บทที่ 2

รอยต่อวิวิธพันธุ์

รอยต่อวิวิธพันธุ์คือรอยต่อที่เกิดจากสารกึ่งตัวนำ 2 ชนิดที่มีขนาดของแถบ พลังงานว่างต่างกัน โดยสารกึ่งตัวนำทั้งสองอาจมีชนิดของการนำไฟฟ้าที่เป็นชนิดเดียวกัน หรือต่างชนิดกันก็ได้

รอยต่อวิวิธพันธุ์แบบฉับพลัน

รอยต่อวิวิธพันธุ์ชนิดนี้ จะเป็นรอยต่อระหว่างสารกึ่งตัวนำชนิด n-pและ p-n ซึ่งต่างเป็นอุปกรณ์ที่คล้ายกับรอยต่อเอกพันธ์ n-p หรือ p-n แต่ลักษณะของการอธิบาย ด้วยแบบจำลองของรอยต่อเอกพันธ์นั้นไม่สามารถนำมาอธิบายปรากฏการณ์ที่เกิดขึ้นใน รอยต่อวิวิธพันธุ์ได้ เพราะเนื่องมาจากว่า ในกรณีของรอยต่อวิวิธพันธ์นั้นสมบัติต่าง ๆ ที่ รอยต่อมีความแตกต่างกัน สมบัติต่าง ๆ เหล่านี้ได้แก่ แถบพลังงานว่างระดับพลังงานแถบ นำและแถบวาเลนซ์ ค่าเวิร์กฟังก์ชันที่แตกต่างกัน ดังนั้นในส่วนของบทนี้จะทำการ พิจารณาแบบจำลองปรากฏการณ์ที่เกิดขึ้นกับรอยต่อวิวิธพันธุ์แบบฉับพลันดังต่อไปนี้

1. แบบจำลองการแพร่ (diffusion model)

แบบจำลองนี้ได้คิดขึ้นเป็นครั้งแรกโดย R.L Anderson⁴ และต่อมาได้ถูก นำมาใช้เพื่ออธิบายปรากฏการณ์ที่เกิดขึ้นระหว่างรอยต่อโดยการตัดผลของไดโพลและ สถานะรอยต่อ (interface-states)ออกไป ลักษณะของแถบพลังงานที่เกิดขึ้นเมื่อมีสารกึ่งตัว นำสองชนิด n และ p มาประกบต่อกัน แสดงดังรูปที่ 2.1a และ2.1b

รูปที่ 2.1 แสดงลักษณะของแถบพลังงาน (a) ก่อนการเกิดรูปแบบของรอยค่อวิวิธพันธุ์ แบบฉับพลัน และ (b) หลังการเกิดรูปแบบของรอยค่อวิวิธพันธุ์แบบฉับพลัน

5

แถบพลังงานที่เกิดขึ้นนี้มีลักษณะที่เรียกว่า spike และ notch เกิดขึ้นใน แถบนำพลังงานที่บริเวณรอยต่อ เมื่อค่าอิเล็กตรอนอัฟฟินิตี้ของสารกึ่งด้วนำชนิด p มากกว่า ของสารกึ่งตัวนำชนิด n ($\chi_p > \chi_n$) ในกรณีนี้เนื่องจากว่าสารกึ่งตัวนำสองชนิดนี้มีแถบ พลังงานว่าง(E_g), ค่า dielectric constants(ɛ), ค่าอิเล็กตรอนอัฟฟินิตี้(χ)และค่าเวิร์กฟังก์-ชัน(ϕ)ที่ไม่เท่ากัน จากการสังเกตในรูปที่ 2.1 จะเห็นว่าค่าความแตกต่างของแถบนำพลัง-งาน (ΔE_c)มีค่าเท่ากับความแตกต่างของค่าอิเล็กตรอนอัฟฟินิตี้ของสารกึ่งตัวนำทั้งสอง ชนิดของรอยต่อวิวิธพันธุ์นี้จะมีชั้นของคีพลีชั่นเกิดขึ้นทั้งสองด้านของรอยต่อและเนื่องจาก มีการตัดผลของสถานะรอยต่อออกไปในแบบจำลองนี้จึงทำให้ช่วงคีพลีชั่นที่เกิดขึ้นนี้มี ประจุเกิดขึ้นในจำนวนเท่ากันทั้งสองด้านแต่มีประจุตรงกันข้าม ค่าศักย์ก่อขึ้นภายในทั้ง หมด (total built-in voltage V_p) อันเนื่องมาจากความแตกต่างของเวิร์กฟังก์ชันของสารกึ่ง ตัวนำทั้งสอง ($\phi_p - \phi_n$) จะมีค่าเท่ากับผลรวมของศักย์ก่อขึ้นภายในของทั้งสองด้านนั่น คือ

