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Oxidative stress and mitochondrial dysfunction are the major causes of neuronal
death in neurodegenerative disorders. Eriodictyol is a flavonoid extracted from the whole plant
of Dendrobium ellipsophyllum (thai name: Ueang Thong). The antioxidant and anti-
inflammatory effects of eriodictyol have been widely reported. The present study aimed to
investigate the protective effect and mechanisms of eriodictyol on hydrogen peroxide (H,0,)-
induced cell death in human neuroblastoma SH-SYS5Y cells. The protective effect of
eriodictyol on cytotoxicity induced by H,O, was evaluated using resazurin assay. The effects
on intracellular reactive oxygen species (ROS) and mitochondria membrane potential were
evaluated by 2°-7° dichlorodihydrofluorescein diacetate (DCFH-DA) assay and
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antioxidant effect, and consequently inhibit mitochondria-mediated apoptosis cascade.
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CHAPTER 1
INTRODUCTION
1.1 Background and Rationale

Neuronal death in neurodegenerative disorders are mainly caused by oxidative stress and
mitochondrial dysfunction (Wang et al.,, 2014). The current pharmacological treatment of
neurodegenerative diseases mainly alleviates the dysfunction of neurotransmission but they do
not restore dead neurons or regenerate neurites. The neuroprotective approach is needed to slow
down the disease progression.

Oxidative stress is resulted from the accumulation of reactive oxygen species (ROS) and
the inadequate protective mechanisms of the cells. Hydrogen peroxide (H,O,), one of ROS, can
induce neuronal death via an increase of ROS and the decrease of antioxidant enzymes (Feng et
al., 2016; Park et al., 2015). In addition, H,0, causes the translocation of cytochrome ¢ from
mitochondria to cytosol leading to apoptosis (Cai et al., 2008). Therefore, H,O, is used in this
study to induce oxidative stress and neuronal death in human neuroblastoma SH-SYSY cells.

Eriodictyol is a flavonoid extracted from the whole plant of Dendrobium ellipsophyllum
or Ueang Thong. Previous studies demonstrated the antioxidant and anti-inflammatory effects of
eriodictyol (Zhu et al., 2015). However, the protective effect of eriodictyol has not yet clarified.

The present study aimed to investigate the protective effect of eriodictyol in H,O,-
induced SH-SYS5Y cell death. The mechanisms underlying the protective effect of eriodictyol

involving mitochondria-mediated apoptosis.

1.2 Research questions

1. Does eriodictyol protect against the neurotoxic effect of H,0, in SH-SYS5Y cells?
2. What are the mechanisms underlying the protective effect of eriodictyol on H,0O,-induced

cell death in SH-SYS5Y cells?



1.3 Objectives

1. To investigate the protective effect of eriodictyol on H,O,-induced cell death in SH-
SYSY cells.

2. To investigate the mechanisms underlying the protective effect of eriodictyol on H,O,-
induced cell death in SH-SYS5Y cells.

1.4 Hypothesis
Eriodictyol products against H,O, -induced neuronal cell death in SH-SYSY cells via the
decrease of ROS production, the protection of mitochondria membrane potential dysfunction and

the inhibition of mitochondria-mediated apoptosis cascade.

1.5 Expected Benefits
This research will provide a scientific information regarding the protective effect of
eriodictyol on the neuronal cells. The data suggest further study to investigate the neuroprotective

effects of eriodictyol in the in vivo models of neurodegenerative diseases.



1.6 Conceptual Framework

H,0,

ROS production > Mitochondria

dysfunction

Oxidative stress [ Eriodictyol ]

| L Cell death J\




CHAPTER 2
LITERATURES REVIEW
2.1 Neurodegenerative disorders

Neurodegenerative disorders are characterized by progressive and irreversible loss of
neurons in the central and peripheral nervous systems. These disorders include Alzheimer’s
disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and Huntington’s
disease (HD). The clinical symptoms of neurodegenerative disorders are varied depending on
types of neurons and brain areas defected; such as cognitive impairments in AD, and motor
dysfunctions in PD, HD and ALS. Nowadays, there is no treatment for recovering neuronal death.
The available treatments are to reduce the symptoms by altering neurotransmission. Therefore,
the protection of neuronal death is considered as an important therapeutic approach to delay the
progression of neuronal loss in neurodegenerative disorders.

