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CHAPTER I 

INTRODUCTION 
 

Semantic segmentation on remote sensing images (as shown in Figure 1) is a long-

standing research problem. It has been implemented in many applications in various 

domains, e.g., urban planning, map updates, route optimization, and navigation [1-8] 

allowing us to better understand the domain’s images and create important real-world 

applications. Natural objects such as roads, water, forests, urban, and agriculture fields 

regions are operated in various tasks to create imperative remotely sensed 

applications. The target of this problem is to assign each pixel to a given object 

category. As a result of research articles [1, 2], this task is very challenging, for rare class 

and small object class, such as low vegetation and water objects. 

A deep convolutional neural network (CNN, CNNs, or ConvNet) is a well-known 

method for automatic feature learning. It can automatically learn features at different 

levels and abstractions from raw images by multiple hierarchical stacking convolution 

and pooling layers. To accomplish such a challenging task, features at different levels 

are required. Specifically, abstract high-level features are more suitable for the 

recognition of confusing manmade objects, while the labeling of finely structured 

objects could benefit from detailed low-level features [1, 2, 6]. Therefore, different 

numbers of layers will affect the performance of deep learning models [9-11]. 

A deep convolutional encoder-decoder (DCED) architecture, one of the most 

efficient newly developed neural networks, has been proposed for object 

segmentation and given good performance in the experiments tested on CamVid1, 

                                                           
1 http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/ 

http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/
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Cityscapes2, and PASCAL VOC 20123 data—a well-known benchmark corpus for image 

segmentation research and has inherently encoded different levels of a feature. 

Instinctively, some methods integrate them to refine the final prediction. This branch 

of methods mainly considers how to recover the reduced spatial information caused 

by consecutive pooling operator or convolution with stride. There are many encoder-

decoder networks [9, 10, 12-29] for semantic segmentation. For example, SegNet [12, 

30, 31] utilizes the saved pool indices to recover the reduced spatial information. This 

network uses a VGG-style encoder-decoder, where the up-sampling in the decoder is 

done using transposed convolutions. U-net [32] uses the skip connection and consists 

of a contracting path and an expansive path, which gives it the u-shaped architecture. 

PSPNet [18] utilizes the capability of global context information by different-region 

based context aggregation. However, this type of architecture ignores the global 

context. Besides, most methods of this type are just summed up the features of 

adjacent stages without consideration of their diverse representation. This leads to 

some inconsistent results. 

In the past few years, the modern CNNs have been extensively proposed including 

Global Convolutional Network (GCN) [33] in which the large kernel and effective 

receptive field play an important role in performing classification and localization tasks 

simultaneously. GCN is proposed to address the classification and localization issues 

for semantic segmentation and to suggest a residual-based boundary refinement for 

further refining object boundaries. However, this type of architecture ignores the global 

context such as weights of the features in each stage. Furthermore, most methods of 

this type are just summed up the features of adjacent stages without considering their 

diverse representations. This leads to some inconsistent results that suffer from 

accuracy performance. The primary challenge of this remote sensing task is a lack of 

training data. It has become a motivation of this work. Nevertheless, the state of the 

                                                           
2 https://www.cityscapes-dataset.com/ 
3 http://host.robots.ox.ac.uk/pascal/VOC/voc2012/ 

https://www.cityscapes-dataset.com/
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
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art work in this field still disregards the local context, such as low-level features in 

each stage. Moreover, most feature fusion methods are just a summation of the 

features from adjacent stages and they do not consider the representations of diversity 

(critical for the performance of the CNN). This leads to unpredictable results that suffer 

from measuring the performance such as the F1 score. This, in fact, is the inspiration 

for this work as well. 

 

Figure 1. Sample of remote sensing image. Input image (left), and target image (right). 
 

Although the current baseline methods [1, 12, 30, 31, 34] have achieved significant 

breakthroughs in semantic labeling on remote sensing corpora, it is still laborious to 

manually label the MR images in river and pineapple areas and the VHR images in low 

vegetation and car areas. The two reasons are as follows: (i) previous approaches are 
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less efficient to recover low-level features for accurate labeling, and (ii) they ignore the 

low-level features learned by the backbone network’s shallow layers with long-span 

connections, which is caused by semantic gaps in different-level contexts and features. 

We show the problem of false-positive and false-negative samples on remote sensing, 

as shown in Figures 2, 3, and 4, consecutively. 

 

 

Figure 2. False positive and false negative samples on the aerial images. It cannot 
predict the low-level features object, such as low vegetation. 

 

In this dissertation, we present a novel global convolutional network for 

segmenting multi-objects from aerial and satellite images. To this end, it is focused on 

five aspects: (i) varying backbones using ResNet50, ResNet101, and ResNet152, (ii) 

applying a "channel attention block" [14, 35, 36] to assign weights for feature maps in 

each stage of the backbone architecture, (iii) employing "domain-specific transfer 

learning" [37-39] to relieve scarcity, (iv)  feature fusion concept is proposed to fuse the 

different in layer of feature representation for capture mostly rich detail information 

such as low-level class (for example, car and river class), and the last, (v) depthwise 

atrous convolution (DA) is proposed to bridge the semantic gap and implement 

durable multi-level feature aggregation to extract complementary information from 

very shallow features. Experiments were conducted using satellite imagery (from the 
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Landsat-8 satellite), which was provided by a government organization in Thailand, and 

using well-known aerial imagery from the ISPRS Vaihingen Challenge corpus [1, 2, 29], 

which is publicly available. The results showed that our method outperforms the 

baseline including deep convolutional encoder–decoder (DCED) in terms of F1-score. 

 

 

 

Figure 3. False positive and false negative samples on the satellite images (Landsat-
8w5c). It cannot predict the low-level features object, such as river. 

 

 

 

Figure 4. False positive and false negative samples on the satellite images (Landsat-
8w5c). It cannot predict the low-level features object, such as pineapple. 
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The rest of the dissertation is organized as follows: 

 Chapter 2 presents a brief background of existing work on applying deep 
learning to remote sensing images.  

 Chapter 3 discusses the related work of deep learning concepts for 
semantic segmentation on the challenge and remote sensing corpora.  

 Chapter 4 presents concepts and research methodology. 

 Chapter 5 shows our whole experiments. 

 Chapter 6 concludes our most important Findings and offers a discussion 
of the most promising directions for improving our full proposed method. 

 

1.1 Aims and Objectives 
1. To propose a new deep learning architecture to segment multi-objects from 

aerial and satellite images 
2. To explore the effectiveness of the proposed new deep learning techniques 

for semantic segmentation particularly on remote sensing corpora 
 

1.2 The scope of work 
1. Evaluate the proposed new deep learning on ISPRS Vaihingen corpus (a city 

district of Stuttgart, Germany) and GISTDA4 corpora (Nan province and Isan zone 
corpora) with DCED baseline model 

a. GISTDA Nan province corpora have five classes: agriculture, forest, 
miscellaneous, urban, and water 

b. GISTDA Isan zone corpora have three classes: corn, pineapple, and 
rubber tree 

2. Evaluate the proposed deep learning on reliable measurements such as 
Precision, Recall, and F1-score 

                                                           
4 Geo-Informatics and Space Technology Development Agency (Public Organization) 
https://www.gistda.or.th/main/en 
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CHAPTER II  

BACKGROUND 
 

In this chapter, the background knowledge related to the dissertation is 

presented. 

2.1 Neural Networks 

 It is a network of neurons that are used to process information. To create these, 

it constructed from 3 type of layers: the first is Input layer that initial data for the 

neural network. Next, the second is hidden layers—intermediate layer between input 

and output layer and place where all the computation is done. Last, output layer is 

to produce the result for given inputs. 

 

Figure 5. Overview of neural networks [40] (a) The building block of deep neural 
networks and (b) Example of a feed-forward multilayer neural network 
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Figure 5a, each input xi has an associated weight wi. The sum of all weighted 

inputs, xiwi, is then passed through a nonlinear activation function f, to transform the 

pre-activation level of the neuron to an output yj. Figure 5b, a feedforward multilayer 

neural network with binary classes, in which the nodes in one layer are connected to 

all neurons in the fully connected network. The information is propagated through the 

network up to the output layer, where the softmax function yields the probability of 

a given observation belonging to each class. 

 

2.2. Convolutional neural network (ConvNets or CNNs) 

 CNNs are one of the main components for doing semantic segmentation. 

Technically, deep learning CNN models5 to train and test, each input image will pass 

it through a series of convolution layers (Conv in Figure 6) with filters (kernels), pooling 

layers (Pool in Figure 6), fully connected layers (FC in Figure 6) and apply softmax 

function (Output in Figure 6) to classify an object with probabilistic values between 0 

and 1. The below figure is a complete flow of CNN to process an input image and 

classifies the objects based on values. 

 

 

 
Figure 6. An example of deep CNNs architecture. [41] 

                                                           
5 http://cs231n.stanford.edu/ 
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2.2.1 Convolution Layer 

 It is the first layer to extract features from an input image (Figure 7). It preserves 

the relationship between pixels by learning image features using small squares of input 

data. It is a mathematical operation that takes two inputs such as image matrix and a 

filter or kernel. An image therefore has size ℎ × 𝑤 × 𝑑 where color channel depth 𝑑 =

3. Convolutional layers are essential layers in CNNs [7, 8, 40-42], producing feature 

maps from input images or lower level feature maps.  

 Equations 1 show the relationship between output size O and input size of an 

image I after convolution with stride s and kernel K. Furthermore, the feature map size 

decreases as the number of convolutional layers increases. Row output size 𝑂𝑥 and 

column output size 𝑂𝑦 of convolutional layers are determined as follows: 

𝑂𝑥 = 
𝐼𝑥 − 𝐾𝑥

𝑠
+ 1 , 

(1) 
𝑂𝑦 = 

𝐼𝑦 − 𝐾𝑦

𝑠
+ 1 

For example, we have an image of size (32 × 32 × 3), by a kernel of size (3 × 3 

× 3) and a stride s = 1 result in an activation map of size (30 × 30 × 1). Using additional 

n kernels, the activation map becomes (30×30×n). Therefore, further kernels will 

increase the depth of the convolutional layer output. 

