ap1) < vay) + v(a,—1) —1 (n>2). If we
define p, /g, and g, as above, then by Theorem 3.3,

3.

n+1

lA T ke
4 gl o)

Gn

]

Type 9p). In Theorem 3.2, taking 7, = 1, s, = @ngn, With g, € Fy(x), v (g,) >
v(a,) —1 (n>1), we have that every A € F” has a unique finite or convergent

series expansion of the form

o0

—ao—i—a‘i‘z L

= (a101) angn) n+1

where ag = (A) ;) @n € Spay and v (a1) £ =1, v (an1) < =1+ v (an) —v (ga) <
0 (n >1). Its degree of approximation is

1
S— (A p”> >0+ 2.

A2
’ S A n

an

p(z)
Proof. Let A € F? and r, =1, s, = a,g, (n >1) where g, € F,(z), v(g,) >
v(a,)—1 (n>21). Then v (s,) —v(r,) = v(angs) > 2v (a,) — 1. By Theorem
3.2, A has a unique finite or convergent (relative to ||, ) series expansion of the

form
1 1

algl) e (angn) Ap+1 .

In this case we have by equation (3.9) that v (a,41) < 2v (a,)—1—v (a,)—v (gn) =
—1+v(a,) — v (gn). If we define p,/q, and ¢, as above, then by Theorem 3.3,

1

Pn
A - 2=
‘ n+1 ‘Q|

4n

p(z) a
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and

(4o m) o ()
qn 81 .. .Sn
n+1) (51 T Sn)

(A
> v(An) + 140 (gn) —v (1 5n)
(A

Y
]

n1)+2+V(gn 1)+V(gn)_y(31 Sn)

>v(A)+n+v(g)+ - +v(g) —v(s s
=v(A)+n—{v(m)+---+v(a,)}, since s, = a,g,
>v(A)+n+1, by (3.1)

>+ 2.

]

The choices g, = 1, respectively, ¢, = a, — 1 (n > 1) coincide with the Engel-
type (Type 2,)), respectively, the Liiroth-type (Type 3,.,)) representations.

Type 10,4). Taking r, = 1, v(s,) = v(a,) (n > 1) in Theorem 3.2 leads

to a unique finite or convergent series expansion of the form

1 i 1 1
A:a0+_+
3]

)
=1 S1°° " Sp Anyl

where ag = (A4),,), an € Sp), and v(an) < —n, v(api1) < v(a,) — 1. Its degree

p(z
of approximation is

.-
Gn

< o (A pn)>( +D(n+2)
ORGSR W 9] ¥
Proof. Let A € F? and r, = 1, s,, € F,(2) such that v (s,) = v (a,) (n>1). Then
v(sn) —v(rp) =v(a,) > 2v(a,) —1 (n > 1), since v(a,) < 0. Thus, by Theorem
3.2, A has a unique finite or convergent (relative to ||, ) series expansion of the

form
 — 1 1
A=ay+ —+

)
*Sp Qp41
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where ag = (4),,)
show v(a,) < —n for n > 1 by induction on n. If n = 1, then v(a;) < —1 by (3.1).

For n > 1, assume v(a,) < —n. Then v(ay41) <v(a,) —1< —n—1=—(n+1).

an € Sp), and v(an11) < v(a,) —1 (n > 1). Next, we will

If we define p, /g, and g, as above, then we have

1

Pa
APl e -
' o) 40TV Gl

an

and

o(a-B) (T,
dn S1°°Sn
—=v(Any1) — v (81 8p)

= —v (A1) ={vlar) + -+ v(an)}

1)(n+2
S iy =t )2<”+ ).

Next are standard examples of expansions for elements in F'/2.

Type 1, (Sylvester-type). Taking u, = v, = 1 in Theorem 3.5, we deduce

that every B € FY/ has a unique finite or convergent series expansion of the form

B:bg-l—zbi,
n=1 "

where by = (B),, ,bn € Sippand u(by) <1 —2", pu(bntr) < 2u(bp) —1 (n > 1).
Its degree of approximation is

Pn

o
an

1 pn) +1
< ———p| B )= —ulby1) 22" — L
ST ( Gn 1

Type 2., (Engel-type). Taking u,, = 1, v, = b, in Theorem 3.5, we deduce that

every B € F'/% has a unique finite or convergent series expansion of the form

- 1
B:b°+;—b1b2---bn’
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where by = (B),,,bn € Sz and p(b,) < —n, p(bnt1) < p(bn) —1 (n > 1). Its

degree of approximation is

1 Pn n+1)(n+2
PR M(B——> = —i(qny1) > ( X )

an

Type 3., (Liiroth-type). Taking u, = 1, v, = b,(b, — 1) in Theorem 3.5, we
deduce that every B € FY/% has a unique finite or convergent series expansion of

the form

- 1
B=by+ —+ ,
" 2 bi(By — 1) by 1(bu 1 — 1)bs

where by = (B),, , b, € Siye and p(b,) < —1 (n = 1). Its degree of approximation
is
_Pn

E
4n

1 Pn
M(B——>=—M%M—M@J2%+L

o "l n

Type 4. Taking u, = b, + 1, v, = b, in Theorem 3.5, we deduce that every

B € FY* has a unique finite or convergent series expansion of the form

1 S 1 1 1
O+b1+z( +bl) ( +bn—l) bn

=

where by = (B),, bn € S17z and p(by) <1 =2", p(bnir) < 2p(bn) — 1 (n > 1).

Its degree of approximation is

dn

1 n n
M (B N p_) = 1t (Bp1) = —pa(bpga) > 24 = 1.

o gl In

Type 5. Taking u, = bF (k € NU{0}), v, =1 in Theorem 3.5, we deduce that
every B € F'/% has a unique finite or convergent series expansion of the form

1 o9 (bl...bn)k
B=b — -—
o+m+§; ;

n+1

where by = (B), ), , bn € Si/p and pu(bps1) < (k+2)p (b)) =1, pu (by) < (= (k+2)"+ 1)/ (k+1)
for (n > 1). Its degree of approximation is

1

Pn
B-=t| <———

dn
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Note that the case where k& = 0 of the Type 5., coincides with the Sylvester-
type (Type 1) representation.