The pathology of neurodegenerative disorders involves oxidative stress (Thanan et al.,
2014). The increase of lipid peroxidation and the decreases of glutathione (GSH), glutathione
peroxidase (GPx), glutathione reductase, glutathione-S-transferase (GST), glucose-6-phosphate
dehydrogenase, superoxide dismutase (SOD) and catalase (CAT) have been reported in the
frontal cortex of AD patients (Ansari & Scheff, 2010). In addition, the transgenic mouse model of
AD presented mitochondria dysfunction and the increase of ROS in the brains (David et al.,
2005). To produce an animal model of PD, a mitochondrial complex I inhibitor, 1-methyl-4-
phenyl-1,2,3,6- tetrahydropyridine (MPTP), caused the elevation of malondialdehyde level an
oxidative stress marker, and the depletion of GSH leading to parkinsonism behaviors in rats (Xu
et al, 2013). Moreover, a transgenic mouse model of HD showed the increases of
hydroxyguanosine (8-OHG) and 8-hydroxy-2’-deoxyguanosine (8-OHdG) levels which are the
markers oxidative DNA damage (Acevedo-Torres et al., 2009). Taken together, oxidative stress is

an important cause of neuronal death in the neurodegenerative disorders.



2.2 Reactive oxygen species and oxidative stress

Reactive oxygen species (ROS) are defined as a group of reactive molecules derived
from oxygen (O,). ROS include peroxide (0,), superoxide anion (+0, ), hydroxyl radical (*OH),
hydroperoxyl (HO,") and hydrogen peroxide (H,0,) (Figure 1). ROS is generally short-lived and
highly reactive because of their unpaired valence electrons (Patten et al., 2010). The major source
of intracellular ROS is mitochondrial electron transport chain (ETC) (Patten et al., 2010). It is
estimated that 1-2% of electrons are leaked during ETC resulting in the production of superoxide
anion in the mitochondrial matrix (Circu & Aw, 2010; Murphy, 2009). Superoxide anion can be
transformed into H,0, by superoxide dismutase (SOD). H,O, can be further transformed into the
more toxic forms; hydroxyl radicals and hydroxyl anions, by Fenton reaction. Moreover,
superoxide anion can be transformed into hydroperoxyl (Birben et al., 2012; Kim et al., 2015)
(Figure 2). ROS cause cellular lipid, protein and DNA damage leading to oxidative stress,
mitochondrial dysfunction, and cell death (Blesa et al., 2015; Kim et al., 2015; Valko et al.,
2007). In normal condition, ROS production and protective mechanisms in the cells; such as
antioxidants and antioxidative enzymes, are balanced. However, the excessive ROS generation
and the depletion of the antioxidant system in the pathological condition resulted in oxidative

stress in the cells (Kwon et al., 2014).

Q:0 0:0 ‘0:0
Oxygen (0,) Superoxide anion (-05) Peroxide (-0,2)

H:Q:(}:H OH 0 H_

Hydrogen Peroxide (H,0,) Hydroxyl radical (-OH) Hydroxyl ion (OH")

Figure 1 Types of reactive oxygen species (ROS) (Kim et al., 2015)



Fenton reaction

> Hzoz / \ > 'OH+OH-

Fe?* Fe3*

HO,

02 Superoxide dismutase (SOD)

Figure 2 The generation process of reactive oxygen species (ROS) (Kwon et al., 2014)

Hydrogen peroxide (H,0,) has been used in various neurotoxic models in vitro.
Hydrogen peroxide diffuses into plasma membrane (Sies, 2017) and is readily converted into the
highly toxic hydroxyl radicals via Fenton reaction (Kim et al., 2015). H,0O, induced the increase of
ROS, lipid peroxidation and mitochondria dysfunction leading to mitochondrial mediated
apoptosis in human neuroblastoma SH-SY5Y cells (de Oliveira et al., 2018; Yang et al., 2016).
Moreover, H,O, stimulated apoptotic cell death in cardiomyocytes, associated with PARP
cleavage, DNA fragmentation, upregulation of p53, loss of mitochondria membrane potential,
BAX/BAD mitochondrial translocation, mitochondrial cytochrome c¢ release and caspase-3
activation (Cook et al., 1999). In addition, H,O, inhibit expression of Bcl-2 protein in human
promyelocytic leukemia HL-60 cell line (Lee et al., 2000). Hence, H,0, will be used to generate

the in vitro neurotoxic model in this study.

