TWO-PHASE FLOW IN VERTICAL TUBES AND FLOODING IN PACKED COLUMNS

Ms. Jareerat Puengpatipan

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2002 ISBN 974-03-1588-7

Thesis Title	:	Two-Phase Flow in Vertical Tubes and Flooding in Packed
		Columns
By	•	Ms. Jareerat Puengpatipan
Program	•	Petrochemical Technology
Thesis Advisors	•	Dr. Kitipat Siemanond
		Prof. James O. Wilkes

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

K. Bunyalist. College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

Kitipat Siemanond

(Dr. Kitipat Siemanond)

James Q. Wilkes

(Prof. James O. Wilkes)

(Dr. Pomthong Malakul)

Boonyarach Ki

(Dr. Boonyarach Kitiyanan)

ABSTRACT

- 4371006063 : PETROCHEMICAL TECHNOLOGY PROGRAM
 Jareerat Puengpatipan : Two-Phase Flow in Vertical Tubes and
 Flooding in Packed Columns
 Prof. James O.Wilkes and Dr. Kitipat Siemanond, 95 pp.
 ISBN 974-03-1588-7
- Keywords Flow regime/ Bubble flow/ Slug flow/ Air-lift pump/ Vertical tube/ Flooding/ Packed column/ Eckert chart

Systems involving gas-liquid phase concurrent vertical flows are found important in evaporators and in the simultaneous transport of oil and gas in wells. For the two-phase flow study, flow regimes and the hydrodynamics of slug were determined. Experimental measurements were carried out in a vertical tube with 1.9 cm in diameter and 300 cm in length using an air-water system. The superficial air velocities used were in the range of 0 to 14.67 cm/s, whereas the superficial velocities of water were 2.93 to 70.42 cm/s. Bubble to slug flow pattern map was generated. In addition, the relation between rise velocity of single slug and the slug length, rise velocity of continuously generated slug, void fraction and air-lift pump operation within slug flow were investigated. All results conformed to the Nicklin's models.

Flooding, an important physical phenomenon in two-phase countercurrent packed towers, was studied experimentally by varying the type (ceramic ball and plastic raschig ring) and the heights (60 and 80 cm) of packing material in column with a diameter of 8.4 cm and 128 cm long. The range of water mass velocities studied was 0.15 to 0.60 g/cm².s and the air mass velocities between 0 to 11.66 g/cm².s. The Eckert type charts of different packing materials were studied to find the scope of flooding. The results showed that ceramic balls gave lower scope of flooding than plastic raschig rings did and at different heights of the same packing, they gave the same transition between normal and flooding operation. For the pressure drop study, an increase in gas mass velocities and water mass velocities at constant air mass velocity caused an increase in pressure drop.

บทคัดย่อ

งารีรัตน์ พึ่งปฏิภาณ : การไหลของของไหลสองสถานะในท่อแนวคิ่งและการท่วม ของของเหลวในท่อบรรจุตัวกลาง (Two-Phase Flow in Vertical Tubes and Flooding in Packed Columns) อ. ที่ปรึกษา : ศ. เจมส์ โอ วิลส์ และ คร. กิติพัฒน์ สีมานนท์ 95 หน้า ISBN 974-03-1588-7