Type 6 (radix-type 1). Taking v, = 1 and u,, = u, where u € F,(z), p(u) <1,
in Theorem 3.5, we deduce that every B € FY* has a unique finite or convergent

series expansion of the form

B:bo+zu2_l
=l =

where p(b1) < =1, u(bye) < 2u(b,), and w(b,) < =2""1 (n > 1). Its degree of

approximation is
1

o0 » qn+1 |Q7’1|oo

an

Type 7. (radix-type 2). Taking u, = 1. v, = v € Fy(z), p(v) > =2 in
Theorem 3.5, we deduce that every B € F'® has a unique finite or convergent

series expansion of the form

S|
Bty
=L b,

where p(b,) < —1, and pu(b,q1) < 2u(b,) — 1 — p(v) (n>1). Its degree of

approximation is
"

. —
o "l

E
4n

Type 8. Taking v, = b,, w3 =1, u, =b,_1 (n >2) leads to a unique finite or
convergent series expansion of the form

1

ApQn+1

1 oo
B=bt+ -+
1 n=1

where £ (by) < pu(by) — 1, and p (byt1) < g (bn) + e (bno1) — 1 (n > 2). Its degree

of approximation is
1

_Pn o
o M|

E
4n
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Type 9. In Theorem 3.5, taking w,, = 1, v, = b,g,, with g, € F,(x), p(gn) >
1 (by)—1 (n > 1), we deduce that every B € F'/? has a unique finite or convergent
series expansion of the form

1 1 1
B=b+—+
’ nz::l (b191) - - (bngn) bnsa

where by = (B), , , by € S1/ and p(b1) < =1 plbni1) < —1+pu(by) —p(g2) (0>
1). Tts degree of approximation is

_Hn

’B
4n

1 "
|,M(B—£)zn+z

= A n

The choices g,, = 1, respectively, g, = b, — 1 (n > 1) coincide with the Engel-type
(Type 2+), respectively, the Liiroth-type (Type 3. ) representations.

Type 10,. Taking w, = 1, pu(v,) = u(b,) (n > 1) in Theorem 3.5 leads to

a unique finite or convergent series expansion of the form

1 1

)
V1" Un bn+1

1 0o
B:bo+b—+z
1 Ny

where by = (B), ), sbn € Si/z, and pu(b,) < —n, pi(by1) < pu(bn) — 1. Its degree of

approximation is

_Pn
n

‘B

1 ﬂ(B_&)>(n+Dm+m
o @ anl an) ~ 2

3.4 Characterizations of Rational Elements

We first state some characterizations of rational elements via Oppenheim expansion
and Engel-type expansion for p-adic numbers, [8], based on the sets of fractional

parts S, and S, respectively,

Theorem 3.7. [8] If anr,/s, € S, (n > 1), then the Oppenheim expansion of
A€ Q, with a, € S, is finite if and only if A € Q.



29
Theorem 3.8. [8] The Engel-type expansion of A € Q, with a, € S, is finite if
and only if A € Q.

We now prove that the above two theorems hold in the case of function fields
F? and F'/*. Moreover, we give some other characterizations of rational elements
via other types of series expansions, given in Section 3.3.

We start with an easy estimate.

Lemma 3.9. If a € Sy, then

], < §|p<x>|m. (3.13)

Proof. Writing
@ = b (@)p(@) "+ bt Dpla) T+ b (@) + bo() € Sy

where m € NU {0} and b_,,,(x) (# 0),...,by(x) are polynomials over F, of degree

less than d, we have

lal o, < max { oo (2)p(2) ™™ | oo [bmi@)p(2) T s [bo(@)] o ) < élp(ﬁ)loo-
[l

Theorem 3.10. If a,r,./5, € Sy (0 = 1), then the Oppenheim series of A € F¥
is finite if and only if A € F (x).

Proof. The fact that a finite expansion yields a rational element is trivial. Con-
versely, assume that A € F,(z). Thus, each A, is also rational, which allows us to

write it uniquely under the form

- xu(An)an(f)
A= p(z) 5.5

where a,(z), B.(x) (#0) € Fyla] with ged (o (2), Ba(2)) = 1, p(2) 1 o ()5 ().

Since a,, and a,7,/s, are elements of Sy, write

anTn

an = by(w)p(a)” ), = ¢ (@)p(x)@mHrrm—visn)

Sn

where b, (z), ¢, () € Fy|x] satisty, by (3.13),
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1 —v(an 1 v(sn)—v(rn)—v(an
!bn(w)\ooﬁglp(x)!oo( L Jen(@)]y < = [pa) [ T edt (3 14)

Rewriting the recurrence

1
An—i—l = (An - _> S_n = (anAn - 1) )

we obtain

Bn(x)cn($>an+l(x)p(m)_V(anﬂ)+V(an)+y(r")_y(sn) = Bui1(x) {bn(z)an(z) — Bu(z)} .
(3.15)
Note from (3.9) that

—v (ant1) + vla,) +vlrm) —v(s,) > 1 —v(a,) > 0.

Since ged (gt (@)p(z) Aot @) vim)=visn) g (2)) = 1, it follows from (3.15)
that fua(2) | Bu(x)eale) ok

|Bn41(2) oo < {On(@)enl@)], — (0 2 1) (3.16)
and so (3.15) yields
|t 1.() s = fp(@) = max{ba (@) fam(@)] s - 16 (7).} -

Using (3.16) repeatedly and (3.14), we deduce

10 (2) s < len-1(2)]og 18n-1€2) [ < - < fen-a (Bl [en—2(2) oo - - [er ()| [01(2) ] o

1 n— N w(s)—v(r))—v(ar - an—
< o IOH@)L s P e

From the degree of approximation in Theorem 3.3, we have

n—v () < v (A - p“) — (— - i) - (v (1) = v (5)) — v (an)

qn—1

and so
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Consequently, |5,(z)| < (1/¢"1)|51(x)|, |p(m)|;’(a”)_1 which implies

(2] gmax{’%@)’oo B1(2) }

¢ p(a))s gt

This shows that |a,41(2)| < (1/q) |an ()|, , for all large n. Thus, from some m

onwards, a,,(z) =0, and so A,, = 0, i.e., the expansion is finite. ]

In contrast to the case of p-adic numbers in [8], Theorem 3.10 applies to most

well-known expansions in the function field case as we now record.

Corollary 3.11. Let A € F*. Then the Sylvester-type (Type 1, ), or the Engel-
type (Type 2p(2)), or the Type 4,4, or the Type 8,y expansion of A is finite if and
only if A € Fy(x).