 

Figure 7. An example of convolution of image 
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2.2.2 Pooling Layer 

 This layers are also known as subsampling or down-sampling layers [7, 8, 40-

42]. A commonly used pooling method is max-pooling (Figure 8). The down-sampled 

output is produced by taking the maximum input value within the filter, resulting in an 

output of decreased size. There are many methods which are commonly used in this 

layer of CNNs, such as average pooling and L2-norm pooling. A pooling Layer operates 

independently on every depth slice of the input and resizes it spatially, using the max 

operation. A pooling layer has a kernel and a stride of similar length.  

 

 

Figure 8. An example of max-pooling with a (3×3) kernel 
 

2.2.3 Deconvolution Layer  

 It also called transposed convolutions or fractionally stridden convolutions 

(Figure 9), is a layer which can obtain a dense map from down-sampled and course 

input. This layers make the sparse activations obtained by un-pooling through 

convolution-like operations with multiple learned filters. 
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Figure 9. Illustration of deconvolution operations [43] 
 

2.2.3 Un-pooling Layer  

 Refers to the original idea [32, 40, 42-44], the un-pooling operation uses these 

switches to place the reconstructions from the layer above into appropriate locations, 

preserving the structure of the stimulus. Shown as Figure 10 for an illustration of Un-

pooling operations. 

 

 

 

 

Figure 10. Illustration of Un-pooling operations [43] 
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2.3. Loss Function  

 The value of the loss function [8, 32, 40, 42-44] is L; It represents the difference 

between the training image after it has propagated through the network and desired 

annotated output image. Two inferences are made about this loss function. (i) it should 

be able to define the loss function as the average over the loss functions for individual 

training data set, as the training often is carried out in batches. The loss function is 

evaluated and average at the end of each batch, then the weights are updated. Next, 

(ii) the loss function should be able to be defined as a function of the network outputs. 

Below a brief overview is given of some widely used loss functions, where 𝑥 i are the 

neuron outputs and 𝑥 i are the desired outputs. 

 

2.3.1 Quadratic Cost Function 

 This function (equation 2) is also known as Mean Squared Error (MSE) cost 

function. It is one of the simplest cost functions. 

𝐿 =  
1

𝑁
∑(𝑥𝑖 − �̂�𝑖)

2

𝑁

𝑖=1

 (2) 

 

2.3.2 Cross Entropy Cost Function 

 The cross entropy cost function6 (equation 3) is commonly used in 

convolutional network applications. 

𝐿 =  
1

𝑁
∑(�̂�𝑖 ln(𝑥𝑖) + (1 − �̂�𝑖) ln(1 − 𝑥𝑖))

𝑁

𝑖=1

 (3) 

 

  

                                                           
6 https://medium.com/datadriveninvestor/overview-of-different-optimizers-for-neural-networks-e0ed119440c3 
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2.3.3 Exponential Cost Function 

 The exponential cost function (equation 4) requires an additional parameter𝜏. 

𝐿 =  
1

𝑁
𝜏 exp 

1

𝜏
∑(𝑥𝑖 − �̂�𝑖)

2

𝑁

𝑖=1

 (4) 

 

2.4. Gradient Descent Optimization  

 There are several variants of optimizer available. Determining the appropriate 

learning rate, or step size, often is a complex problem. Applying too high learning rates 

causes suboptimal performance, too low learning rates cause slow convergence. 

Learning rate schedule is used as an extension of the optimizer algorithm to increase 

performance 

 

2.4.1 Adagrad 

 It adapts the updates to the slope of the error function. The algorithm adapts 

the learning rate to the parameters, so that size of the updates for each parameter 

depends on its importance. The Adagrad algorithm gives larger updates for infrequent 

parameters and smaller updates for frequent parameters, the update rule in given in 

equation 5. 

 

𝑔𝑡,𝑖 = ∇𝜃𝐿(𝜃𝑖) , 

 
(5) 

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 − 
𝑛

√𝐺𝑡,𝑖𝑖 +  𝜖
∙ 𝑔𝑡,𝑖 
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2.4.1 Adadelta 

 It is an extended version of the original from Adagrad which reduces the 

problem of the decreasing learning rate. It restricts the range of accumulated squared 

gradients to a certain fixed size. 

 

2.4.1 RMSprop (Root Mean Square Propagation) 

This function is also an adaptive learning rate method that tackles the problem 

of the accumulation of squared gradients in Adagrad. RMSprop7 divides the learning 

rate by an exponentially decaying average of squared gradients. It is an unpublished 

algorithm by G. Hinton. 

It also tries to dampen the oscillations, but in a different way than momentum. 

It also takes away the need to adjust learning rate, and does it automatically. More so, 

RMSProp choses a different learning rate for each parameter. 

 

2.4.1 Adam (Adaptive Moment Estimation) 

Adam (equation 6) can be seemed at as a combination of RMSprop and 

Stochastic Gradient Descent with momentum. It is an adaptive learning rate method. 

It computes individual learning rates for different parameters. It also determines an 

adaptive learning rate for each parameter and keeps an exponentially decaying average 

of past gradients. 

 

𝜃𝑡+1 = 𝜃𝑡 − 
𝑛

√𝑣𝑡 +  휀
 ∙  �̂�𝑡  (6) 

                                                           
7 https://blog.paperspace.com/intro-to-optimization-momentum-rmsprop-adam/ 

https://blog.paperspace.com/intro-to-optimization-momentum-rmsprop-adam/
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CHAPTER III 

RELATED WORK 
 

Deep learning is one of the fast-growing fields in machine learning which has been 

successfully applied to computer vision tasks and has been successfully applied for 

remotely sensed data analysis, notably land cover mapping on urban areas [4-6, 8, 41, 

45]  and has increasingly become a promising tool for accelerating the image 

recognition process with high accuracy [7, 9-11, 13-23, 25-28, 32, 41, 43, 44, 46-65]. It 

is really a fast-growing field, and new architectures appear every few days. This chapter 

is divided into five sub- chapters: (i) Deep learning concepts for semantic segmentation.  

(ii) Modern deep learning architectures for semantic segmentation. (iii) Advanced 

techniques of deep learning. (vi) Deep learning for semantic segmentation on the 

remote sensing field. And (v) last, how to design modern deep learning. 

 

3.1. Deep Learning Concepts for Semantic Segmentation 

Semantic segmentation algorithms are often formulated to solve structured pixel-

wise labeling problems based on a deep CNN. Noh et al. [43] proposed a novel 

semantic segmentation technique utilizing a deconvolutional neural network (DCNN) 

and the top layer from the DCNN adopted from VGG16 [26, 29, 35]. The DCNN structure 

is composed of up-sampling layers and deconvolution layers, describing pixel-wise 

class labels and predicting segmentation masks, respectively. Their proposed deep 

learning methods yield high performance in PASCAL VOC 2012 corpus, with the 72.5% 

accuracy in the best-case scenario (the highest accuracy—as of the time of the writing 

of this dissertation—compared to other methods that were trained without requiring 

additional or external data). Long et al. [44] proposed adapted contemporary 

classification networks incorporating Alex, VGG, and GoogLe networks into a fully CNN. 
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In this method, some of the pooling layers were skipped: Layer 3 (FCN-8s), Layer 4 

(FCN-16s), and Layer 5 (FCN-32s). The skip architecture reduces the potential over-

fitting problem and has shown improvements in performance, ranging from 20% to 

62.2% in the experiments tested on PASCAL VOC 2012 data. Ronneberger et al. [32] 

proposed U-Net, a DCNN for biomedical image segmentation. The architecture consists 

of a contracting path and a symmetric expanding path that captures context and 

consequently enables precise localization. The proposed network claimed to be 

capable of learning despite the limited number of training images and performed 

better than the prior best method (a sliding-window DCNN) on the ISBI challenge for 

segmentation of neuronal structures in electron microscopic stacks. Vijay 

Badrinarayanan [12, 30, 31] proposed a deep convolutional encoder–decoder network 

(DCED), called "SegNet" that consists of two main networks, encoder and decoder, and 

some outer layers. The two outer layers of the decoder network are responsible for 

feature extraction, the results of which are transmitted to the layer adjacent to the 

last layer of the decoder network. This layer is responsible for pixel-wise classification 

(determining which pixel belongs to which class). There is no fully connected layer in 

between feature extraction layers. In the up-sampling layer of the decoder, pool 

indices from the encoder are distributed to the decoder, where the kernel will be 

trained in each epoch (the training round) at the convolution layer. In the last layer 

(classification), softmax was used as a classifier for pixel-wise classification. The DCED 

is one of the deep learning models that exceeds the state of the art on many remote 

sensing corpus. 

In this work, the DCED method was selected as our baseline since it is the most 

popular architecture used in various networks for semantic segmentation. 
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3.2. Modern Deep Learning Architectures for Semantic Segmentation 

Recently, many approaches based on the DCED have achieved high performance 

on different benchmarks [12, 26, 30, 31, 43, 44] such as CamVid, PASCAL VOC 2012 and 

Cityscapes corpora. However, most of them still suffer from accuracy performance 

issues. Therefore, many works of modern deep learning architectures have been 

proposed, such as pyramid scene parsing network  [18], the capability of global context 

information by different-region based context aggregation is applied through a pyramid 

pooling module together with the proposed pyramid scene parsing network. Liang-

Chieh Chen and their friends from Google Inc. [13] propose DeepLabV3+ network which 

adds a decoder module on top of the regular DeepLabV3 model. Simon J´egou et al. 

[24] present down-sampling and up-sampling style encoder-decoder network. In 

addition, it concatenated skip connections from the encoder to the decoder and 

extend DenseNets to deal with the problem of semantic segmentation. Instance-aware 

semantic segmentation [48], which is slightly different from semantic segmentation. 

Instead of labeling all pixels, it focuses on the target objects and labels only pixels of 

those objects. FCIS [9] is based on techniques based on fully convolutional networks 

(FCNs). BiSeNet [14] use a spatial path with a small stride to preserve the spatial 

information and generate high-resolution features while having a parallel context path 

with a fast down-sampling strategy to obtain sufficient receptive field and design two 

specific modules: (i) Feature Fusion Module (FFM) and (ii) Attention Refinement Module 

(ARM), to further improve the accuracy. The mask R-CNN [27] was built around the FCN 

and is incorporated with a proposed joint formulation. Peng [33] presented the concept 

of large kernel matters to improve semantic segmentation with a global convolutional 

network (GCN) as shown in Figure 11. They proposed a GCN to address both the 

classification and localization issues for semantic segmentation. Large separable 

kernels were used to expand the receptive field, and a boundary refinement block 

was added to further improve localization performance near the boundaries. From the 
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CamVid8 corpus (created by Machine Intelligence Laboratory, Cambridge University), 

the GCN outperforms methods of all previous publications (all modern deep learning 

baselines) and has become the new state of the art. Therefore, the GCN was selected 

as our proposed method and as the main model of our work. 