$$V_{D} = V_{Dp} + V_{Dn}$$

เมื่อ x₀ เป็นตำแหน่งของรอยค่อตามรูปที่ 2.1 ความสัมพันธ์ของรอยค่อ กับระยะในช่วงคีพลีชั่นทั้งสองค้านสำหรับรอยค่อวิวิธพันธุ์แบบฉับพลัน ซึ่งได้จากการแก้ สมการปัวซ์ซองของรอยค่อเอกพันธุ์ จะเป็นคังสมการ

$$(x_{o} - x_{p}) = \sqrt{\frac{2N_{A}\epsilon_{n}\epsilon_{p}V_{D}}{qN_{D}(\epsilon_{p}N_{A} + \epsilon_{n}N_{D})}}$$
(2.1)

และ

$$(\mathbf{x}_{n} - \mathbf{x}_{o}) = \sqrt{\frac{2N_{D}\varepsilon_{n}\varepsilon_{p}V_{D}}{qN_{A}(\varepsilon_{p}N_{A} + \varepsilon_{n}N_{D})}}$$
(2.2)

ความสัมพันธ์ระหว่างศักย์ก่อขึ้นภายใน V_D และ V_D ของแต่ละสารกึ่งตัว นำจะเป็นดังสมการ

$$\frac{V_{Dp}}{V_{Dn}} = \frac{N_D \varepsilon_n}{N_A \varepsilon_p}$$
(2.3)

และความจุของช่วงคีพลีชั้น

$$C_{pn} = \sqrt{\left(\frac{aqN_AN_D\varepsilon_p\varepsilon_n}{2(\varepsilon_pN_A + \varepsilon_nN_D)} \cdot \frac{1}{V_D}\right)}$$
(2.4)

เมื่อมีการ ไบแอสความต่างศักย์ V เข้าไปตกคร่อมรอยต่อดังนั้นจะได้ว่า สมการข้างบนที่กล่าวมานั้นจะเขียนได้ในรูปใหม่โดยการแทน V_D ด้วย (V_D – V) และ แทนV_D กับ V_D ด้วย (V_D – V_p) กับ (V_D – V_n) เมื่อ V=V_p+V

ในแบบจำลองของรอยต่อวิวิธพันธุ์ p-n นี้เนื่องจากว่าแถบพลังงานของ สารกึ่งตัวนำที่รอยต่อมีค่าไม่เท่ากันดังนั้นกระแสที่ผ่านรอยต่อทั้งกระแสอิเล็กตรอนและ โฮลจะเป็นขบวนการแพร่ (diffusion) และพาหะที่นำกระแสอิเล็กตรอนจะมีมากกว่าเพราะ ว่ากำแพงกันอิเล็กตรอนจะมีค่าน้อยกว่าโฮล

เมื่อไม่คำนึงถึงกระแสที่เกิดจากขบวนการเกิดและขบวนการรวมตัวจะได้ ความสัมพันธ์ของกระแส-ความต่างศักย์เป็นดังสมการ

$$I = A \exp\left(-\frac{qV_{Dn}}{kT}\right) \left[\exp\left(\frac{qV_{n}}{kT}\right) - \exp\left(-\frac{qV_{p}}{kT}\right)\right]$$
(2.5)

เมื่อ V และV เป็นส่วนของศักย์ใบแอสที่ตกคร่อมค้านสารกึ่งตัว นำชนิด pและ n คังรูปที่ 2.2

$$A = aqXN_{D} \left(\frac{D_{np}}{\tau_{np}}\right)^{1/2}$$

- X คือ สัมประสิทธิ์การทะลุผ่านของอิเล็กตรอนข้ามรอยต่อ
 a คือ พื้นที่ของรอยต่อ
 D₀ คือ ค่าคงที่ของการแพร่ผ่านของอิเล็กตรอนในสารกึ่งตัวนำ p
- τ_{np} คือ ช่วงชีวิตของอิเล็กตรอนในสารกึ่งตัวนำ p