Furthermore, the same conclusion holds for
1. the Type 5, expansion provided d =1;

2. the radiz-type 1 (Type 6,(z)) expansion provided d = 1 and r, = 7 € Sy,

and

3. the radiz-type 2 (Type Tpw)) expansion provided s, = s = ep(z)Y) with
ceF,~ {0}, ,v(s) > 0.

Lemma 3.12. If the corresponding Oppenheim-type expansion of A € F’ is ulti-
mately periodic, then A € Fy(x).

Proof. Let A € FP and assume that its Oppenheim-type expansion is ultimately
periodic. Then there exist positive integers m and [ such that a,, = a,;, 7, = 7y

and s, = s, for all n > m. For n > 1, define

ryerp-1 bm+l
b,=—————and b= ——.
S1+Sp—1 bm

Then bF = “mimtkl=l for a]] k > 1. By periodicity (with 1 = by, a9 = po/qo if

Sm Sm+kl—1
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m = 1), we have

m— 1 m 1 m """ Tm4l— 1
A="L 1+bm<—+7ﬂ—~ ool o2 >

Gm—1 Am Sm Am+1 Sm " Sm+l—-2  Am+l-1
1 Tm 1 T ** Trndl— 1
+bmb(—+—- et 2 )
Am, Sm  Am+1 Sm* Sm+l-2  Am+4i-1
1 Tm 1 Tt Trtl— 1
+bm52(_+_. N =2 >+
Am Sm Gm41 Sm " Sm41-2  Am4i-1
=Pl b (L4 b)),
qm—1
where
1 T'm 1 T Tl — 1
c=—+ . 4o+ — €T, (z).
A Sm m+41 Sm - Sm4i—2  Am4i-1
Since 1+b+b*+--- =1/(1=0b), then A = py,1/¢m_1+cby,1/(1—0b) € Fy(z). O

The only remaining type, Type 3 (Liiroth-type) expansion, perhaps the hardest

in this setting, is a special case of the following theorem :

Theorem 3.13. Let 1, = 1,5, = a,f(a,), for some fived f(z) € F,lx]. If |a,|,, <
1 for n sufficiently large, then the corresponding Oppenheim-type expansion of A €
F? is finite or ultimately periodic if and only if A € F,(z).

Proof. The fact that finite Oppenheim expansions yield rational elements is trivial,
while that periodic expansions also give rational elements are already checked as
in Lemma 3.12.

It remains to show that if the Oppenheim expansion of A € F () is infinite,
then it is ultimately periodic. Since A is rational, so is each A4, (n > 1), which

allows us to write it uniquely under the form

_ xv(Aman_(l“)
Ay =p(z) Bu(2)

where @y, (), b, (z) € F,[z] with ged(ay,(z); B.(z)) = 1, p(z) 1 an(z)B,(x). For
n > 1, since a, € Sy)\ {0}, we can write uniquely
_ (@) e (@) (@)t Fep,(@)p(x) P ba(x)
topla)m p(x)Pn p(x)m p(x)™
where ¢, (z)(#£0),...,cp, (2)(#0) € Fylz]; v, :=v(A,) = —v(a,) > D, >0 and

bu(7) = ¢y, (7) + - + cp, (2)p(x) P € F,[z]\ {0} .
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For 0 <k <wv,—D,—1,if —=d(D, +k+ 1)+ degcp,+rt1(x) > —d (D, + k) +
degcp, +1(), then —d + degcp, +i+1(x) > degep,1x(z), because degep, 1x41(2),
degep, x(z) < d. Thus —d (D, + k+ 1) + degep, yx11(x) < —d (D, + k)
+degcp, +k(x). It follows that

|an| o = € () bt 0,41(7) | €0 (2)
* |p(z) p(z) Pt p(x)Pr |,
= max{ ¢, (2) cp,+1(2) cp, (2) }
p(x)l’n » ) p(l’)D"+1 OO’ p(ﬂf)D” -
— max {q—dvn+ degcy,, (:c)7 o 7q—d(Dn+1)+degCDn+1($)’ q—an-s—dechn (x)}
= g Dt degepy (@) (3.17)
Similarly,
|bn($)‘oo £ qdcchn(z)+an—an < qd—1+dl/n—an‘ (318)

Let s, = anf(ay) == an (fma +-- - + fia, + fo) € a,Fy[a,]. Rewriting

An+1 =7 <An 7y l) Sns (319)

Qn

we get

p(z) M e (2) B (@) = Bt (2) {on(@)ba(a) — Bal@)}-
{fmbn(a:)m + fderbp ()™ () - flbn(x)p(:c)(mfl)”" + fop(x)m”"} )

(3.20)

Since p(z) t Boi1(z)y ged(anii(z), Bryr(x)) = 1, equation (3.20) implies that

Brt1(x) | Bu(x), which yields 0 < deg §,,41(z) < deg(,(x) (n > 1). Thus there

exist a positive integer Ny and a non-negative integer M such that deg 3, (z) = M
for all n > Ny, i.e.,

{deg B,,(x)} is a finite set (3.21)

and

Bn(x) = cnfn, (x), cn € FN\{0} (n > Np). (3.22)

Since v, > 1,p(x) 1 Buy1(x), and p(x) 1 b,(z), equation (3.20) also implies that for
n Z NO

p(a) | {an (@)ba() — vy ()}
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and so
dvp+1 + mdy, < max{deg o, (z) + degb,(z), M}. (3.23)
If there exists an infinite subsequence (ny) C N, with all ny > Ny, such that
deg a,, () + deg by, () < M,

then the two sequences of non-negative integers (deg o, (z) + deg by, (z)) and (deg o, ()
are bounded, and from (3.23) so is the sequence (v, ). We deduce from the
unique representation A, = p(z)"* (a,, (z)/Fn,(x)) that {A,, } is a finite

set. Hence, there exist indices K < L such that all A,, = A,,, and so a,, =
(1/A,,) = (1/A,,) = a,, implying s, = s,,. Invoking upon (3.19), we see that
Ap+1 = Ap, 11 and so the expansion is ultimately periodic.