From Table 1 and Table 2, the GCN architecture was selected as our baseline 

since it is the winner architecture for semantic segmentation on CamVid corpus and 

Cityscapes corpus. 

 

Figure 11. An overview of the whole original Global Convolutional architecture [33] 
in (A) The details of Global Convolutional Network (GCN) and Boundary Refinement 

(BR) block are represented in (B) and (C), consecutively 
 

3.3. Modern Techniques of Deep Learning 

Modern techniques of deep learning are important for the accuracy of a CNN. The 

most popular modern ideas used for semantic segmentation tasks, such as global 

                                                           

8 http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/ 

http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/
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context, the attention module, and semantic boundary detection, have been used for 

boosting accuracy. 

Global context [33] is a modern method that has proven the effectiveness of 

global average pooling in the semantic segmentation task. For example, PSPNet [18] 

and Deeplab v3 [11, 25, 58] respectively extend it to spatial pyramid pooling [18] and 

atrous spatial pyramid pooling [25], resulting in great performance at different 

benchmarks. However, to take advantage of the pyramid pooling module sufficiently, 

these two methods adopt the base feature network to downsample with atrous 

convolution eight times [25], which is time-consuming and memory-intensive. 

Table 1. Performance comparison of existing models on CamVid corpus 

Deep Learning Model Precision Recall F1-Score 

PSPNet [18] 0.74 0.74 0.74 

DenseNet (Tiramisu) [24] 0.74 0.77 0.75 

GCN [33] 0.85 0.87 0.86 

DeepLabV3 [13] 0.72 0.63 0.67 

BiseNet [14] 0.84 0.82 0.83 

 

Attention Module [14, 35, 36]: Attention is helpful to focus on what we want. 

Recently, the attention module has increasingly become a powerful tool for deep 

neural networks. The method in [14, 35, 36] pays attention to different scale 

information. In this work, we utilize a channel attention block to select features, similar 

to learning a discriminative feature network [35]. Atrous convolution [11, 13, 17, 18, 66, 

67], also known as multi-scale context aggregation, is proposed to regularly aggregate 

multi-scale contextual information devoid of losing resolution. In this paper, we use 

the technique of “Depthwise Atrous Convolution (DA)” [67] to extract complementary 
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information from very shallow features and enhance the deep features for improving 

feature fusion from our feature fusion step. 

Table 2. Performance comparison of existing models on Cityscapes corpus 
Method mean-IoU  

FCN 8s [44] 0.653 

DPN [18] 0.591 

CRFasRNN 0.625 

Scale invariant CNN + CRF 0.663 

Dilation10 0.671 

DeepLabv2-CRF [11]  0.704 

Adelaide 0.718 

LRR-4x 0.716 

Enocer Decoder [12, 30, 31] 0.754 

GCN [33] 0.769 

 

Refinement Residual Block [35]: The feature maps of each stage in the feature 

network all go through the refinement residual block. For our work, we use the 

boundary refinement block (BR) to be a concept of "refinement residual block" from 

[33]. The first component of the block is a 1×1 convolution layer. We use it to unify 

the number of channels to 21. Meanwhile, it can combine the information across all 

channels. Then the following is a basic residual block [58, 68], which can refine the 

feature map. Furthermore, this block can strengthen the recognition ability of each 

stage, inspired from the architecture of ResNet. 
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Feature Fusion Module [14, 69-73]: They fuse the features of the two paths are 

different in level of feature representation for accurate and recovering the rich 

information. So, to fuse these features they first concatenate the output features of 

Spatial Path and Context Path and then utilize the batch normalization [59] to balance 

the scales of the features. Final, they pool the concatenated feature to a feature vector 

and compute a weight vector, like SENet [36]. This weight vector can reweight the 

features, which amounts to feature selection and combination. Figure 14 shows the 

details of feature fusion design. 

 

3.4. Deep Learning for Semantic Segmentation on Aerial and Satellite Images 

Recently, many approaches based on the Encoder-Decoder have achieved high 

performance on remote sensing corpus (ISPRS Vaihingen challenge). Wang et al. [2] 

propose a gated convolutional neural network for the semantic segmentation in only 

high-resolution images, called gated segmentation network (GSN) by combining two 

feature maps (two paths are different in level of feature representation). Their 

proposed deep learning methods yield high performance in ISPRS Vaihingen corpus, 

with the 85.2% F1-score. Liu and their friends [1] propose Encoder-Decoder by focusing 

on three methods: (1) they present a novel deep encoder-decoder neural network 

(DCED based-ScasNet, multi-scale contexts aggregation) for distinguishing confusing 

manmade objects; (2) utilization of low-level features for fine structured objects 

refinement; (3) residual correction for more effective multi-feature fusion. Their 

proposed deep learning methods yield the highest performance (winner) in ISPRS 

Vaihingen corpus, with the 87.4% F1-score (Table 3). 

On the other hand, there is still one of ISPRS corpus (very high-resolution images), 

called Potsdam corpus which like ISPRS Vaihingen corpus (just difference between a 

place that capturing aerial imagery. So, in this dissertation we will select and 

experiment only one data set for aerial images data set, which is ISPRS Vaihingen 
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corpus). For ISPRS Potsdam corpus, Diakogiannis et al. [68] introduce a novel Fully 

Convolutional Network (FCN) for semantic segmentation, called ResUNet, combines 

ideas distilled from computer vision applications of deep learning, and demonstrates 

competitive performance. They tested using the Potsdam data set made available 

through the ISPRS competition (ISPRS) yield the performance in ISPRS Potsdam corpus, 

with the 92.9% F1-score. 

From Table 3, the novel deep encoder-decoder neural network (DCED based-

ScasNet) architecture was selected as our baseline since it is the winner architecture 

for semantic segmentation on ISPRS Vaihingen corpus. 

Table 3. Performance comparison of existing models on remote sensing corpus 

Method Imp surf Building Low veg Tree Car F1-score 

FCN-8s [44] 0.871 0.918 0.752 0.861 0.638 0.808 

SegNet [30] 0.867 0.891 0.763 0.839 0.657 0.847 

DeconvNet [43] 0.891 0.932 0.814 0.857 0.684 0.835 

Deeplab [14] 0.892 0.945 0.749 0.875 0.798 0.852 

DCED [1] 0.872 0.893 0.841 0.914 0.815 0.854 

  

3.5. How to Design the Modern Deep Learning for Segmentation Task on the 

Landsat-8 Satellite and the ISPRS Vaihingen Challenge Corpora 

 Deep learning is commonly developed at a fixed resource cost and then scaled 

up in order to achieve better performance (F-score) when more resources are made 

available. For example, EfficientNets [62] can be scaled up from ResNet-50 

(EfficientNets-B0) to EfficientNets-B(1-7) by increasing the number of layers, and 

recently, it can achieve 84.4% ImageNet top-1 accuracy by scaling up a baseline CNN 
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by a factor of four. The conventional practice for model scaling is to arbitrarily increase 

the CNN depth or width layer for training model and evaluate the performance. 

Fundamentally, there are 3 main types (A, B, and C) (Figure 12) to design the 

new deep learning architecture for increasing both higher accuracy and better 

efficiency. It equally scales each dimension with a fixed set of scaling coefficients. The 

effectiveness of deep learning model scaling also relies weightily on the best baseline 

network (GCN network). Therefore, to further improve performance, we have also 

proposed the new deep learning network by performing follows 4 proposed methods 

for improving performance. The detail will be described in the next chapter. 

For example in [17], an “ASPP” module is to design to capture context 

information of different receptive field by using Type B (U-Shape Style). PSPNet [18] 

applies a “PSP” module which contains several different scales of average pooling 

layers.  Yang et al. [17] designs an “ASPP” module with a global average pooling to 

capture the global context of the image by also using Type B (U-Shape Style). Scale-

adaptive convolutions [46] improves the neural network by a scale adaptive 

convolution layer to obtain an adaptive field context information by using Type A (VGG 

Style). DFN [16] adds the global pooling on the top of the U-shape architecture to 

encode the global context by using Type C (Context Path Style). 

 Type A: VGG Style, It is conventional scaling that only increases the depth 
dimension of deep learning architecture 

 Type B: U-Shape Style, It is conventional scaling that only increases the width 
dimension of deep learning architecture by fusing the hierarchical features of 
the backbone network 

 Type C: Context Path Style, It is conventional scaling that both increases depth 
and width dimension of deep learning architecture 
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(A) VGG Style 
(Depth Scaling) 

(B) U-Shape Style 
(Width Scaling) 

(C) Context Path Style 
(Compound Scaling) 

 

Figure 12. Illustration of each type of deep learning architectures9 [14, 62] (a) 
presents the VGG style deep structure (b) indicates the U-shape structure and (c) 

demonstrates the context-path style 

  

                                                           
9 https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html 
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CHAPTER IV  

CONCEPTS AND RESEARCH METHODOLOGY 
 

In this chapter, the details of our proposed network are explained (shown in Figure 

13). The network is based on the GCN with three aspects of improvements: (i) the 

modification of backbone architecture (shown in P1 in Figure 13), (ii) applying the 

channel attention block (shown in P2 in Figure 13), (iii) using the concept of domain-

specific transfer learning (shown in P3 in Figure 13),  (iv) proposed feature fusion 

module (shown in P4 in Figure 13 and Figure 14) to fuse the different in layer of feature 

representation for capture mostly rich detail information, and Last, (v) using the 

concept of “Depthwise Atrous Convolution” (shown in P5 in Figure 14).  We called the 

full proposed method as "Encoders Matter". 

 

Figure 13. An overview of our proposed network (I) 
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Figure 14. An overview of our full proposed network (II). The GCN152-TL-FF-DA [74]: 
an enhanced GCN architecture with feature fusion and depthwise atrous convolution. 
 