ระบบที่ประกอบด้วยแก๊สและของเหลวที่ใหลแบบขนานกันภายในท่อแนวดิ่งมีความ สำคัญในเครื่องทำระเหย และในท่อส่งน้ำมันและแก๊สจากบ่อน้ำมัน ในการศึกษานี้ รูปแบบการ ใหลและการเคลื่อนที่ของกระสุนอากาศในระบบอากาศและน้ำถูกวิเคราะห์ในท่อพลาสติกใส ขนาด 1.9 เซนติเมตร × 300 เซนติเมตร (เส้นผ่านศูนย์กลางภายใน × ความสูง) ความเร็วอากาศที่ ศึกษาอยู่ในช่วง 0 ถึง 14.67 เซนติเมตรต่อวินาที ในขณะที่ความเร็วของน้ำอยู่ในช่วง 2.93 ถึง 70.42 เซนติเมตรต่อวินาที ผังการไหลแบบฟองและกระสุนอากาศได้ถูกสร้างขึ้น นอกจากนี้ยังได้ มีการศึกษาความสัมพันธ์ระหว่างความเร็วพุ่งขึ้นของกระสุนอากาศในถ้ำแบบเคี่ยว กับความยาว กระสุน, ความเร็วพุ่งขึ้นของกระสุนอากาศแบบต่อเนื่อง, อัตราส่วนว่างของอากาศ และการปฏิบัติ การของเครื่องสูบอาศัยแรงดันอากาศภายในการไหลแบบกระสุน ผลการทดลองทั้งหมดสอด คล้องกับผลที่ได้จากแบบจำลองของนิกคลิน

ของเหลวท่วมท่อเป็นปรากฏการณ์ที่เกิดขึ้นในระบบการใหลสองสถานะแบบสวนทาง กันในหอปฏิบัติการ โดยได้ทำการศึกษาในท่อพลาสติกใสขนาด 8.4 เซนติเมตร × 128 เซนติเมตร และเปลี่ยนชนิดของวัสดุตัวกลางกือ ลูกบอลเซรามิคและวงแหวนพลาสติกที่ความสูง ของวัสดุตัวกลาง 60 และ 80 เซนติเมตร ความเร็วมวลน้ำที่ศึกษาจาก 0.15 ถึง 0.60 กรัมต่อตาราง เซนติเมตร.วินาที และความเร็วมวลอากาศจาก 0 ถึง 11.66 กรัมต่อตารางเซนติเมตร.วินาที ผังรูป แบบของเอ็กเคิร์กได้ถูกนำมาใช้เพื่อศึกษาช่วงของการเกิดของเหลวท่วม ผลการทคลองพบว่าผัง เอ็กเกิร์กของลูกบอลเซรามิคให้ช่วงของของเหลวท่วมต่ำกว่าวงแหวนพลาสติกในทั้งสองความสูง ในขณะที่ผังเอ็กเคิรก์ของตัวกลางชนิดเดียวกันพบว่าการเปลี่ยนจากช่วงปฏิบัติการไปสู่ช่วงของ เหลวท่วมไม่แตกต่างกันมาก ส่วนการศึกษาความดันลดพบว่าความดันลดจะเพิ่มขึ้นเมื่อเพิ่ม ความเร็วมวลอากาศ หรือเพิ่มความเร็วมวลน้ำในขณะที่ความเร็วมวลอากาศดงที่

ACKNOWLEDGEMENTS

The author greatly appreciate the efforts of her research advisors, Professor James O. Wilkes, Department of Chemical Engineering, University of Michigan for his useful comments, professional suggestions, caring and love. She also thanks Dr. Kitipat Siemanond, her Thai advisor, for his excellent guidance, kindness, proofreading her thesis and especially encouragement throughout her research.

She would like to extend her sincere appreciation to all professors who taught her and helped to establish the knowledge used in this work through their courses. She would like to give thanks to Dr. Pomthong Malakul and Dr. Boonyarach Kitiyanan for being the thesis committee and providing her useful information.

Special thanks to all of The Petroleum and Petrochemical College's staff for fabricating and repairing her equipment. She also gratefully acknowledge The Petroleum Authority of Thailand for courtesy ceramic balls using in her research.

Unforgettable appreciation is forwarded to The Petroleum and Petrochemical College for providing her the scholarship to study.

She would like to thank all of her friends in the college who played invaluable roles in her learning experience, especially thirteen gang.