Henceforth, assume that there exists a positive integer N; > N such that
deg a,(z) + deg b, (z) > M (n > Ny). (3.24)
Going back to equation (3.20) and using equation (3.22), for n > Ny, we get

”"+1+ml/"0m+1<17)0n = Cn+1 {an(x)bn(x) — CnﬁNO (ZL’)} X

X { finbn (@)™ + frn1ba (@)™ p(2)™ 4 - fubyfa)p(a) "D fop(z)™

p(x)

Taking infinite valuation, we get

g dsenn@ < ma {fo ()] (el 0"} X

% max {|bn(37)!22, : |bn<l’>|g_l qdun, o ’bn(‘r)loo q(mfl)dz/n’ qmdl/n}
= o ()| [bn ()] max {Jon (D)2 5 Bu (@) Hg™ L [bu(@)] o ™D g }
(3.25)

using (3.24). From the given hypothesis, we may assume, without loss of generality,
that |a,| <1 when n > N;. We distinguish two possible cases.

Case 1: |a,|,, < 1. In this case, D,, > 0 yielding dv, —dD, +d —1 < dv,, and
b (2)],, < g™ by (3.18). Relation (3.25) becomes

qdun+1+mdun+ deg an+1(z) < qdeg on (x)+dvp+mduy

bl
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i.e., we have the strict inequality
AVp1 + deg ayyq(x) < du, + deg ay, ().

Case 2: |a,|, = 1. In this case, D,, = 0 and ¢p, (z) = ¢ € F,\ {0}, which
yields |b, ()|, = ¢™ by (3.18). Relation (3.25) thus implies

deg an (z)+dvn mdvn,  (m—1)dvn+dvp

max{q ,q RN
deg o, (z)+dvn+mdyy,
)

dvn+1+mdvp+ degant1(x
g+ ()

<q dl/n—i-(m—l)dun’ qmdun}

=q
i.e., we have the non-strict inequality
AVps1 + deg o, 1 (2) < duy, + deg a, ().

From both cases, we see that, (dv, + dega,(z)),5y, is a non-increasing se-
quence of positive integers. It follows that both {v,}, .y and {degan,(z)}, 5,
are bounded sets of non-negative integers. Consequently, there are infinitely many
suffixes n > Nj such that all v, are equal and all deg «v,, () are the same. Taking
into account (3.22), we deduce that there are suffixes M > L > N; such that
Ay = Ap. Invoking upon (3.19), we conclude that the expansion is ultimately

periodic. O

The condition |a,| <1 in Theorem 3.13 can be removed by taking p(z) = =,

and we get

Corollary 3.14. For r, = 1,5, = auf(ayn), for some fized f(x) € F,[z], the
Oppenheim-type expansion of A € F,((x)) is finite or ultimately periodic if and
only if A € Fy(x).

Specializing f (z).= 2 —1 in-Theorem 3.13, we get a characterization of rational

elements by their Liiroth expansions.

Corollary 3.15. If |a,|, < 1, then the corresponding Liiroth-type expansion of
A € F? is finite or ultimately periodic if and only if A € F,(z).

Corollary 3.16. The Liiroth-type expansion of A € F,((x)) is finite or ultimately
periodic if and only if A € Fy(x).
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It is also possible to remove the restriction d = 1 in the case of Type 6,

(radix-type 1) expansion at the expense of limiting the range of values of r,, = r.

Theorem 3.17. Let s, = 1 and 1, = v = R(z)p(z)""), where R(z) € F,[z] and
v(r) < (—deg R(x)/d). Then the radiz-type 1 (Type 6,.)) expansion of A € F¥ is
finite if and only if A € F,(z).

Proof. 1t is clear that a finite expansion yields a rational element. Conversely,
assume that A € F,(z). Thus, each A4, (n > 1) is also rational and so we can

write uniquely

an(7)

Bulz)’

where o, (), Bn(z) (#0) €Fyla] with ged (an(z), 5,(%)) = 1, p(z) 1 an(2)Bu(2).

Since a, € Sy, we can write uniquely a, = by, (z)p(z)"®), where b,(z) € F,[z]

An= p(x)V(An)

satisfy
b £ 1 —v(an)+1 9
b ()] < glp(w)\oo , (3.26)

by (3.13). Equation (3.4) and (3.9) yicld
vir) <1—2v(a,) (3.27)
and
V(ant1) < 2v(ap) +v(r) — 1. (3.28)

Rewriting the recurrence

T\1 A, —1
An—&-l:(An__)_:an—n__a
T

n anT
we get
B () 1 ()b () R ) ()~ sV = G, (2) (b () () — Ba(2)} -
(3.29)
By equation (3.28), we have —v (an41) + v (a,) +v(r) > 1 —=v(a,) > 0. Then
Bn1(x)|Bn(x)bp () R(z) and so |Bny1(x)| < |6n(2)by(2)R(x)|, . It follows that

18a(2)] e < 181(2)| o [br-1(2) o -+ [ba(2) | [ R(2) [

< B (%) pla) ey,
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by equation (3.26). Taking the infinite valuation through equation (3.29), we get
1) < Ip() 577 max {Jbn (@)oo lon (@) 9@

vian —11 —v(an)+1 vian —v(an)—v(r
SmaX{lp(l’)loi ) QIP(I)IOO( o ()| » () [0 7O B ()]

1 R(x o v(a —v(an)—v(r)—v n—
< max {5 lan ()|, [51(2)| o (%) |p($)|<x(> nt1)—v(an)—v(r)—v(gn-1)+ 1} '

From the degree of approximation in Theorem 3.3, we have

n =0 () < (0 — D) = (a,)
Then
V(anyr) —v(an) —v(r) —v(gn ) +n—=1<v(a1) —2v(a,) + (n—2)v(r) — 1.
Thus
|0t ()], < max {é ()]s s 181 (2)] q(n—l)(degR(m)—1)+d(—1+(n—2)1/(7')—21/(an)+l/(an+1))} '
Since v(r) < (—degR(x)/d), we have

(n—1) (deg R(z) — 1) + d (-1 + (n — 2)u(r) = 2v (an) + v (ant1))
=n(deg R(z) +dv(r) — 1)+ 1 —deg R(z) +d (—2v(r) — 2v (a,) + v (ant1) — 1)
< —n+1—degR(z) —d(v(r)+2),

by (3.28). Thus

I B, 1
vl < mx{ S (o)l o o )

If a,(z) # 0 for allm > 1 then for n sufficiently large, we have

|01() o 1 1 1
e R()+d(v(r)+2)~-1 ' q_n < E < §|04n($)|oo,
showing that |a, 1(2)|y < |ow(z)|s, or equivalently, degev,i1(x) < dega,(x).