4.1. Data Preprocessing 

In this dissertation, there are two benchmark corpuses, including (i) the ISPRS 

Vaihingen Challenge corpus and (ii) the Landsat-8 dataset. They are comprised of very 

high and medium resolution images, respectively. More details of the datasets will be 

explained in Chapter 5.1, Chapter 5.2, and Chapter 5.3. Before a discussion of the 

model, it is worth explaining our data preprocessing procedure, since it is required 

when working with neural network and deep learning models. Thus, the mean 

subtraction is executed. 

In addition, data augmentation is often required on more complex object 

recognition tasks. Therefore, a random horizontal flip is generated to increase the 

training data. For the ISPRS corpus, all images are standardized and cropped 

into 512×512 pixels with a resolution of 9 cm2/pixel. For the Landsat-8 corpus, each 
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image is also flipped horizontally and scaled to 512×512 with a resolution of 30 

m2/pixel from the original images (16,800 × 15,800 pixels). 

4.2. A Global Convolutional Network (GCN) with Variations of Backbones 

GCN [33] as shown in Figure 11 is a modern architecture that surpasses the 

drawbacks of a traditional semantic segmentation network, such as deep convolutional 

encoder–decoder (DCED) networks. A traditional network usually cascades 

convolutional layers in order to generate sophisticated features; they can be 

considered as local features that are specialized for a specific task. However, it is not 

necessary to employ only specialized features; the general features are also important. 

Thus, a GCN overcomes this issue by introducing a multi-level architecture, where each 

level aims to capture a different resolution of features, so both local and global 

features are considered in the model. 

As shown in Figure 11, there are two main blocks in the GCN: a localization block 

and a classification block. From the localization view in the left block, the structure is 

a stack of classical fully convolutional layers called "levels" Each level aims to 

construct features with different resolutions. From the classification view, there are 

two modules: the GCN and the boundary refinement (BR). For the GCN module, the 

kernel size of the convolutional structure should be as large as possible, which is 

motivated by the densely connected structure of the classification models. If the 

kernel size increases to the spatial size of the feature map (named the global 

convolution), the network will share the same benefits with the pure classification 

models. The BR module is added to further improve localization performance near 

the boundaries. 

Although the GCN architecture has shown promising prediction performance, it is 

still possible to further improve by varying backbones using ResNet [58] with different 

numbers of layers as ResNet50, ResNet101, and ResNet152, as shown in Figure 15. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 29 

Additionally, the GCN is suggested to work on a large kernel size. In this dissertation, 

we set the large kernel size as 7 (this previous work [33]). 

 

Figure 15. An overview of the whole backbone pipeline in (left) the main backbone 
with varying by ResNet50, ResNet101, and ResNet152; (right) the major drivers of our 
main classification network (composed of a global convolutional network (GCN) and 

a boundary refinement (BR) block [33]) 

4.3. The Channel Attention Block (A) 

Attention mechanisms [14, 35, 36] in neural networks are very loosely based on 

the visual attention mechanism found in humans and equips a neural network with 

the ability to focus on a subset of its inputs (or features): it selects specific inputs. 

Human visual attention is well-studied, and while there are different models, all of 

them essentially come down to being able to focus on a certain region of an image 

with a very high resolution, perceiving the surrounding image in a medium resolution, 

and then adjusting the focal point over time. 

To apply this attentional layer to our network, the channel attention block is 

shown in Block A in Figure 9 and its detailed architecture is shown in Figure 16. It is 
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designed to change the weights of the remote sensing features on each stage (level), 

so that the weights are assigned more values on important features adaptively. 

 

Figure 16. Components of the channel attention block. The red lines represent the 
down sample operators, respectively. The red line cannot change the size of feature 

maps. It is only a path for information passing 
 

In the proposed architecture, a convolution operator gives the probability of each 

class at each pixel. In equation 7, the final score is summed over all channels of the 

feature maps. 

 

𝑦𝑘 = 𝐹(𝑥;𝑤) =  ∑ 𝑤𝑖,𝑗𝑥𝑖,𝑗

𝐷

𝑖=1,𝑗=1

  (7) 

 

Where x is the output feature of network. w represents the convolution’s kernel, 

and k ∈ 1,2,3,4,5,6,7,…,K. The number of channels is represented by K, and D is the 

set of pixel positions. 

𝛿𝑖(𝑦𝑘) =  
exp (𝑦𝑘)

∑ exp (𝑦𝑗)
𝑘
𝑗=1

 (8) 
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Where δ is the prediction probability. 𝑦𝑗 is the output of the network. As shown 

in equations 7 and 8, the final predicted label is the category with the highest 

probability. Therefore, we suppose that the prediction result is 𝑦0 of a certain patch, 

while its true label is 𝑦1. Therefore, we can introduce a parameter α to change the 

highest probability value from 𝑦0 to 𝑦1, as equation 9 shows. 

  

�̅� =  𝛼𝑦 =

[
 
 
 
𝛼1
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𝛼𝑘]
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𝛼𝑘𝑤𝑘]
 
 
 

×

[
 
 
 
𝑥1

∙
∙
∙

𝑥𝑘]
 
 
 

  (9) 

 

Where 𝑦 is the new prediction of the network, and α = Sigmoid(x;w). 

Based on the above formulation of the Channel Attention Block, we can explore 

its practical significance. In equation 7, it implicitly indicates that the weights of 

different channels are equal. However, the features in different stages have different 

degrees of discrimination, which results in different consistency of prediction. 

Consequently, in equation 9, α value applies the feature maps x, which represents 

the feature selection with the channel attention block. 

4.4. Domain-Specific Transfer Learning (TL) 

The overall idea of transfer learning is to use knowledge learned from tasks for 

which many labeled data are usable in settings where only little-labeled data are 

available. Creating labeled data is expensive, so optimally leveraging an existing 

dataset is key. Certain low-level features, such as edges, shapes, corners, and intensity, 

can be shared across tasks, and new high-level features specific to the target problem 

can be learned [37-39]. Additionally, knowledge from an existing task acts as an 

additional input when learning a new target task. 
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Although the deep learning approach often performs promising prediction 

performance, it requires a large amount of training data. Since it is difficult to obtain 

annotated satellite images, the performance in prior works has been limited. 

Fortunately, there is a recent concept called domain-specific transfer learning [37-

39] that allows one to reuse the weights obtained from other domains’ inputs. It is 

currently very popular in the field of deep learning because it enables one to train 

deep neural networks with comparatively insufficient data. This is very useful since 

most real-world problems typically do not have millions of labeled data points to train 

such complex models. 

In terms of inadequacy, we propose an effective transfer deep neural network to 

perform knowledge transfer between a very high resolution (VHR) corpus and a 

medium resolution (MR) corpus. It is shown in Figure 17.  

 

Figure 17. The domain-specific transfer learning strategy reuses pre-trained weights of 
models between two datasets—very high (ISPRS) and medium (Landsat-8; LS-8) 

resolution images 

4.5. Feature Fusion Concept 

The main idea of feature fusion is to fuse two paths are different in layer for 

captured by the backbone encodes mostly rich detail information and combine low 

and high features effectively on remote sensing tasks. 
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To apply this feature fusion concept [14, 69-73] to our network, the feature 

fusion block is shown in Block FF in Figure 14 and 15. Its detailed architecture is shown 

in Figure 18. It is designed to fuse the different in layer of feature representation for 

capture mostly rich detail information. 

Inspired by the idea of feature fusion [14, 70-73] that integrates multiplication, 

additional, or concatenate layers. Convolution with 1 × 1 filters is used to transform 

features with different dimensions into the shape, which can be fused. The fusion 

method contains an addition process. Each layer of the backbone network such as 

VGG, Inception, ResNet, or HR creates the feature map for specific. We proposed to 

combine output with low-level features (front-end network) with the deep model and 

refine the feature information. As shown in Figure 18, the kernel maps after fusing will 

be calculated as Equation (10): 

 

Figure 18. The framework of our feature fusion strategy. 
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𝑍𝑎𝑑𝑑 = 𝑋1 ⊕ 𝑋2 ⊕ 𝑋3… ⊕ 𝑋𝑖 … ⊕ 𝑋𝑗 (10) 

Where j adverts to the index of the layer, 𝑋𝑖 is a set of output activation maps 

of one layer and ⊕ adverts to element-wise addition. Hence, the nature of the 

addition process encourages essential information to build classifiers to comprehend 

the feature details. It denotes all bands of 𝑍𝑎𝑑𝑑 to hold more feature information. 

Hence, the nature of the addition process encourages essential information to 

build classifiers to comprehend the feature details. It denotes all bands of 𝑍𝑎𝑑𝑑 to 

hold more feature information. 

Equation (11) shows the relationship between input and output. Thus, we take 

the fusion activation map into the model again, it can be performed as Equation (13): 

�̅�𝑖 = 𝑅𝑒𝐿𝑈(𝑤𝑇𝑥𝑖 + 𝑏) (11) 

Where x is the input and output of layer of the convolution recorded as �̅�𝑖; 𝑏 

and 𝑤 refer to bias and weight. The cost function in this work is demonstrated via 

Equation (12). 

𝐽(𝑤, 𝑏) =  −
1

𝑚
 × [(1 − 𝑦𝑖) log(1 − �̅�𝑖 + (𝑦𝑖 log(�̅�𝑖))] (12) 

 

Where 𝑦 refers to segmentation target of input (each image) and J, w, and b 

are the loss, weight, and bias value, respectively. 

𝑌𝑎𝑑𝑑 = 𝑓(𝑊𝑘𝑍𝑎𝑑𝑑  + 𝐵𝑘) (13) 

The feature fusion procedure always transforms into the same thing when using 

additional procedures. In this work, we use addition fusion elements, as shown in Figure 

14. 
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4.6. Depthwise Atrous Convolution (DA) 

Depthwise Atrous Convolution (DA) [11, 13, 17, 67, 75] is presented to settle 

the contradictory requirements between the larger region of the input space that 

affects a particular unit of the deep network (receptive fields) and activation map 

resolution. 

DA is a robust operation to reduce the number of parameters (weights) in the 

layer of the CNN while maintaining a similar performance that includes the 

computation cost and tunes the kernel’s field-of-view in order to capture a generalized 

standard convolution operation and multi-scale information. An atrous filter can be a 

dilated kernel in varied rates, e.g., rate = 1, 2, 4, 8, by inserting zeros into appropriate 

positions in the kernel mask. 