รูปที่ 2.2 แสดงแถบพลังงานของรอยต่อวิวิธพันธุ์ p-n แบบฉับพลันที่เปลี่ยนไปจากเมื่อยัง ไม่มีการไบแอส (เส้นประ) และภายใต้การไบแอสตรง(เส้นทึบ) จากเทอมแรกในสมการที่ 2.5 เป็นส่วนของการไบแอสตรงและเทอมที่ สองแสดงถึงความสัมพันธ์ของการไบแอสกลับ ถ้า $V_n = V/\eta$ แล้ว $V_p = (1 - 1/\eta)V$ และค่ากระแสที่แปรตามค่าเอกซ์โปเนนเซียลของศักย์ที่ใบแอสทั้งไบแอสตรงและไบแอส-กลับ

แบบจำลองนี้สามารถนำไปอธิบายถึงลักษณะแถบพลังงานที่เกิดขึ้น สำหรับรอยต่อวิวิธพันธุ์ได้แต่จากการทดลองพบว่า ลักษณะกระแสที่เกิดขึ้นจริง ๆ นั้นน้อย กว่าที่คำนวณได้จากสมการ ซึ่งการที่ความสัมพันธ์ของกระแสขึ้นกับความต่างศักย์และ อุณหภูมิดังที่อธิบายในสมการที่ 2.5 นั้นไม่เพียงพอ อาจต้องนำผลจากปรากฎการอื่นเข้ามา เกี่ยวข้องด้วย

2. แบบจำลองการปลดปล่อย (emission model)

แบบจำลองนี้เป็นการนำแบบจำลองพลังงานจลน์แบบคลาสสิกร่วมกับ แบบจำลองการแพร่มาใช้เพื่อหาค่ากระแสที่ปลคปล่อยออกมา และพาหะข้างน้อยที่อยู่ใน ช่วงดีพลีชั่น ตัวอย่างเช่นในกรณีของรอยต่อวิวิธพันธุ์ p-n แบบฉับพลันแสคงในรูปที่ 2.3 เมื่อการขนส่งประจุส่วนใหญ่เกิดเนื่องจากอิเล็กตรอนเป็นหลัก ขบวนการที่เกิดขึ้นสอง ชนิดที่ถูกนำมาใช้ในการอธิบายลักษณะกระแส-ความต่างศักย์ที่เกิดขึ้นคือ ในรอยต่อแบบ เอกพันธุ์เมื่อพาหะข้างน้อยที่เกิดที่ขอบของดีพลีชั่นเป็นดัวจำกัดการใหลของกระแส และ ในรอยต่อของโลหะ-สารกึ่งตัวนำที่มีกำแพงศักย์บนด้าน n ของรอยต่อวิวิธพันธุ์ เป็นดัว จำกัดการใหลของกระแส และกรณีสุดท้ายเมื่อมีการใบแอสย้อนกลับอย่างมากขึ้นที่รอยต่อ ดังแสดงในรูปที่ 2.3 ขณะที่ขบวนการการจำกัดกระแสโดยพาหะข้างน้อยนั้นกำหนดโดย spikeที่ด้านล่างของแถบนำพลังงานที่นอกบริเวณดีพลีชั่นของสารกึ่งตัวนำชนิด p

รูปที่ 2.3 แสคงแถบพลังงานเมื่ออยู่ในสภาวะไม่สมคุลของรอยต่อวิวิธพันธุ์ p-n แบบฉับ พลัน

ในการวิเคราะห์ลักษณะเฉพาะกระแส-ความต่างศักย์ โดยไม่คิดถึงขบวน การเกิด-การรวมกันของประจุที่เกิดภายในช่วงดีพลีชั่นตามรูปที่ 2.3 จะได้ความสัมพันธ์ดัง สมการ

$$I = \frac{I_{s}[\exp(qV/kT) - 1]}{(1 + I_{s}/I_{d})}$$
(2.6)

เมื่อ

$$I_{s} = aqN_{Dp} \left(\frac{D_{np}}{\tau_{np}}\right)^{1/2}$$
(2.7)

I คือค่ากระแสอิ่มตัวสำหรับรอยต่อเอกพันธุ p-n และ

$$I_{d} = \frac{1}{2}aqX_{m}N_{Dn}\overline{v}_{n}exp\left[-\frac{q}{kT}(V_{F}+V)\right]$$
(2.8)