2.3 Mitochondria-mediated apoptosis cascade

Apoptosis 1S the process of programmed cell death. Apoptosis normally occurs to maintain
cell populations in tissues and to eliminate damaged cells (Elmore, 2007). However, progressive
neuronal death via apoptosis leads to neurodegenerative diseases.

Apoptosis is triggered by extrinsic or intrinsic signaling pathways. Mitochondria plays an
important role in the intrinsic signaling pathways of apoptosis. DNA damage, ER stress, hypoxia
and metabolic stress can activate BH3-only proteins. BH3-only proteins then activates BAX and

BAK resulting in translocation of BAX and BAK to the outer membrane of mitochondria.



This event leads to pore formation, mitochondrial membrane potential alteration and

mitochondrial damage. Cytochrome c is subsequently released from mitochondria and then

associates with adaptor protein apoptotic protease activating factor 1 ( Apaf-1) to form

apoptosome. Apoptosome sequentially activates caspase-9, caspase-3 and caspase-7. On the other

hand, an anti-apoptotic protein, Bcl-2 proteins, inhibit cell death by inhibiting BAX and BAK

(Circu & Aw, 2010; Ichim & Tait, 2016) (Figure 3).

Caspase-8 and
caspase-10 —>

Caspase-3 and
caspase-7

Extrinsic pathway

Death receptors = ——
(e.g. TRAILR and FAS) Intrinsic lethal stimuli:

Pro-caspase-8 and
pro-caspase-10

QOO

Intrinsic pathway

P Bal

DNA damage, ER stress,
‘ hypoxia and metabolic stress

_ -~ "Mitochondrion ~

2 P . \\y .\ 3
‘ 'l fﬂ i ’\\
| i U
BH3-only \_ y ®
BCL-2 proteins v g D O - 0, v
BCL-X, or ® L, = e e
MCL1 ° "
MOMP
: @ Cytochrome c
| Activated @ 0 °
BAX and BAK| @

BID

o
J:
> OO ©
tBID °
e © &
e APAF1Q§ -

oligomerization Apoptosome

@d—C
J- Caspase-9

Caspase-3 and
caspase-7

Figure 3 Apoptotic signaling pathways (Ichim & Tait, 2016)



2.4 Eriodictyol

A flavonoid, eriodictyol (C;H,,0,) (Figure 4), is extracted from the whole plant of
Dendrobium ellipsophyllum (thai name: Ueang Thong) (Figure 5). Eriodictyol is colorless powder
with molecular weight 258 g/mol, and Log P 2.02 (U.S. Environmental Protection Agency, 2018).
It exhibits beneficially pharmacological properties including anti-metastatic (Tanagornmeatar et
al., 2014), antioxidant and anti-inflammatory effects (Zhu et al., 2015). Eriodictyol attenuated
LPS-induced acute lung injury by inhibiting the inflammatory cytokine such as TNF-Q{, IL-6 and
IL—IB (Zhu et al., 2015). In addition, eriodictyol attenuated B—amyloid 25-35-induced oxidative
cell death in primary cultured neuron by activating Nrf2 (Jing et al., 2015). Moreover, eriodictyol
protected against linoleic acid hydroperoxide and H,0,-induced PC12 cell death (Lou et al., 2012;

Sasaki et al., 2003)

OH
OH

H O O o

\‘\

OH O

Figure 4 Chemical structure of eriodictyol



Figure 5 Dendrobium ellipsophyllum or Ueang Thong



CHAPTER 3
MATERIALS AND METHODS
3.1 Materials
3.1.1 Cell culture and treatment

The human neuroblastoma SH-SYSY cell line was purchased from ATCC
(Manassas, VA, USA). SH-SYS5Y cells were cultured in Dulbecco’s Modified Essential
Eagle’s Medium-Ham’s Nutrient Mixture F-12 (DMEM-F12) supplemented with 10%
heat-inactivated fetal bovine serum (FBS) and 0.1% penicillin/streptomycin at 37 °C in a
humidified atmosphere of 5% CO, and 95% air. The medium was changed every 2 days.