Basically, the DA module uses atrous convolutions to aggregate multi-scale 

contextual information without dissipating resolution orderly in each layer. It 

generalizes “Kronecker-factored” convolutional kernels, and it allows for broad 

receptive fields, while only expanding the number of weights logarithmically. In other 

words, DA can apply the same kernel at distinct scales using various atrous factors. 

Compared to the ordinary convolution operator, atrous (dilated) convolution is 

able to achieve a larger receptive field size without increasing the numbers of kernel 

parameters. 

Our motivation is to apply DA to solve challenging scale variations and to trade 

off precision in aerial and satellite images, as shown in Figure 19. 

In a one-dimensional (1D) case, let 𝑥[𝑖] denote input signal, and 𝑦[𝑖] denote 

output signal. The dilated convolution is formulated as Equation (14): 

𝑦[𝑖] =  ∑𝑥[𝑖 + 𝑎 ∙ 𝑘] ∙ 𝑤[𝑗]

𝐽

𝑗=1

  (14) 
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Where 𝑎 is the atrous (dilated) rate, 𝑤[𝑗] denotes the 𝑗𝑡ℎ  parameter of the 

kernel, and 𝐽 is the filter size. This equation reduces to a standard convolution when 

d = 1, 2, 4, and 8, respectively. 

In the cascading mode from DeepLabV3 [11, 25] and Atrous Spatial Pyramid 

Pooling (ASPP) [17], multi-scale contextual information can be encoded by probing the 

incoming features with dilated convolution to capture sharper object boundaries by 

continuously recovering the spatial characteristic. DA has been applied to increase the 

computational ability and achieve the performance by factorizing a traditional 

convolution into a depth-wise convolution followed by a point-wise convolution, such 

as 1 × 1 convolution (it is often applied on the low-level attributes to decrease the 

whole of the bands (kernel maps)).  

DA is found that it significantly decreases the computation complexity of the 

proposed model while maintaining comparable performance. There is 1×1 convolution 

on the low-level features before concatenation to reduce the number of channels 

since the corresponding low-level features usually contain a large number of channels, 

which may burden the importance of the rich encoder features. 

To simplify notations, 𝐻𝑗,𝑎(𝑥) is term of a dilated convolution, and ASPP can 

be performed as Equation (15). 

𝑦 = 𝐻3,1(𝑥) + 𝐻3,2(𝑥) + 𝐻3,4(𝑥) + 𝐻3,8(𝑥) (15) 

 To improve the semantics of shallow features, we apply the idea of multiple 

dilated convolution with different sampling rates to the input kernel map before 

continuing with the decoder network and adjusting the dilation rates (1, 2, 4, and 8) to 

configure the whole process of our proposed method called “GCN152-TL-A-FF-DA”, 

shown in P5 in Figures 14 and 19. 
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Figure 19. The Depthwise Atrous Convolution (DA) module in the proposed parallel 
pyramid method for improving feature fusion. 
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CHAPTER V 

EXPERIMENTAL RESULTS 
 

In our experiments, there are two main sources of data: public and private 

corpora. The private corpora is the medium resolution imagery received from the 

satellite “Landsat-8” used by the government organization in Thailand named GISTDA 

(Geo-Informatics and Space Technology Development Agency (Public Organization)). 

Since there are two variations of annotations, the Landsat-8 data is considered as two 

data sets: one with three classes and the other with five classes, as shown in Table 4. 

The public corpora is very high-resolution imagery from the standard benchmark called 

“ISPRS Vaihingen (Stuttgart)”. Evaluations based on classification/segmentation metrics, 

e.g., F1 Score, Precision, Recall and Average Accuracy are deployed with all 

experiments. 

Table 4 Abbreviations on our Landsat-8 corpora. 
Abbreviation Description 

Landsat-8w3c corpus Landsat-8 corpus with 3 classes 

Landsat-8w5c corpus Landsat-8 corpus with 5 classes 
 

5.1. Landsat-8w3c Dataset 

Landsat-8 is an American earth observation satellite and it collects and archive 

medium resolution (30-m spatial resolution) multispectral image data affording 

seasonal coverage of the global landmasses for a period of no less than 5 years. 

Landsat-8 [29] images consist of nine spectral bands with a spatial resolution of 30 m 

for Bands 1–7 and 9. The ultra-blue Band 1 is useful for coastal and aerosol studies. 

Band 9 is useful for cirrus cloud detection. The resolution for Band 8 (panchromatic) is 

15 m. Thermal Bands 10 and 11 are useful in providing more accurate surface 
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temperatures and are collected at 100 m. The approximate scene size is 170 km north–

south by 183 km east–west (106 mi by 114 mi). Since Landsat-8 data includes 

additional bands, the combinations used to create RGB composites differ from Landsat 

7 and Landsat 5. For instance, Bands 4, 3, and 2 are used to create a color infrared 

(CIR) image using Landsat 7 or Landsat 5. To create a CIR composite using Landsat 8 

data, Bands 5, 4, and 3 are used. 

For this corpus, all images are taken in the area of the Northeast of Thailand (Isan), 

consists of 20 provinces in the northeastern region of Thailand and  this region boasts 

high biodiversity and many endemic species, with several national parks. They are 

Thailand's largest region. The data set is made from the Landsat-8 satellite consisting 

of 1,420 satellite images, some samples are shown in Figure 20. This data set contains 

a massive collection of medium resolution imagery of (20,921 x 17,472) pixels. There 

are three classes: Para rubber (red), pineapple (green), and corn (yellow). From a total 

of 1,390 images, the images are separated into 1,000 training and 230 validation images, 

as well as 190 test images to compare with other baseline methods. 

5.2. Landsat-8w5c Dataset 

This data set is the same corpus from Landsat-8. Still, all images are taken in the 

area of the Nan province, is one of Thailand's seventy-seven provinces (Changwat) lies 

in upper northern Thailand, and to the north, it borders Sainyabuli of Laos. This 

province is in the remote Nan River valley, surrounded by forested mountains. It is 

annotated with five class labels: agriculture (yellow), forest (green), miscellaneous 

(brown), urban (red), and water (blue), as shown in Figure 21. There are 1,012 medium 

resolution satellite images of 17,200 x 16,300 pixels. From the total 1,039 images, the 

images are separated into 700 training and 239 validation images, as well as 100 test 

images to comparison to other baseline methods. 
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Figure 20. Sample satellite images from Isan (Northeastern Thailand), a zone in 
Thailand (left), and corresponding ground truth (right). The label of this data set 
includes three categories: corn (yellow), pineapple (green), and rubber tree (red) 

 

Figure 21. Sample satellite images from Nan, a province in Thailand (left), and 
corresponding ground truth (right). The label of medium resolution dataset includes 
five categories: agriculture (yellow), forest (green), miscellaneous (brown), urban (red), 

and water (blue) 
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5.3. ISPRS Vaihingen Dataset 

One of the major challenges in remote sensing is the automated extraction of 

urban objects from data acquired by airborne sensors. The Semantic Labeling Contest 

provides two state-of-the-art airborne image corpora. The Vaihingen corpus shows a 

relatively small village with many detached buildings and small multi-story buildings, 

and the Potsdam corpus shows a typical historic city with large building blocks, narrow 

streets, and dense settlement structure. In our experiments, the Vaihingen corpus was 

selected and used. 

The ISPRS 2D Semantic labeling challenge in Vaihingen [1, 2, 29] (Figure 22 and 23) 

was used as our benchmark dataset. It consists of three spectral bands (i.e., red, green, 

and near-infrared bands), the corresponding DSM (digital surface model) and the NDSM 

(normalized digital surface model) data. Overall, there are 33 images of about 2,500 × 

2,000 pixels at a ground sampling distance (GSD) of about 9 cm in the image data. 

Among them, the ground truth of only 16 images are available, and those of the 

remaining 17 images are withheld by the challenge organizer for the online test. For 

offline validation, we randomly split the 16 images with ground truth available into a 

training set of 10 images and a validation set of 6 images. For this work, DSM and NDSM 

data in all experiments on this dataset were not used. Following other methods, four 

tiles (Image Numbers 5, 7, 23, and 30) were removed from the training set as the 

validation set. Experimental results are reported on the validation set if not specified. 

This challenge of ISPRS semantic segmentation at Vaihingen (Stuttgart) is used to 

be our standard corpus. They were captured over Vaihingen in Germany. The data set 

is a subset of the data used for the test of digital aerial cameras carried out by the 

German Association of Photogrammetry and Remote Sensing (DGPF). 
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Figure 22. Overview of the ISPRS 2D Vaihingen Labeling corpus. There are 33 tiles. 
Numbers in the figure refer to the individual tile flag 

 

Figure 23. The sample input tile from Figure 7 (left) and corresponding ground truth 
(right). The label of the Vaihingen Challenge includes six categories: impervious 

surface (imp surf, white), building (blue), low vegetation (low veg, cyan), tree (green), 
car (yellow), and clutter/background (red) 
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5.3. Evaluation 

The multi-class classification task can be considered as multi-segmentation, where 

class pixels are positives and the remaining non-spotlight pixels are negatives. 

Let TP denote the number of true positives, TN denote the number of true 

negatives, FP denote the number of false positives, and FN denote the number of false 

negatives. 

Precision, recall, and F1-score are shown in equations 10-13. Precision is the 

percentage of correctly classified main pixels among all predicted pixels by the 

classifier. Recall is the percentage of correctly classified main pixels among all actual 

main pixels. F1 is a combination of precision and recall. 

To evaluate the performance of different deep models, we will discuss the above 

one major metrics (F1) on each category, and the mean value of metrics to assess the 

average performance. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (10) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (11) 

𝐹1 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (12) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (13) 

 

5.4. Experimental Setup 

The implementation is based on a deep learning framework, called "Tensorflow-

Slim" [76], which is extended from Tensorflow. All experiments were conducted on 

servers with an Intel® Xeon® Processor E5-2660 v3 (25M Cache, 2.60 GHz), 32 GB of 
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memory (RAM), an Nvidia GeForce GTX 1070 (8 GB), an Nvidia GeForce GTX 1080 (8 GB), 

and an Nvidia GeForce GTX 1080 Ti (11 GB). Instead of using the whole image (1500 × 

1500 pixels) to train the network, we randomly cropped all images to be 512 × 512 as 

inputs of each epoch. 