Finally, she would like to express deep appreciation to her father, mother, sisters and brother whose love, concern, encouragement and understanding play the greatest role in her success.

x.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Table	ix
List of Figures	х
List of Symbols	xiii

CHAPTER		
Ι	INTRODUCTION	1
II	BACKGROUND AND LITERATURE SURVEY	3
	2.1 Background	3
	2.1.1 Two-Phase Flow	3
	2.1.2 Air-Lift Pump Operation	7
	2.1.3 Flooding	9
	2.2 Literature Survey	11
	2.2.1 Two-Phase Flow	11
	2.2.2 Flooding	15
III	EXPERIMENTAL	17
	3.1 Material Preparation	17
	3.2 Apparatus	18
	3.2.1 Design and Experimental Setup of	
	Two-Phase Flow	18

	3.2.2	Design and Experimental Setup of	
		Flooding	20
	3.3 Meth	odology	23
	3.3.1	Parameters	23
	3.3.2	Experimental Procedure	23
	3.3.3	Data Analysis	25
IV	RESULT	IS AND DISCUSSION	26
	4.1 Flow	Regime	26
	4.2 Rise	Velocities of Single Slug (ub) and Slug Length	27
	4.3 Void	Fractions at a Variety of Superficial Air and	
	Supe	rficial Water Velocities within Slug Flow	28
	4.4 Rise	Velocities of Continuously Generated Slug (u _s)	32
	4.5 Air-I	Lift Pump Operation	37
	4.6 Slug	Flow Analysis	38
	4.7 Floo	ding Line	41
	4.8 Press	sure Drop with Air Mass Velocities and Water	
	Mass	s Velocities	44
V	CONCL	USIONS	48
	REFEEI	RENCES	50
	APPENI	DICES	52
	Appendi	x A	52
	Appendi	x B	64

CHAPTER

CHAPTER

PAGE

CURRICULUM VITAE

95

LIST OF TABLES

3.1 Packing materials data	17
3.2 Label of number equipment	22
4.1 Liquid velocity at the free surface from potential-flow theory and	
Bernoulli's equation	39
4.2 Comparison of rise velocity of bubble and c from FEM Program	
with those from theory	39
4.3 Gas mass velocities at flood condition in difference types	
and heights of packing	41
A1 Determination of flow regimes	52
A2 Determination of rise velocity of single slug (U_b) and slug length	57
A3 Determination of void fraction and rise velocities of continuous	
generated slugs at a variety of air and water flowrate	58
A4 Determination of air-lift pump operation	62
B1 Data for generation of Eckert's type charts	64
B2 Pressure drop at the variety of air and water mass velocities with	
plastic raschig rings	65
B3 Pressure drop at the variety of air and water mass velocities with	
ceramic balls	80

LIST OF FIGURES

FIGURE		PAGE
2.1	Modeling flow pattern transitions for steady Upward Gas-Liquid	
	Flow in Vertical Tubes	4
2.2	Two-phase flow regimes in a vertical tube	4
2.3	Bubble flow	5
2.4	Two-phase slug flow in a vertical pipe	6
2.5	Model of gas-lift pump	8
2.6	Typical gas pressure drop for counter-current flow of liquid and gas	5
	for random and structure packings	10
2.7	Correlation for flooding in packed columns	11
3.1	Diagram of equipment for studying the hydrodynamic of two-phase	;
	flow	19
3.2	Diagram of equipment for studying the flooding	21
4.1	Flow pattern map produced from a column with a diameter	
	of 1.9 cm	26
4.2	Comparison of the rising velocity from theory with the rising	
	velocity from experiment in the column with the diameter of	
	19 cm	27
4.3	Comparison of the value of c from theory with the value of c	
	from experiment in the column with a diameter of 1.9 cm	28
4.4	Comparison of the void fraction from theory with the void fraction	
	from experiment at 0 ml/min water flow rate	29
4.5	Comparison of the void fraction from theory with the void fraction	
	from experiment at 200 ml/min water flow rate	29
4.6	Comparison of the void fraction from theory with the void fraction	
	from experiment at 500 ml/min water flow rate	30
4.7	Comparison of the void fraction from theory with the void fraction	
	from experiment at 1000 ml/min water flow rate	30

FIGURE

.