Cells were sub-cultured at 80-90% confluent.

3.1.2 Chemicals and Reagents

Anti-cytochrom ¢ antibody (Santa Cruz Biotechnology, CA, USA)

Anti-GAPDH antibody (Millipore, Billerica, MA, USA)

BCA protein assay kit (Thermo Scientific, Rockford, IL, USA)

2’-7" Dichlorodihydrofluorescein diacetate (DCFH-DA) (Sigma, USA)
Dimethyl sulfoxide (DMSO) (Fisher Scientific, Loughborough, UK)

Dulbecco’s Modified Essential Eagle’s Medium-Ham’s Nutrient Mixture F-12
(DMEM-F12) (Gibco, USA)

Ethanol (Merk, Germany)

Fetal bovine serum (Gibco, New Zealand)

Horseradish peroxidase (HRP)-conjugated goat anti-rabbit IgG antibody
(Millipore, Billerica, MA, USA)

Hydrogen peroxide (H,0,) (Ajax Finechem, Auckland, New Zealand)

Nonfat Dry Milk (Cell Signaling Technology, Inc. USA)

Penicillin/streptomycin (Gibco, USA)

Polyvinylidene difluoride transfer membrane (Immobilon, Bedford, MA, USA)
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Resazurin (Sigma, USA)

Tetramethylrhodamine ethyl ester (Sigma, USA)

Phosphate buffered saline (Gibco, USA)

Protein ladder (BLUEstaint"", Gold Biotechnology, Inc. US)

Rabbit monoclonal anti-BAX antibody (Cell Signaling Technology, Inc. USA)
Rabbit monoclonal anti-Bcl-2 antibody (Sigma-Aldrich, St. Louis, MO. USA)
Rabbit monoclonal anti-caspase-3 antibody (Cell Signaling Technology, Inc.
USA)

Tris-HCI (Sigma-Aldrich, St. Louis, MO. USA)

0.4% Trypan blue dye (Sigma, USA)

0.25% Trypsin-Ethylenediaminetetraacetic acid (EDTA) (Gibco, USA)

3.1.3 Equipment
Analytical balance (Mettler Toledo, Switzerland)
Autoclave (Hirayama, Japan)
Autopipette (Gilson, USA)
Centrifuge (Hettich, USA)
Controller pipette (Gilson, USA)
CO, incubator (Thermo Fisher Scientific, USA)
Light microscope (Nikon, Japan)
Micro centrifuge (Thermo Fisher Scientific, USA)
Microplate fluorescence reader (CLARIOstar®, BMG LABTECH, Germany).
pH meter (Schott, UK)
Power suppy (PowerPac' ", USA)
Trans-Blot SD sem-dry electrophoretic transfer cell (Trans-Blot®, USA)

Vortex mixer (Scientific Industries, USA)


https://www.goldbio.com/documents/1120/P007-Technical_Data_Sheet.pdf
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3.1.4 Materials

25 and 75 ml cell culture flask (Gibco, USA)

15 and 50 ml centrifuge tube (Corning Inc., USA)

1.7 ml micro centrifuge tube (Accumax, USA)

6-well plate (Corning Inc., USA)

96-well plate (Corning Inc., USA)

96-well plate black flat bottom polystyrene (Corning Inc., USA)

200 and 1250 pl universal grad tip (Accumax, USA)

3.2 Chemical preparation
3.2.1 Preparation of eriodictyol stock solution

Eriodictyol was prepared as previously described (Tanagornmeatar et al., 2014)
and provided by Associate Professor Dr. Boonchoo Sritularak, Department of
Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences,
Chulalongkorn University (Tanagornmeatar et al., 2014). Fifty-mM eriodictyol stock
solution was prepared in 100% DMSO and stored at 20 °C until use. In the experiments,
the stock solution was diluted in culture medium to final concentrations. The 0.2%

DMSO was used as a vehicle control.

3.2.2 Hydrogen peroxide (H,0,)

One hundred mM H,0, stock solution was freshly prepared in deionized water.

The stock solution was then diluted in medium to final concentrations.