For training, the RMSPropOptimizer optimizer [60] was chosen with an initial 

learning rate of 0.004 and the weight decay of 0.00001. Batch normalization [59] is 

used before each convolutional layer in our implementation to ease the training and 

make it be able to concatenate feature maps from different layers. To avoid over-

fitting, common data augmentations are used as details in Chapter 4.1. For 

measurements, we use the F1-score as the metric. 

Inspired by [14, 19, 35, 36, 48], we use the "poly" learning rate policy where the 

learning rate is multiplied by equation (14) with a power of 0.9 and an initial learning 

rate as 4×10−3. The learning rate is scheduled by multiplying the initial as seen in 

equation (14). 

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 𝑖𝑛𝑖𝑡 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 ∗  (1 −
𝑒𝑝𝑜𝑐ℎ

𝑀𝑎𝑥𝐸𝑝𝑜𝑐ℎ
)𝑝𝑜𝑤𝑒𝑟 (14) 

 
All models are trained for 30 and 50 epochs with a mini-batch size of 4, and each 

batch contains the cropped images that are randomly selected from training patches. 

These patches are resized to 521×521 pixels. The statistics of BN is updated on the 

whole mini-batch. 

This chapter illustrates the details of our experiments. The proposed deep 

learning network is based on the GCN with three improvements: (i) varying the 

backbones using ResNet, (ii) channel attention and global average pooling, (iii) domain-

specific transfer learning, (iv) feature fusion, and (v) depthwise atrous convolution. From 

all proposed strategies, there are eight acronyms of strategies as shown in Table 5.  
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Table 5. Abbreviations on our proposed deep learning methods 

Abbreviation Description 
A Channel Attention Block 

GCN Global Convolutional Network 

GCN50 Global Convolutional Network with ResNet50 
GCN101 Global Convolutional Network with ResNet101 

GCN152 Global Convolutional Network with ResNet52 
TL Domain-Specific Transfer Learning 

FF Feature Fusion Module 

DA Depthwise Atrous Convolution 
 

For the experimental setup, there were three experiments on two remotely 

sensed datasets: the Landsat-8 dataset and the ISPRS Vaihingen Challenge dataset 

(details in Chapter 5.1, Chapter 5.2, and Chapter 5.3). The experiments aimed to 

illustrate that each proposed strategy can improve performance. First, the GCN152 

method was compared to the GCN50 method and the GCN101 method for the diverse 

backbones using ResNet with different numbers of layers on the GCN network strategy. 

Second, the GCN152-A method was compared to the GCN152 method for the channel 

attention strategy. Third, the pre-full proposed technique GCN152-TL-A method was 

compared to existing methods for the concept of domain-specific transfer learning. 

Next, the proposed technique GCN152-TL-A-FF method for fusing each level feature 

from the backbone model and the global model of GCN to enrich local and global 

features. And last, the full proposed technique GCN152-TL-A-FF-DA proposes to bridge 

the semantic gap and implement durable multi-level feature aggregation to extract 

complementary information from very shallow features. In the end, we will call our 

full proposed method as "Encoders Matter" for the concept to fuse low-level features 

and high-level features to boost the performance of a rare class of remote sensing 

corpus. 
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5.5. Results of the Landsat-8w5c Corpus with Discussion 

In this subsection, the Landsat-8w5c corpus was conducted on all experiments. 

We compare “GCN152-TL-A-FF-DA” [74] network (column (f)) to CNN baselines via 

Tables 6 and 7. “GCN152-TL-A-FF-DA” is the winner with a F1 of 0.9361. Furthermore, 

it is also the winner in all classes especially water and urban class that are composed 

with low-level features. More detailed results are described in the next subsection and 

are presented in Tables 6 and 7 for the results of this data set, Landsat-8w5c. It is 

shown that our network with all strategies, GCN152-TL-A-FF (Encoders Matter), 

outperforms other methods. More details will be discussed to show that each of the 

proposed techniques can improve accuracy. Only in this experiment is there a state-

of-the-art baseline, including a deep convolutional encoder–decoder (DCED) [1, 12, 30, 

31]. 

Table 6. Results of the testing data of the Landsat-8 (Nan) corpus between baseline 
and 7 variations of proposed techniques in terms of precision, recall, and F1-score 

Method Pretrained Backbone Model Pre Re F1 

Baseline - - DCED [1] 0.857 0.894 0.874 

Proposed - Res50 GCN 0.881 0.872 0.875 

 - Res101 GCN 0.862 0.897 0.877 

 - Res152 GCN 0.892 0.878 0.884 

 - Res152 GCN-A 0.907 0.929 0.917 

 ISPRS Res152 GCN-A 0.921 0.918 0.918 

 ISPRS Res152 GCN-A-FF 0.930 0.924 0.927 

 ISPRS Res152 GCN-A-FF-DA 0.934 0.939 0.936 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 47 

5.5.1. The Effect of an Enhanced GCN on the Landsat-8w5c Corpus 

For Nan corpus, our first strategy aims to increase an F1-score of the network by 

varying backbones using ResNet 50, ResNet 101, and ResNet 152 rather than the 

traditional one, the DCED method. From Table 7, the F1 of GCN152 (0.884) outperforms 

that of GCN50 (0.877), GCN101 (0.875), and the baseline method, DCED (0.874); this 

yields a higher F1 at 1%, 0.3%, and 0.1%, respectively.  

Table 7. Results of the testing data of Landsat-8 corpus (Nan) between each class 
with our proposed techniques in terms of accuracy 

Method Model Agri Forest Misc Urban Water 

Baseline DCED [1] 0.982 0.962 0.763 0.854 0.725 

Proposed GCN50 0.967 0.948 0.817 0.881 0.792 

 GCN101 0.976 0.929 0.685 0.929 0.785 

 GCN152 0.976 0.950 0.823 0.913 0.797 

 GCN152-A 0.984 0.944 0.882 0.899 0.822 

 GCN152-TL-A 0.974 0.953 0.864 0.934 0.828 

 GCN152-TL-A-FF 0.986 0.982 0.918 0.956 0.844 

 GCN152-TL-A-FF-DA 0.989 0.957 0.934 0.949 0.868 

The main reason is due to higher precision, but a slightly lower recall. This can 

imply that enhanced GCN is more significantly efficient than the DCED method 

(baseline) for this medium resolution corpus and ResNet with a large number of layers 

is more robust than the small number of layers. 

When comparing the results between the original GCN method and the enhanced 

GCN methods on the Landsat-8 corpus (Table 6 to Table 7), it is clearly shown that a 
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GCN with a larger layer of backbone can improve network performance in terms of F1-

score. 

5.5.2. The Effect of Using Channel Attention on the Landsat-8w5c Corpus 

For Nan corpus, our second mechanism focused on applying the channel 

attention block (details in Chapter 4.3 to change the weights of the features on each 

stage to enhance consistency. In Table 6, the F1 of GCN152-A (0.917) is greater than 

that of GCN152 (0.884); this yields a higher F1-score at 3.3%.  

The result (Figure 24d) shows that can make the network to obtain discriminative 

features stage-wise to make the prediction intra-class consistent. This is based on the 

consideration that we re-weighted all feature maps of each layer. 

 

5.5.3. The Effect of Using Domain-Specific Transfer Learning on LS8w5c Corpus 

For Nan corpus, this strategy aims to use approach of domain-specific transfer 

learning (details in Chapter 4.4) by reusing the pre-trained weight from the GCN152-A 

model on the ISPRS Vaihingen corpus. From Table 6 and Table 7, the F1 of the GCN152-

TL-A method is the winner if compare with previous proposed methods; it clearly 

outperforms not only the baseline but also all previous generations. 

Its F1 is higher than that of the DCED (baseline) at 4.4% on Nan corpus. 

Additionally, the result illustrates that the concept of domain-specific transfer learning 

can enhance recall (2.4%) of Nan corpus. 

 

5.5.4. The Effect of Using Feature Fusion on Landsat-8w5c Corpus 

Our strategy aims to use approach of domain-specific transfer learning (details in 

Chapter 4.5) by fusing two paths that different in layer of feature representation. From 

Table 6, the F1 of the GCN152-TL-A-FF method is the winner; it clearly outperforms 

not only the baseline but also all previous generations. Its F1 is higher than that of the 
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DCED (baseline) at 5.1%. Additionally, the result illustrates that the concept of domain-

specific transfer learning can enhance both precision (7.3%) and recall (3.0%) on Nan 

corpus. 

 

5.5.5. The Effect of Using Depthwise Atrous Convolution on Landsat-8w5c 

Corpus 

The last policy points to the performance of the “Depthwise Atrous Convolution” 

method by enhancing the features of CNN for improving the previous step (details in 

Chapter 4.6). The F1 score of the “GCN152-TL-A-FF-DA” approach is the conqueror. It 

is more eminent than DCED and GCN152-TL-FF at 6.2% and 0.9%, consecutively, shown 

in Tables 6 and 7. In the dilated convolution, filters are boarder, which can capture 

better overview details resulting in (i) larger coverage areas and (ii) connected small 

areas together. For an analysis of each class, our final model is clearly the winner in 

all classes with accuracy beyond 95% in two classes: agriculture and urban classes. 

Figures 24 show ten sample outputs from our proposed methods (column (d to f)) 

compared to the baseline (column (c)) to expose improvements in its results, and that 

founds that Figures 24f is likewise to the ground images. Our investigation found that 

the dilated convolutional concept can make our model have better overview 

information so that it can capture larger areas of data. 

Figure 24 show ten sample results from the proposed method. By applying all 

strategies, the images in the last column (Figure 24f) are similar to the ground truths 

(Figure 24b). Furthermore, F1- is improved for each strategy we added to the network 

as shown in Figure 24c–f and Figure 24c–f. 