Thus,

{deg a,(z)} is eventually a strictly decreasing sequence of non-negative integers
implying that from some m onwards, a,,(x) = 0, and so A,, = 0 which renders
the expansion finite.

O
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For the field F'/®, similar procedures as for F? lead to analogous results as

follows :

Lemma 3.18. Ifb € Sy, then

() ()]

)
C J—
x
Proof. For b € Si/,, we can write

LA L\ A0
b= Cu(b) (-) gl cﬂ(b)'i'l (;) S Co

< g o), (3.30)

o

B 1 () /, 1 N N 1 —u(b)
=\ 7 Cu®) T Cue)1 | €\
1 1 n(b)
-(3) )
T X
where ¢ (1/2) = cup) + a1 (1/2) + -+ o (1/2) " € F, [1/2] and
b= Cu(b)l’_“(b) + cu(b)ﬂx_“(b)_l + -+ c1x + .
Then

b)=1 e, el <0 =1

|b|x = lax { |cﬂ(b)x_u(b) ‘a: ) |Cu(b)+1x_“( =

Thus we have |c(1/z)], < ¢~*®) as required. O

Theorem 3.19. If byu, /v, € S1/5, then the corresponding Oppenheim-type expan-
sion of A € F'% is finite if and only if A € F,(z).

Proof. Assume that b,u, /v, € S/, for ni> 1. The fact that finite Oppenheim
expansions yield rational elements is trivial.
Conversely, assume that B € F, (1/x). Thus, each B, (n > 1) is also rational,

which allows us to write it uniquely in the form

B, = (1) 0 a (
x Bn (

8=

)
3

8] |~
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where o, (1/x), 5, (1/x) € Fy[1/x] with ged (ov, (1/2) , B, (1/2)) = 1,1/2 t o, (1/2) By, (1/ ).
For n > 1, since by, bytin /v, € S1/a,

1 1 1(bn) bn . 1 1 1(bn)Fp(un)—p(vn)
wea(3)(5) e =a(3) (5) |
x x Up x x

where ¢, (1/x),d, (1/z) € F,[1/x] such that

C l < q_“(b") and |d l < qu(vn)_ﬂ(un)—ﬂ(bn).
Now we have
1 v v
B, =" B=i— | == (bBp—il n_ 3.31

Substituting all this into (3.31) leads to

—p(brg1)+(bn) +p(un) —p(vn)
() w3 oA ) )
T B a T
o (G () () -+ (3))
b x x x

considered as polynomial in 1/x, where —pu (b,11) 4 1t (by) + p (up) — o (vy) > 1 —

i (b)) > 0 by equation (3.12). Since ged (anﬂ (1/2) (1/z) #Ont0)Talbr)tulun)=plon) g (1/;5)) =
L, Bns1 (1/2) | B (1/x)d, (1/2) and so

1 1 1
ﬁn-ﬁ-l (_) S ﬁn (_) dn <_>
s - T - d# o
Thus
1 1 |#bnr1)=plba) = p(un) +p(vn) m P (l)’ 1 1 1
e (‘) . el EYOIONE ()“ (‘) o (‘) ,
1 |pen)—t 1 1 1
R O N IR EA

< qu(bn)*l max {qu(bn)

- (5)
=max<{ — |a, | —
q T

(2)

w(bn)—1

J

4

xT




Now since |3, (1/z)|, < |dn-1 (1/2)], |Bn-1 (1/2)|, for all n > 2, it follows that
ﬁn (i) dn—l (i) ﬁn—l (i)
dn—l (é) dn—2 (é) ﬁn—Q <é)
5 (1)
x

1
o ()16
X . £
n—1

- (1) q; (1 (vi) = p(ug)) — g (biby - - - bp1)

because |d; (1/x)| < gtd=#ud) =1t for all 4 > 1. By Theorem 3.6, we get

<

x T xT

IN

T x x

IN

T x

<

Y

x

y Pn=1
qn—1

1 — q/‘(anl)fn

0o 4 qn |Qn—1|oo A

<=n+ 1 (gn-1) = p(bn) — p (gn-1)
= —p(b,) —n.

It follows that |8, (1/x)], < |B8i(1/2)|, ¢ #&)7™ and so

1

1 1 1
Qna <—) < ‘max {— Qp <—) SO B,y <—> q_#(bn)_n}
1 1 .
=max { — |, <—) ,—‘ﬁl (ml)}z
q )], "

If o, (1/x) # 0 for all n > 1, then for n sufficiently large,

5 ()], o (?)

degan(3) —

1
prem <5§ q

1
q

| =

40
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This implies

qdeganJrl(%) _ _ qdegan(%)'

T

<

T

() <2

Thus {deg v, (1/x)} is eventually a strictly decreasing sequence of non-negative

integer, a contradiction. Therefore a,, (1/2) = 0 for some m > 1. Hence A,, =0
and the algorithm terminates.

]

In the case of the function field F/, Theorem 3.19 applies to most well-known

expansions.

Corollary 3.20. Let B € FV*. Then the Sylvester-type (Type 1s), or the Engel-

type (Type 2+ ), or the Type 4, or the Type 5o, or the Type 8. expansion of B
is finite if and only if B € F ().

The same conclusion holds for

1. the radiz-type 1 (Type 6 ) expansion provided u, = u € Si/s;

2. the radiz-type 2 (Type Too) expansion provided v, = v = e(l/a:)“(v) with
eeF,~ {0}, p(v) > 0.

Since the infinite valuation can be considered as the (1/x)-adic valuation for
the field F, (1/z), Corollary 3.16 holds for the case of the function field F/* and

we show

Theorem 3.21. In F'/%, the Liroth-type expansion of A'is finite or ultimately
periodic if and only if A € Fy(x).



CHAPTER IV
PRODUCT EXPANSIONS AND SOME
CHARACTERIZATIONS OF RATIONAL ELEMENTS

In this chapter, we introduce three main types of product expansions for el-
ements in certain specifie subsets of the function fields. We give detailed proofs
of their convergence, uniqueness and the degree of approximation for each type.
Characterizations of rational elements are established in the first type. In the re-
maining types, sufficient conditions of rationality are given. First, we introduce

two subsets of FP and F/? for first two types. Let

P := {1 + th(:c)p(x)’, ci(z) € Fylz], degei(x) < d} C F?
i=1
and
Q = {1 +Zc¢x’i; o Fq} c F'=
i=1

4.1 Products of Type I,,; and Type I, and Characteriza-

tions of Rational Elements

The first type of product is derived from the Type 4, series expansion as seen in
Theorem 4.2. For convergence of product of Type1,,y, we need one more auxiliary

result.