3.3 Methods

3.3.1 Experimental design
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3.3.2 Determination of non-toxic concentrations of eriodictyol

SH-SYS5Y cells were seeded in 96-well plates at a density of 5 x 10° cells/well
and incubated overnight at 37°C and 5% CO,. Cells were treated with eriodictyol 0.001,
0.01, 0.1, 1, 10 and 100 uM, and incubated for 24 h. Cell survival was evaluated by
resazurin assay.

In resazurin assay, 10 uL of resazurin (0.05 mg/ml) was added to each well 4 h
prior to the end of incubation time. Viable cells with active metabolism can reduce
resazurin into the resorufin product (Figure 6) detected by a microplate fluorescent reader
with at 530 nm excitation wavelength and 590 nm emission wavelength. The percentage
of cell viability was calculated as follows:

Cell viability (% control) = Fluorescence intensity of sample

Fluorescence intensity of control

NADH NAD*

HO\\/\/Oﬁ///O HO OUO
‘\\/\w"/ = i : :N/ =
o

Resazurin Resorufin

Figure 4 Principle of resazurin assay (Riss et al., 2016)

3.3.3 Determination of toxic concentrations of H,0,

SH-SYS5Y cells were seeded in 96-well plates at a density of 5 x 10° cells/well

and incubated for 48 h. Cells were treated with H,0, 100, 200, 300, 400, 500, 600 and
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1000 pM. Cell survival was evaluated by resazurin assay. The 50% inhibitory

concentration (IC,) was calculated and selected as a toxic concentration of H,0,.

3.3.4 Determination of the protective effect of eriodictyol on H,0O,-induced cell death

SH-SYS5Y cells were seeded in 96-well plates at a density of 5 x 10* cells/well
and incubated overnight at 37 °C and 5% CO,. Cells were treated with eriodictyol 0.1, 1,
and 10 uM for 24 h. Then, the medium was removed. Cells were then treated with 200

pM H,0, for 12 h. Cell viability was measured using resazurin assay.

3.3.5 Determination of the effects of eriodictyol on intracellular ROS levels

SH-SYS5Y cells were seeded in 96-well plates at a density of 5 x 10* cells/well
and incubated overnight at 37°C and 5% CO,. Cells were treated with eriodictyol 0.1, 1,
and 10 uM for 24 h. Then, the medium was removed and cells were treated with 200 uM
H,O, for 1 hour. After incubation period, cells were washed twice with PBS and 100 pL
of DCFH-DA was added (Hu et al., 2015; Kwon et al., 2014). The fluorescence intensity
was measured by microplate reader.

In the DCFH-DA assay, 100 pL of DCFH-DA (25 uM) was added to each well
and incubated for 30 minutes. DCFH-DA is the nonfluorescent dye. Oxidation of DCFH-
DA produces a fluorescent molecule, dichlorofluorescein (DCF) (Figure 7). DCF was
quantified using a microplate reader, with 488 nm excitation and 575 nm emission
wavelengths. Intracellular ROS levels were expressed as fluorescence intensity and
further calculated as a percentage of control.

Intracellular ROS levels (% control) = Fluorescent intensity of sample

Fluorescent intensity of control
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Figure 5 Principle of 2,7-dichlorodihydrofluorescein diacetate

(DCFH-DA) assay (Gomes et al., 2005)

3.3.6 Determination of the effect of eriodictyol on mitochondrial membrane potential

SH-SYS5Y cells were seeded in 96-well plates at a density of 5 x 10* cells/well
and incubated overnight at 37°C and 5% CO,. Cells were treated with eriodictyol 0.1, 1,
and 10 uM for 24 h. Then, the medium was removed and cells were treated with 200 pM
H,O, for 12 h. Cells were washed with PBS once time. Mitochondrial membrane
potential was detected using tetramethylrhodamine ethyl ester (TMRE) assay.