From our investigation, we found that since the dilated convolutional concept 

can make our model have better overview information so that it can capture larger 

areas of data. 
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(a) Input 
Image 

(b) Label 
Image 

Baseline Proposed Methods 

(c) DCED (d) GCN-A  (e) FF (f) DA 

      

      

      

      
 

Figure 24. Testing sample inputs and output satellite images on Landsat-8w5c in the 
Nan province in Thailand, where rows refer to different images. (a) Original input 

image. (b) Target map (ground truth). (c) Output of Encoder–Decoder (Baseline). (d) 
Output of GCN152-TL-A. (e) Output of GCN152-TL-A-FF. and (f) Output of GCN152-TL-
A-FF-DA. The label of medium resolution dataset includes five categories: Agriculture 

(yellow), Forest (green), Miscellaneous (Misc, brown), Urban (red) and Water (blue) 
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Figure 25. Graph (learning curves) on Landsat-8w5c data set of the proposed 
approach, “GCN152-TL-A-FF-DA”; x refers to epochs, and y refers to different 

measures (a) Plot of model loss (cross-entropy) on training and validation corpora; (b) 
performance plot on the validation corpus. 

 

  
 

Figure 26. Graph (learning curves) on Landsat-8w5c data set of the baseline 
approach, DCED [1, 12, 30, 31]; x refers to epochs, and y refers to different measures 

(a) Plot of model loss (cross-entropy) on training and validation corpora; (b) 
performance plot on the validation corpus. 
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Ten sample testing results (shown as Figure 24) are based on the proposed 

method with respect to Nan (one of the Northern provinces (changwat) of Thailand 

and where agriculture is the main industry. The results of the last column look closest 

to the ground truth in the second column. 

As can be seen in Figure 24, the performance of our best model outperforms 

other advanced models by a considerable margin on each category, especially for the 

agriculture (agri), miscellaneous (misc), and water classes. Furthermore, the loss and 

F1 curves shown in Figure 25a-b exhibit that our model performs better on all given 

categories (Figure 26a-b). 

5.6. Results of the Landsat-8w3c Corpus with Discussion 

The Landsat-8w3c corpus was used in all experiments. We distinguished 

between the alterations of the proposed approaches and CNN baselines. “GCN152-TL-

A-FF-DA”, the full proposed method, is the winner with F1 of 0.9114. Furthermore, it 

is also the winner of all classes. More detailed results are given in the next subsection. 

Presented in Tables 8 and 9 are the results of this corpus, Landsat-8w3c. 

5.6.1. The Effect of an Enhanced GCN on the Landsat-8w3c Corpus 

 For Isan corpus, our first strategy also aims to increase an F1-score of the 

network by varying backbones using ResNet 50, ResNet 101, and ResNet 152 rather 

than the traditional one, the DCED method. From Table 8, the F1 of GCN152 (0.876) 

outperforms that of GCN50 (0.874), GCN101 (0.872), and the baseline method, DCED 

(0.810); this yields a higher F1 at 6.6%, 6.4%, and 6.2%, respectively. 

5.6.2. The Effect of Using Channel Attention on the Landsat-8w3c Corpus 

 For Isan corpus, our second mechanism also focused on applying the channel 

attention block (details in Chapter 4.3 to change the weights of the features on each 

stage to enhance consistency. In Table 8, the F1 of GCN152-A (0.877) is greater than 

that of GCN152 (0.876); this yields a higher F1-score at 0.1%.  
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5.6.3. The Effect of Using Domain-Specific Transfer Learning on LS8w3c Corpus 

 For Isan corpus, this strategy also aims to use approach of domain-specific 

transfer learning (details in Chapter 4.4) by reusing the pre-trained weight from the 

GCN152-A model on the ISPRS Vaihingen corpus. From Table 8 and Table 9, the F1 of 

the GCN152-TL-A method is also the winner if compare with previous proposed 

methods; it also clearly outperforms not only the baseline but also all previous 

generations. 

Its F1 is higher than that of the DCED (baseline) model at 6.9% on Isan corpus. 

Additionally, the result illustrates that the concept of domain-specific transfer learning 

can enhance precision (1.7%) of Isan corpus. 

For the analysis of each class, GCN152-TL-A achieved an average accuracy on Para 

rubber, pineapple, and corn for 0.869, 0.789, and 0.909, consecutively. Compared to 

DCED, it won in two classes: Para rubber and corn. However, it won against our previous 

work (GCN152-TL) on every class. 

 

5.6.4. The Effect of Using Feature Fusion on Landsat-8w3c Corpus 

 From Table 9 and Table 10, the F1 of the GCN152-TL-A-FF method is the 

winner; it clearly outperforms not only the baseline but also all previous generations. 

Its F1 is higher than that of the DCED (baseline) at 8.9%. Additionally, the result 

illustrates that the concept of domain-specific transfer learning can enhance both 

precision (2.8%) and recall (4.5%) on Isan corpus. 

 It is interesting that the FF module can really improve the performance in all 

classes, especially in the Para rubber and pineapple classes. It outperforms both DCED 

and all previous baselines in all classes. To further investigate the results, Figures 27e 

shows that the model with FF can capture pineapple (green area) surrounded in Para 

rubber (red area). 
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5.6.5. The Effect of Using Depthwise Atrous Convolution on Landsat-8w3c Corpus 

 The last strategy aims to use an approach of “Depthwise Atrous Convolution” 

(details in Section 4.6) by extracting complementary information from very shallow 

features and enhancing the deep features for improving feature fusion of the Landsat-

8w3c corpus. The “GCN152-TL-A-FF-DA” method is the victor. F1 is obviously more 

distinguished than DCED at 10.1% and GCN152-TL-A-FF at 1.3%, as shown in Tables 8 

and 9.  

For an analysis of each class, our model is clearly the winner in all classes with 

accuracy beyond 90% accuracy in two classes: Para rubber and corn. Figures 27 shows 

nine sample outputs from our proposed methods (column (d to f)) compared to the 

baseline (column (c)) to expose improvements in its results. From our investigation, we 

found that the dilated convolutional concept can make our model have better 

overview information so that it can capture larger areas of data.  

There is a lower discrepancy (peak) in the validation data of “GCN152-TL-A-FF-

DA”, Figure 28a) than in the baseline, Figure 29a. Moreover, Figures 29b and 28b show 

three learning graphs: precision, recall, and F1 lines. The loss graph of the “GCN152-

TL-A-FF-DA” model seems flattered (very smooth) than the baseline in Figure 29a. The 

epoch at number 27 was selected to be a pre-trained model for testing and transfer 

learning procedures. 

In the Landsat-8w3c corpus, for an analysis of each class, our model is clearly 

the winner in all classes with accuracy beyond 90% in two classes: Para rubber and 

corn. From our investigation, we found that since the dilated convolutional concept. 
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Table 8. Results of the testing data of the Isan corpus between baseline and 6 

variations of proposed techniques in terms of precision, recall, and F1-score 

Method Pretrained Backbone Model Pre Re F1 

Baseline - - DCED [1] 0.861 0.782 0.810 

Proposed - Res50 GCN 0.873 0.872 0.872 

 - Res152 GCN 0.860 0.898 0.876 

 - Res152 GCN-A 0.865 0.891 0.877 

 ISPRS Res152 GCN-A 0.878 0.883 0.879 

 ISPRS Res152 GCN-A-FF 0.889 0.914 0.899 

 ISPRS Res152 GCN-A-FF-DA 0.900 0.923 0.911 

 

Table 9. Results of the testing data of Landsat-8 (Isan) corpus between each class 
with our proposed techniques in terms of accuracy 

 

Method Model Corn Pineapple Rubber tree 

Baseline DCED [1] 0.861 0.782 0.810 

Proposed GCN50 0.873 0.872 0.872 

 GCN101 0.865 0.884 0.874 

 GCN152-A 0.865 0.891 0.877 

 GCN152-TL-A 0.878 0.883 0.879 

 GCN152-TL-A-FF 0.889 0.914 0.899 

 GCN152-TL-A-FF-DA 0.949 0.868 0.898 
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Figure 27. Testing sample input and output satellite images on Landsat-8 in Isan 
(Northeastern) in Thailand, where rows refer to different images. (a) Original input 
image. (b) Target map (ground truth). (c) Output of DCED (Baseline). (d) Output of 

GCN152-TL-A. (e) Output of GCN152-TL-A-FF. and (f) Output of GCN152-TL-A-FF-DA.  
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Figure 28. Graph (learning curves) on Landsat-8w3c data set of the proposed 
approach, “GCN152-TL-A-FF-DA”; x refers to epochs, and y refers to different 

measures (a) Plot of model loss (cross-entropy) on training and validation corpora; (b) 
performance plot on the validation corpus. 

 

  
 

Figure 29. Graph (learning curves) on Landsat-8w3c data set of the baseline 
approach, DCED [1, 12, 30, 31]; x refers to epochs, and y refers to different measures 

(a) Plot of model loss (cross-entropy) on training and validation corpora; (b) 
performance plot on the validation corpus. 
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5.7. Results of the ISPRS Vaihingen Challenge Corpus with Discussion 

An experiment was conducted on the ISPRS Vaihingen Challenge corpus, and the 

result is shown in Table 10 and Table 11 by comparing between baseline and variations 

of the proposed techniques. This shows that our network with all strategies (GCN152-

TL-A-FF-DA) outperforms other methods. More details will be discussed to show that 

each of the proposed techniques can improve accuracy. Only in this experiment is one 

baseline, which is the DCED network. 

Table 10. Results of the testing data of the ISPRS 2D semantic labeling challenge 
corpus between the baseline and five variations of our proposed techniques in terms 

of precision, recall, and F1-score 

Method Pretrained Backbone Model Pr Re F1 

Baseline - - DCED [1] 0.867 0.849 0.854 

Proposed - Res50 GCN 0.872 0.852 0.858 

 - Res101 GCN 0.850 0.854 0.866 

 - Res152 GCN 0.873 0.864 0.868 

 - Res152 GCN-A 0.875 0.869 0.874 

 TL Res152 GCN-A 0.897 0.877 0.881 

 TL Res152 
GCN-A-

FF 
0.896 0.904 0.905 

 TL Res152 
GCN-A-

FF-DA 
0.923 0.900 0.911 

 

5.7.1. Effect of the Enhanced GCN on the ISPRS Vaihingen Corpus 

Our first strategy aims to increase the F1-score of the network by varying 

backbones using ResNet 50, ResNet 101, and ResNet 152 rather than the traditional 
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one, the DCED method. From Table 10, the F1 of GCN152 (0.868) outperforms that of 

GCN50 (0.866), GCN101 (0.858), and the baseline method, DCED (0.854); this yields a 

higher F1 at 1.4%, 1.2%, and 0.4%, respectively. This can imply that an enhanced GCN 

is also more accurate than the DCED approach on a very high-resolution dataset. 