Lemma 4.1. Any product [ (1 +1/b;) with
bi € Spiy,v(bi) <1 —2"v(biy1) <2v(b;) — 1, (4.1)

converges (relative to |-[,,y) to an element B' € P such that B # 1 and by, =

(1/ (B =1)),
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Proof. We need consider the case where the product is infinite. Let B], = [\, (1 4+ 1/b;).
Then B! ,— B = B, (H"+k (1+1/b) — 1) (k> 1).Sincev (b;) < —1, v (1 +1/b;) =

1=n+1

min {v(1),v (1/b;)} =0, we get v (B},) = 0. From

(D) = (e ) (1) (16,2
bi anrl bn+2 bn+k ’

1=n+1
S T I
bn+1 bn+2 bn+k b’Lbj bibjbl

f

3
bn+lbn+2 - bn—i—k

we have
n+k 1
14+ — J—

v (H ( + bi) 1)

1=n+1
—min{y( L ) y(;) V( 1 >}

bt Vi brt1bn+2 Wy Ori1bny2+ bnyr
()
= y ,
bn+1

because v (1/b;) > 1 and v (1/b;41) = 20 (1/b;) + 1 > v (1/b;). Consequently,

1
V(B:%-‘rk_B;l) :V(bn-‘rl) 22n+1_1 — 0 (n—)oo)a

Le. (By) is a Cauchy sequence (relative to |-| ). Since F? is a complete metric
space, (B;,) converges (relative to ||,,) to some element B’ € FP. Since B’ —
1 = lim, .« (B], — 1), and, as above, v (B], — 1) = v (1/by), we get v(B' — 1) =
v(1/bi) > 1,1e,1# B € P and (B'), , = 1" Write now B = (1+1/b,) B”,
where B” = [[7., (1 +1/b;). Then b, — 1/ (B' = 1) = (1+b)(B"—1)/(B'—1).
Similarly, v(B"” — 1) = v (1/by). Moreover,

u(bl—Bll_l) ) v (B 1)~ (B 1)

=v(b)+v (%) —v (bil) > 1,

by (4.1). Hence by = (1/ (B’ = 1)),,- O
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Theorem 4.2. (Product of Type I,,)) Every A € P~ {1} has a finite or
convergent (relative to ]-|p(x) ) product, termed Cantor product, expansion of the
form
o 1
A= H1 (1 - a_i) :
where the “digits” a; € Sp() satisfy v(a;) <1—2", v(ai+1) < 2v(a;) — 1. Subject
to these conditions, the representation is unique.
In addition, if T, (1 + 1/a;) = pn/@n, with g, = ajay---a,, then

1 —d(2n+1-1)

Pan
A - . el
‘ oy 4T nly)

4n

Proof. In Theorem 3.2, let A € P~ {1} with r, = a,+ 1 and s, = a, (n>1).
Then ag = (A4),,) = L and

1 1 1 1 1 1 1 1
A= 1+—+<1+—) —+...+<1+~—> (1+ > —+<1+—> (1+—> Apiq.
aq a /) ag aq ap—1 /) Qn aj Qp

For n > 1, it follows easily by induction that

- 1 1 1aMAY. 1 1 1 p
[T1+=)=1+—+(1+=) =+ F(1+— ] (1+ — ==,
a; ay ai ) as ay Qp—1/ Qan qn

=1

where ¢, = a1 -+ a, and so A = (1 + A, 1) [[7~, (1 + 1/a;). Also by induction, we
have

v(A,) =—-v(a,) >22"-1 (n>1). (4.2)

Thus, A,+1 — 0 (n — o0), which enables us to write
A= ﬁ 1+ k| c F?.
i=1 i
Next, we show that

v (An) Zn=v(gn-1) (n=2) (4.3)

by induction on n. First, v (As) = —v(az) > 1—2v(a1) > 2—v(ay) by (3.1). For
n > 2, assume v (A,) >n —v(q,—1). Then v(A,11) = —v(an1) > 1-2v(a,) =
1—v(a,) —v(a,) >1—v(a,)+n—v(g1) =n+1—v(g,). From (4.2), we get

v(q,) = v(a))+v(ag)+: - 4v(a,) < (1-2)+(1-22)+ - +(1-2") = n—(24+2%+. . .+2"),
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and so by (4.3),

v (A— %) — v (Anﬂi]j (1+ %)) = v (A1)

>n+1-—v(g,)>1+2+2° 4 +2"=2"" 1

which yields the asserted approximation inequality.
To prove uniqueness, suppose that

= 1 = 1
A I ) = —
H(+ai> H(l—i_a,')’
Gl = ¢
with both products being of the stated form. From Lemma 4.1, a; = (1/ (A — 1)),y =

ay. Cancelling out the first factor, we get
= 1 = 1
14 =)= 14—
H<+ai> H<+a'~>’
=2 1= 4
Proceeding in the same manner, we successively obtain a; = a; for all ¢ > 1. O]

Indeed from Theorems 3.2, 4.2 and the fact that

n

1 1 = 1 1 1
[T{1+=)=at+t—+> (1+—) - (1+ —
a; ay ay a;—1 /) a;

i=1 =2

we obtain at once

Corollary 4.3. Fach A € P~ {1} has a series representation of the form

1 o
A:1+—+Z(1+i)---(1+ : )1,
a1 Ay a1 ai—1 /) -Q

where a;€-Sypy-satisfy v (a;) < 1= 2", v (ai41) < 2v (a;) — 1 4if and only if it has

a Cantor product representation of the form
TT(1e )
=] o)
=1
Using this last corollary and the characterization of Type 4,,) series expansion

in Corollary 3.11, we get
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Corollary 4.4. The Cantor product of Type Iy of each A € P\ {1} is finite if
and only if A € Fy(x).