In TMRE assay, 100 pL of TMRE (100 nM) was added to each well and
incubated for 15 min. Fluorescent intensity of TMRE was measured using a microplate
reader at excitation wavelength 585 mm and emission wavelength 535 nm. TMRE, a red-
orange positive charge dye, can accumulate inside a healthy mitochondrion which

exhibits negative membrane potential.
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3.3.7 Determination of the effects of eriodictyol on mitochondria-mediated apoptosis
cascade

SH-SYS5Y cells were seeded in 6-well plates at a density of 2 x 10° cells/well
and incubated with eriodictyol 0.1, 1, and 10 uM for 24 h. Then, medium was removed
and cells were treated with 200 uM H,O, for 12 h. Cell lysates were then collected.
A proapoptotic protein, BAX, an anti-apoptotic protein, Bcl-2 and the markers of
apoptosis, cytochrome c, cleaved caspase-3 and caspase-3 expression levels were
detected using western blot analysis.

In the western blot analysis, cells are washed with PBS, harvested and
centrifuged at 16,000 g for 15 min at 4 °C. The protein concentrations were determined
using a BCA protein assay kit. Eighty-ug protein were separated on an 15% SDS-
polyacrylamide gel, and then transferred onto a polyvinylidene difluoride membrane.
The nonspecific proteins were blocked with 5% skim milk containing 0.5 mM Tris—HCl
(pH 7.5), 150 mM NaCl, and 0.1% Tween-20 for 1 h at room temperature. The
membrane was subsequently incubated with the primary antibodies (1:1000 anti-Bax,
anti-Bcl-2, anti-cytochrome ¢, and anti-caspase-3 antibodies) overnight at 4 °C. After
washes with TBST (Tris-buffered saline with 0.1% Tween-20), the blots were incubated
with a secondary antibody (1:1000 in TBST with 5% skim milk) for 2 hours at room
temperature. The blots were then washed and developed using the enhanced
chemiluminescence detection method by a luminescence-image analyzer. Protein bands

were quantified by densitometric analysis using Image J software.

3.3.8 Statistical Analysis

Each experiment was repeated three times. All results were presented as
mean = S.E.M. Data were analyzed by one-way analysis of variance (ANOVA), followed
by LSD post-hoc for comparisons between group means. Differences were considered

statistically significant if p value was lesser than 0.05 (p < 0.05).



CHAPTER 4
RESULTS
4.1 The effect of eriodictyol on cell viability
Eriodictyol (0.001-100 uM) did not affect cell viability (Figure 8). The highest
concentration of eriodictyol (100 uM) slightly decreased cell viability by 17.36% but this was not
significantly different from control. Therefore, three concentrations of eriodictyol, 0.1, 1 and 10

uM, were selected for further study.
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Figure 6 The effect of eriodictyol (0.001-100 uM) on cell viability in SH-SY5Y cells. Data are

presented as mean + S.E.M of three independent experiments.
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4.2 The effect of H,0O, on cell viability

To determine the effects of H,O, on cell viability in SH-SYSY cells, cells were exposed
to H,0, (100-1000 uM) for 12 h. H,0, (100-1000 uM) significantly reduced cell viability
(p <0.01 VS control) (Figure 9). The IC,, was 163+0.12 uM. Since H,0, 200 uM decreased cell

viability to 52.56 + 3.60%, this concentration was selected to induce cytotoxicity.
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Figure 7 The effect of H,0, (100-1000 uM) on cell viability in SH-SY5Y cells. Data are

presented as mean = S.E.M of three independent experiments. **p < 0.01 compared to control.
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4.3 The protective effect of eriodictyol on H,0,-induced cell death

H,0, (200 uM) significantly decreased cell viability compared to control group (p <
0.01). Pretreatment with eriodictyol (0.1, 1 and 10 uM) significantly increased cell viability
compared to H,O,-treated alone (p < 0.01) (Figure 10), indicating the protective effect of

eriodictyol.
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Figure 8 The protective effects of eriodictyol on H,O,-induced cell death in SH-SYSY cells. Data
are presented as mean + SEM of three independent experiments. **p < 0.01 compared to control;

*p <0.01 compared to H,O0, -treated alone.
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4.4 The protective effects of eriodictyol on H,0,-induced ROS generation

H,0, significantly increased intracellular ROS levels (p < 0.05) VS control. Eriodictyol
pretreatment significantly decreased intracellular ROS levels induced by H,0, compared to H,O,-

treated alone (p < 0.05) (Figure 11).
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Figure 9 The effects of eriodictyol on intracellular ROS levels induced by H,O,. Data are
presented as 