ResNet with a large number of layers is still more robust than a small number of layers, 

the same as that performed on the Landsat-8 corpus (Chapter 5.1 and Chapter 5.2) 

When comparing the results between the original GCN method and the enhanced 

GCN methods on the ISPRS corpus (Table 10 and Table 11), it is clear that the GCN 

with a larger backbone layer can improve network performance in terms of F1-score. 

Table 11. Results of the testing data of ISPRS Vaihingen Challenge corpus between 
each class with our proposed techniques in terms of accuracy 

Method Model Imps Building Low veg Tree Car 

Baseline DCED [1] 0.872 0.893 0.841 0.914 0.815 

Proposed GCN50 0.876 0.873 0.857 0.953 0.803 

 GCN101 0.941 0.913 0.742 0.904 0.699 

 GCN152 0.810 0.963 0.895 0.912 0.806 

 GCN152-A 0.886 0.928 0.811 0.895 0.820 

 GCN152-TL-A 0.871 0.916 0.890 0.918 0.874 

 GCN152-TL-A-FF 0.928 0.976 0.926 0.968 0.898 

 GCN152-TL-A-FF-DA 0.907 0.979 0.927 0.972 0.910 

 

5.7.2. Effect of Using Channel Attention on ISPRS Vaihingen Corpus 

Our second mechanism focused on utilizing the channel attention block to 

change the weights of the features on each stage to enhance the consistency. From 
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Table 10, the F1 of GCN152-A (0.874) is greater than that of GCN152 (0.868); this yields 

a higher F1-score at 0.6%. The results (Figure30e) show that this can also cause the 

network to obtain discriminative features stage-wise to make intra-class prediction 

consistent with respect to very high-resolution images. 

5.7.3. The Effect of Using Domain-Specific Transfer Learning on the ISPRS Corpus 

This strategy aims to perform domain-specific transfer learning (details in Chapter 

4.4) by reusing the pre-trained weight from the GCN152-A model on the Landsat-8 

corpus. From Table, the F1 of the GCN152-TL-A method is the winner when compared 

with the previous proposed methods; it clearly outperforms not only the baseline but 

also all previous generations. Its F1 is higher than the DCED (baseline) at 2.6%. 

Additionally, the result illustrates that the concept of domain-specific transfer learning 

can enhance both precision (3%) and recall (1.8%). 

 

5.7.4. The Effect of Using Feature Fusion on ISPRS Vaihingen Corpus 

Our last strategy aims to use approach of domain-specific transfer learning (details 

in Chapter 4.5) by fusing two paths that different in layer of feature representation. 

From Table, the F1 of the GCN152-TL-A-FF method is the winner; it clearly outperforms 

not only the baseline but also all previous generations. Its F1 is higher than that of the 

DCED (baseline) at 5.1%. Additionally, the result illustrates that the concept of feature 

fusion, fuse the different layer of the features, can enhance both precision (2.9%) and 

recall (5.5%). 

5.7.5. The Effect of Using Depthwise Atrous Convolution on on ISPRS Vaihingen 

Corpus 

Finally, our last approach is to apply “Depthwise Atrous Convolution” to intensify 

the deep features from the previous step. From Tables 10 and 11 we see that the F1 

of the “GCN152-TL-A-FF-DA” method is also the conqueror in this data set. The F1 
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score of “GCN152-TL-A-FF-DA” is also more precise than the DCED and GCN152-TL-A-

FF at 5.7% and 0.6%, consecutively. 

Figure 30 shows ten sample results from the proposed method. By applying all 

strategies, the images in the last column (Figure23f) are similar to ground truths 

(Figure23b). Furthermore, F1 results is improved for each strategy we added to the 

network as shown in Figure30c–f and Figure30c–f. 
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(m) Input 
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Figure 30. Comparisons between “GCN152-TL-A-FF-DA” and beyond baseline 
methods on the ISPRS Vaihingen (Stuttgart) challenge corpus testing set. 

 

Figure 30 shows twenty sample testing results from the proposed method on 

ISPRS Vaihingen corpus. The results of the last column are also similar to the ground 

truth in the second column same as performed on Landsat-8 corpus. Considering to 

each class (are shown in Table 10 and Table 11), every class from our proposed 

methods are the winner in term Accuracy.  

All extensive experiments on the Landsat-8 and ISPRS datasets demonstrate that 

the proposed method clearly achieves promising gains compared with the baseline 

approach. 
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Figure 31. Graph (learning curves) on ISPRS Vaihingen Challenge corpus data set of 
the proposed approach, “GCN152-TL-A-FF-DA”; x refers to epochs, and y refers to 
different measures (a) Plot of model loss (cross-entropy) on training and validation 

corpora; (b) performance plot on the validation corpus. 
 

As can be seen in Figure 30, the performance of our best model outperforms 

other advanced models by a considerable margin on each category, especially for the 

impervious surface (Imps), tree, and car categories. To show the effectiveness of the 

proposed methods, we performed comparisons against a number of state-of-the-art 

semantic segmentation methods, as listed in Table 9 and Table 10 with respect to the 

ISPRS corpus, and Table 5 to Table 8 with respect to the Landsat-8 corpus. The DCED 

[12, 30, 31] and GCN [33] are the versions with ResNet-50 as their backbone. In 

particular, we re-implemented the DCED with Tensorflow-Slim [76], since the released 

code was built on Caffe [77]. We can see that our proposed methods significantly 

outperform other methods on both the F1-score. Furthermore, the curves shown in 

Figure 31a-b exhibit that our model performs better on all given categories (Figure 32a-

b). 
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Figure 32. Graph (learning curves) on ISPRS Vaihingen Challenge corpus of the 
baseline approach, DCED [1, 12, 30, 31]; x refers to epochs, and y refers to different 

measures (a) Plot of model loss (cross-entropy) on training and validation corpora; (b) 
performance plot on the validation corpus. 

 

In terms of the computational cost, our framework requires slightly additional 

training time compared to the baseline approach, DCED, by about 6.25% (6–7 hours), 

and GCN, by about 4.5% (4–5 hour). In our experiment, DCED’s training procedure took 

approximately 16 hour per dataset, and finished after 50 epochs with 1,152 second 

per epoch. Our framework is a modification of the GCN-based deep learning 

architecture. The channel attention model increases the time by 20 min compared 

with the GCN152 method and feature fusion model increases the time by 15 min 

compared with the GCN152-TL-A. There is no additional time required when reusing 

pre-trained weights.  

Moreover, there are many experiments before it reached the final proposed 

method. These are the lists of the whole of experiments that perform not well on the 

Landsat-8 Satellite and the ISPRS Vaihingen Challenge Corpora. 
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(1) Encoder-Decoder based on SegNet [12, 30]. We use a VGG-style encoder-
decoder, where the upsampling in the decoder is done using transposed 
convolutions. 

(2) Encoder-Decoder based on UNet [32]. We use a U-Shape style encoder-
decoder, where the upsampling in the decoder is done using transposed 
convolutions. Also, it employs additive skip connections from the encoder to 
the decoder. 

(3) The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for 
Semantic Segmentation [24]. We use a U-shape style of encoder-decoder 
architecture. Each stage between the pooling layers uses dense blocks. 
Besides, it concatenated skip connections from the encoder to the decoder.  

(4) DeepLabV3 network [25].  We employ Atrous Spatial Pyramid Pooling to 
obtain multi-scale context by using multiple atrous rates. 

(5) Dense Decoder Shortcut Connections for Single-Pass Semantic Segmentation 
[16]. We utilize dense connectivity in the decoder step of the segmentation 
model. 

(6) BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation 
[14]. We applie a Spatial Path with a short stride to conserve the spatial 
information and produce high-resolution features while having a parallel 
Context Path with a speedy downsampling approach to reach a sufficient 
receptive field. 

(7) Pyramid Scene Parsing Network [18]. We use capability of global context 
information by different-region based context aggregation is applied through 
a pyramid pooling module. 

(8) Full-Resolution Residual Networks for Semantic Segmentation in Street Scenes 
[78].  We combine a multi-scale context with pixel-level accuracy by using 
two processing streams within the architecture. The residual stream offers 
information at the full image resolution, enabling precise adherence to 
segment boundaries. 
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CHAPTER VI  

CONCLUSIONS 
 

In this dissertation, we propose a novel CNN framework to perform semantic 

labeling and achieve image labeling on remotely sensed images. Our proposed method 

delivers excellent performance by presenting five aspects. (i) A global convolutional 

network (GCN) is employed and enhanced by adding larger numbers of layers to 

capture sophisticated features better. (ii) Channel attention is proposed to assign a 

proper weight for each extracted feature on different stages of the network. (iii) 

domain-specific transfer learning is introduced to allay the scarcity issue by training the 

initial weights using other remotely sensed corpora whose resolutions can be different. 

(vi) applying the "Feature Fusion (FF)" for capturing low-level features, and the last, (v) 

using the concept of "Depthwise Atrous Convolution (DA)" for refining the features and 

provide more coverage areas. The experiments were conducted on three data sets: 

Landsat-8w3c, Landsat-8w5c corpora (medium resolution), and the ISPRS Vaihingen 

Challenge (very high resolution) corpus. The results show that our model that 

combines all proposed strategies outperforms baseline models in terms of F1 score. 

The final results show that our "GCN152-TL-A-FF-DA" model outperforms the baseline 

(DCED)—5.7% for F1 on the Landsat-8w3c, 10.1% for F1 on the Landsat-8w5c, and 

6.2% on the ISPRS corpus. Moreover, it reaches an accuracy surpassing 90% in almost 

all classes.  

In the future, more semantic labeling task, modern optimization techniques, 

and other novel activation functions will be investigated and compared to obtain the 

best GCN-based framework for semantic segmentation in remotely sensed images. 

Moreover, incorporating additional data sources (e.g., a digital surface model) might be 

needed to increase the accuracy of deep learning for both the CNN and the modern 
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deep learning layer with overconfident predictions simultaneously. These issues 

mentioned above will be investigated in future research. 
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