For the field FY/?, similar proofs as in Lemma 4.1, Theorem 4.2, Corollary 4.3
and Corollary 4.4 yield

Lemma 4.5. Any product [[;5, (1+1/b;) with
bi € Sty pu(bs) < 1 =27 p(biyq) < 2u(b;) — 1,

converges (relative to |-| ) to an element B € Q such that B # 1 and by =
(1 (B" = 1)),

Theorem 4.6. (Product of Type 1.) Every B € Q ~ {1} has a finite or
convergent (relative to || ) product, termed Cantor product, representation of the

form
- 1
e [T &
};Il ( - bz’) \
where the “digits” b; € Sy, satisfy p(b;) <1 —2°  pu(biy1) < 2p(b;) — 1. Subject

to these conditions, the representation is unique.

In addition, if T, (1+1/bi) = pn/qn. with g, = biby---by,, then

Pn

. 1 _(2n+1_1)
dn

B < <
‘ o0 qTL+1 |qn|oo

Corollary 4.7. Fach B € Q ~ {1} has a series representation of the form

1 > 1 1\ 1
+bﬁz( +bl) ( *bi_l) b

=2

where b; € Sy, satisfy p (b)) <1 —2 v (bip1) <2v(b;) — 1, if and only if it has a

Cantor-product representation of the form

B:H(Hb%).

Corollary 4.8. The Cantor product of Type I, of B € Q ~ {1} is finite if and
only if B € F,(1/x).

We continue with the second type product.
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4.2 Products of Type II,,) and Type Il

We start with FP.

Lemma 4.9. Any product [T;2, (1 + ¢;(x)p(x)%) with ¢;(x) € Fy[z]\{0} such that
degci(z) < d,d; € N and div1 > d;, converges (relative to |-| ) to an element
B'# 1 in P with B' =1+ c¢(2)p(z)2B", B" € P.

Proof. For n > 1, let Q, =[], (1 + ¢:(z)p(x)%). Then, for k > 1,

n+k

Qn—i—k - Qn = Qn { H (1 + Ci<x)p<x>di) - 1} = Qan,k>

i=n-+1

where R, \, = H?;I;H (1 +ei(z)p(x)®) = 1. Since diq > d; for i > 1, we get

Rn,k = Cn+1(x)p(x)dn+1R:1,ka Qn =14 Cl(x)p(x)dlsn for R;’L,k‘? Sn € P.

It is easy to see that v(@,) = 0. Thus

v (Qn+k y Qn) = V(Rn,k> > V(CnJrl(x)p(x)dn-HR;z,k)
—dy > 1+dy> ... >n+ 1.

Hence, for any k > 1, v (Quir —Qn) — 00 (n — 00), which implies that (Q,,)
is a Cauchy sequence. Since F? is a complete metric space, the sequence (Q,)
converges (relative to || ) to an element B" in F”. It follows that v(B'—Q,) > di
for n sufficiently large. Therefore B' = 1 + ¢, (2)p(z)% B” for B” € P, because
Qn =1+ ci(z)p(x)"S,. O

Theorem 4.10. (Product of Type IL,,)) Every A € P~ {1} has a unique

product representation of the form

o0

A= TTabi)p),
i=1
where b;(z) € F,[z]\{0}, degb;(z) <d, e; € N and e;11 > e;. Further,
v(A—P,) > eni1 >n,

where P, = T, (14 b;(x)p(x)%).
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Proof. Let Ay :== A € P\ {1}. Then we can write
A =1+ b (z)p(x) A, with ey € N, by(z) € F [z]\{0}, degb(z) <d, A, € P,

For n > 1, if A, =1+ b,(z)p(x) A, has already been defined with e, € N, A/, €
P~ {1}, by(x) € F,[z]\{0} and degb,(z) < d, then define

~

An—&-l =(1+ bn(l’)p(l’)en)il Ay
= (1= ba(@)p(x)e + bu(@)?p(a)? s — - ) (1 + bo(2)p(2) + - - )
= 1+ boga (z)p(@) "1 Ay L,

where A], ., € P (if AL ;1 # 0); €ng1 > €n, bpa(x) € Fy[z]\{0} and deg b, 41(x) <
d. If A/ =1, then A1 = 1and the algorithm terminates yielding

~

A=Ay = (% b)pla) A = o= At T (0 + bi(o)p(ar).

Otherwise, An+1 # 1 and so v (An+1 — 1) =éep1 > 1l4e,>...>2n+e >n+1,
implying lim, e Ansq = 1. Thus, A = L2, (1+by(x)p(x)e).
Forn > 1, let P, = [, (1 +bi(x)p(x)%). Then

A= PnAn+1 =F, + b1 (x) ( >en+1A;1+1P
and so follows the approximation
V(A= P,) = v (bop(2)p(x) " AL Py) = €pe1 >+ 1> n.

To show uniqueness, assume that

AT Bt = T (175 ateinor®).

subject to the stated restrictions on the coefficients and. exponents. - Thus, by
Lemma 4.9

A=1+4bi(x)p(x)* A" =1+ cr(x)p(x)" B,
with A’, B’ € P, showing that e; = dy, bi(x) = ¢i(z). Cancelling out the first

factor, we get

ﬁ 1+ bi(x ﬁ (1+ ¢;(z)p(x)) .
=2 =2
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Proceeding in the same manner, we successively obtain e; = d;, b;(x) = ¢;(x) (i >

). O

Apart from those products of Type L., the problem of characterizing products
of other types is still open. However, there are several sufficient conditions of

rationality as witnessed, for example, in the following proposition.

Proposition 4.11. Let A = [[;2, (1 + bi(x)p(z)%) € P~ {1} be a product of Type
Iy, Ifbipi(z) = bi(x)? and €1 = 2¢; for alli sufficiently large, then A € Fy(x).

Proof. Assume that there exists a positive integer N such that b, (z) = b;(z)?
and e;41 = 2¢; (1 > N). Then

A= (14 by()p()™ )= (L byaap(a) 1) (1 + e(x)) (1 + c(2)?) - (1 + c(:z:)Qn_l) .

where ¢(z) = by (z)p(x)*¥. For n > 1, since

on

- e il & e Ty 1—c(x)”  1—c(x)
- <1+c(:1:) > T dl=c(@) l—c@)? 1=c@)>' 1-—cz)’

and v (c(z)?") = 2"eny — oo, we get [[2, (1 —1—0(33')2%1) =1/(1 —c¢(z)) and so

A eFy(x).
O

For the field F¥/*, as described earlier, analogous proof as in Lemma 4.9, The-

orem 4.10 and Proposition 4.11 yield

Lemma 4.12. Any product []:2, (1 ) (1/m)di> with ¢; € F,\{0} such that d; €
N and d;+1 > d;, converges (relative to |-| ) to an element B' # 1 in Q with
B' = lacq (1) x) B!, cB!€ Q:

Theorem 4.13. (Product of Type II,) Fvery B € Q ~ {1} has a unique

product representation of the form

B—ilj(leri (i))


chula
Note
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where b; € F\{0}, and e; € N, e;11 > e;. Further,
IU(B - Qn) 2 €n+1 > n,

where Q, = [, (14 b; (1/x)7).