4.8	Comparison of the void fraction from theory with the void fraction	
	from experiment at 1500 ml/min water flow rate	31
4.9	Comparison of the void fraction from theory with the void fraction	
	from experiment at 2000 ml/min water flow rate	31
4.10	Comparison of the void fraction from theory with the void fraction	
	from experiment at 2500 ml/min water flow rate	32
4.11	Comparison of rise velocity of continuously generated slugs between	
	theory and experiment at 0 ml/min water flow rate	32
4.12	Comparison of rise velocity of continuously generated slugs between	
	theory and experiment at 200 ml/min water flow rate	33
4.13	Comparison of rise velocity of continuously generated slugs between	
	theory and experiment at 500 ml/min water flow rate	34
4.14	Comparison of rise velocity of continuously generated slugs between	
	theory and experiment at 1000 ml/min water flow rate	34
4.15	Comparison of rise velocity of continuously generated slugs between	
	theory and experiment at 1500 ml/min water flow rate	35
4.16	Comparison of rise velocity of continuously generated slugs between	
	theory and experiment at 2000 ml/min water flow rate	35
4.17	Comparison of rise velocity of continuously generated slugs between	
	theory and experiment at 2500 ml/min water flow rate	36
4.18	Comparison of required air velocity for incipient air-lift pump	
	operation from theory with those from experiments at different initial	
	heights of water in main column and reservoir column	37
4.19	The stationary bubble in moving downward liquid	38
4.20	Comparison of the shape of single slug from FEM Program with one	
	from experiment in a column with a diameter of 1.9 cm	40
4.21	Eckert type chart of plastic raschig rings and ceramic balls at the	
	height of packing 60 cm	42

xi

4.22	Eckert type chart of plastic raschig rings and ceramic balls at the	
	height of packing 80 cm	42
4.23	Eckert type chart of plastic raschig rings at different heights	
	of packing	43
4.24	Eckert type chart of plastic ceramic balls at different heights	
	of packing	43
4.25	Determination of pressure drop and air mass velocities at	
	different water mass velocities with the height of 30 cm	
	plastic raschig rings	44
4.26	Determination of pressure drop and air mass velocities at	
	different water mass velocities with the height of 60 cm	
	plastic raschig rings	45
4.27	Determination of pressure drop and air mass velocities at	
	different water mass velocities with the height of 80 cm	
	plastic raschig rings	45
4.28	Determination of pressure drop and air mass velocities at	
	different water mass velocities with the height of 30 cm	
	ceramic balls	46
4.29	Determination of pressure drop and air mass velocities at	
	different water mass velocities with the height of 60 cm	
	ceramic balls	46
4.30	Determination of pressure drop and air mass velocities at	
	different water mass velocities with the height of 80 cm	
	ceramic balls	47

LIST OF SYMBOLS

А	Cross-sectional area of a tube, cm ⁻²
а	Surface area of the packing per cubic centimeter of packed volume
	cm ⁻¹
С	Constant value for equation (5)
D	Tube inner diameter, cm
F	Packing factor
G	Volumetric flowrate of gas, LPM
Gg	Gas mass velocity, g cm ⁻¹ .s ⁻¹
Gl	Liquid mass velocity, g cm ⁻¹ .s ⁻¹
g	Acceleration due to gravity, cm.s ⁻²
gc	Conversion factor
Н	Height of liquid in the main column, cm
H ₀ , h	Height of liquid in the reservoir column, cm
L	Volumetric flowrate of liquid, ccm
p 1	Pressure at point 1
p ₂	Pressure at point 2
U _b	Rise velocity of bubble in stagnant liquid, cm.s ⁻¹
Ul	Mean upward liquid velocity, cm.s ⁻¹
Us	Rise velocity of slug, cm.s ⁻¹
ua	Axial velocity component of liquid around slug, cm.s ⁻¹
ur	Radial velocity component of liquid around slug, cm.s ⁻¹
3	Void fraction
ρ _g	Density of gas, g cm ⁻³
ρι	Density of liquid, g cm ⁻³
ψ	Ratio of density of water and density of liquid
μ_l	Viscosity of liquid, cp
φ	Potential function