Proposition 4.14. Let B = [[.2, (1 +b; (1/2)%) € @ ~ {1} be a product of type
Il. If biy1 =02 and e;y1 = 2e;, for all i sufficiently large, then B € F,(z).

4.3 Products of Type IIL,,) and Type III,

Let
= {1 +Zcip(ﬂz)i; ¢ €40,1, ..., p= 1}} C FP.
i=1
and
= {1+Zci:v_i; e €40,1, 5% . )p = 1}} c FY/=,
i=1
For convergence and uniqueness, we need the following lemma :
Lemma 4.15. Any product
(0.9)
H (1+ p(a
=1
with 1 < d; < p—1, 8 € N and s;31 > s;, converges (relative to |-|,,y) to an
element B' # 1 in P" with B' = 1 + dyp(x)** B", B" € P'.

Proof. For n > 1, let Q, =[]\, (1 + p(x)*)%. Then, for k > 1,

n+k
Qn—f—k '} Qn X Qn { H (1 +p(x>sz)dl | 1} T Qan,ka

i=n-+1
where
n+k
Rk = H (14 p(x)*)% —1
1=n+1

= {1 + dpyrp(z)*+t 4 - p(gj)dnﬂsn-s-l} {1 + dppop(2)*r+? + - - - —i—p(l‘)d"”S””} o
{1+ dpap(a)™+s + - +p(x)dn+k5n+k} -1
= dpap(z)" ' Ry,
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with R, € P, because (s,) is a strictly increasing sequence. It is easy to see that
v(Q,) =0 and so

V(QnJrk_Qn):V(Rn,k):SnJrl25n+12---251+n2n+1-

Then v (Qnir — Qn) — o0 and s0 Quip — @, — 0 (n — o0). Therefore, if
the product is infinite, then (@),) forms a Cauchy sequence and so converges to
an element B’ of the complete metric space FP. Hence ), — B’ — 0 and so
v(B'—Q,) — o0 (n — o0). Thus v(B"—Qy) > s; for N sufficiently large
and so B’ = 1+ dyp(z)*'B", B" € P!, because Q, = [[\, (1 +p(x)*)* =1+
dip(x)**D', D" e P O

Theorem 4.16. (Product of Type IIL,,)) Fvery A € P’ ~\ {1} has a unique

product representation of the form,

A= H (1+ p(z
19,

where 1 < b, <p—1, r, € N and r;.qy > r;. Further
v(A—=P,) 2 a1 > n,
where P, = []r—, (1 + p(z))" € N.
Proof. Let A; :== A€ P'\ {1}. Then we can write
A =1+bpx)*+---, withr; €N, 1<b, <p-—1

Forn>1if A, =1+ b,p(x)™ + -+ has already been defined with A, € P~
{1},1<b, <p—landr, € N, then set

~

A 1= (L4 pla)™) ™ A,
R R AR R D LR

= 1 bugap(a) 4

where 7,41 >rpand 1 < b, <p—1if /Alnﬂ #£ 1. If Anﬂ =1, then the algorithm

terminates. Now

A=Ar=(1+pa)) Ay == Auy [T (1 +pla))™.
=1
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If the procedure does not terminate, then v <An+1 — 1> =rp > 1+r, > . >
n+r >n+1,andso A =[], (14 p(x)™)". The proof of uniqueness is similar
to that in Theorem 4.10 using Lemma 4.15.

From the definition of P,, we can write A = /AlnHPn. Thus,

A

v(A—P,) =v (An+l — 1> +v(P,) =Tps1 > n.
]

A sufficient condition for rationality similar to the one in [6] is given in the

next proposition.

Proposition 4.17. Let A= [[%, (1 + p(x))" € P'~ {1} be a product of type
I,y Ifb; =b€ {1,2,...,p—1} and ripy = 21y, for all i sufficiently large, then
AeF,(z).

Proof. Assume that there exists a positive integer N such that b, = b € {1,2,...,p — 1}
and r; ;1 = 2r; for i > N. Observe that

A= (1 +p(m)“)b1 .. (1 _|_p<x>7‘N-1)bN—1 (1 +p(:c)”’)b (1 —|—p(CL’)2TN)b (1 —I—p(m)22rl\’)b o

Let

C = (1 + p(a)™)" (1+p<x>“)b(1+p<:c>22”v)b---a 3(x) = p(x)™ and

Co = (14 pa)™) (1 p@?™)" (14 p@?) - (T p@? ) (n> 1),
Then

Co = (14 8@)) (1+8(2)?) (1+0@)") -+ (1+ 5($)2n1>>b Y (%)b

Since v (6(2)?") = 2"y and 1 < b < p—1, we get C = lim,, oo C,, = 1/ (1 — d(z))" €
F,(x) and so

A= (L pla))™ - (14 p(a)™ 1) C € Fy(a).
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For the field F'/*, similar proofs as in Lemma 4.15, Theorem 4.16 and Propo-
sition 4.17 yield :

Lemma 4.18. Any product

o0 1 Sq dz
10+ (2))
. x
i=1
with1 <d; <p—1, s; € N and s;4q > s;, converges (relative to |-| ) to an element

B'#1inQ with B'=1+d, (1/2)" B", B"€ @'

Theorem 4.19. (Product of Type IIl,) Every B € Q' ~ {1} has a unique

product representation of the form

771 RN

)

where 1 < b, <p—1,r; €N and r;.y > r;. Further

1% (B Y Qn) Z T'n+1 > n,
where Q, = [T~ (1 + (1/z)")* e N.

Proposition 4.20. Let B = [[:°, (14 (1/2)™)" € Q' ~ {1} be a product rep-
resentation of Type IHls. If by =b¢€ {1,2,...,p=1} and r;y1 = 21y, for all i
sufficiently large, then B € F,(z).
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