สมการที่ 2.6 สามารถนำมาเขียนใหม่ให้อยู่ในรูปที่คล้ายกับสมการที่เป็น ขบวนการแพร่แบบ 2.5 ได้ดังนี้

$$I = \frac{1}{2}aqX_{m}N_{Dn}\overline{v}_{n} \exp\left(-qK_{n}V_{D}/kT\right) \cdot \left[\exp\left(qK_{n}V/kT\right) - \exp\left(-qK_{p}V/kT\right)\right]$$
(2.9)

ເມື່ອ
$$K_n = (1 + N_{Dn} \varepsilon_n / N_A \varepsilon_p)^{-1}$$

 $K_p = (1 - K_n)$

.

สำหรับในสมการที่ 2.6 จะเห็นว่าในอัตราส่วน I_s/I_d ถ้า I_s << I_d แล้ว กระแสทั้งหมดจะเป็นไปตามการนำกระแสแบบไคโอครอยต่อเอกพันธุ์ แต่ถ้าI_s >> I_d ก็ จะตรงกับทฤษฎีของไคโอคที่มีการขบวนการปลดปล่อย ลักษณะกระแส-ความต่างศักย์ที่ มีผลของการปลดปล่อยแสดงคังรูปที่ 2.4 ซึ่งเป็นผลทำให้ก่าของกระแสลคลงที่ก่าศักย์ วิกฤต(V_T) ก่าหนึ่ง

รูปที่ 2.4 แสดงลักษณะเฉพาะกระแส-ความต่างศักย์ของรอยต่อเมื่อมีผลของการปลดปล่อย

3. แบบจำลองการปลดปล่อย-การรวมตัว (emission-recombination model)

แบบจำลองนี้เสนอโดย U. Dolega ซึ่งอาศัยสมมติฐานที่ว่าด้วยชั้นบาง ๆที่ เกิดขึ้นระหว่างรอยต่อมีผลอย่างรุนแรงต่อแลทติสและการรวมตัวกันอย่างรวดเร็วทำให้ อิเล็กตรอนและโฮลจะไหลข้ามกำแพงศักย์เข้าหารอยต่อได้ก็ด้วยการปลดปล่อยเนื่องจาก ความร้อน แถบพลังงานในสภาวะสมดุลสำหรับรอยต่อวิวิธพันธุ์ p-n แบบฉับพลันที่ อธิบายแบบจำลองนี้แสดงดังรูปที่ 2.5 ซึ่งคล้ายกับรอยต่อโลหะ-สารกึ่งตัวนำสองชิ้นมา ประกบกันเป็นอนุกรมโดยการนำกระแสจะขึ้นกับศักย์ที่ใบแอส

รูปที่ 2.5 แสคงขบวนการปลคปล่อย-การรวมตัวของรอยต่อวิวิธพันธุ์

ลักษณะของกระแส-ความต่างศักย์ในด้านไบแอสตรงที่ได้จากแบบจำลอง นี้จะแสดงดังสมการ

$$I = I_{s} \left[\exp\left(\frac{qV}{nkT}\right) - 1 \right]$$
(2.10)

โคยที่

$$I_{s} = B \exp\left(-\frac{qV_{D}}{nkT}\right)$$
(2.11)

เมื่อ B ขึ้นกับอุณหภูมิและค่าของ n ในสมการขึ้นกับอัตราส่วนของความ หนาแน่นของความไม่สมบูรณ์ในสารกึ่งตัวนำทั้งสอง ค่าความชันของเส้นกราฟในช่วง ใบแอสตรงจะอยู่ระหว่าง q/kT และ q/2kT (นั่นคือค่า nจะมีค่าระหว่าง 1และ2) เมื่อใช้ แบบจำลองนี้อธิบายกระแสทางด้านการไบแอสกลับพบว่าค่ากระแสเพิ่มขึ้นแบบเอ็กซ์-โปเนนเชียลกับค่าของความต่างศักย์ แต่ความด้านทานขณะไบแอสกลับมีค่าสูงสุด 4. แบบจำลองการทะลูผ่าน (tunnelling model)

การใช้บบวนการทะลุผ่านในการอธิบายลักษณะเฉพาะกระแส-ความต่าง ศักย์ของรอยต่อวิวิธพันธุ์นี้ได้เสนอโดย R.H. Rediker, S. StopekและJ.H.R. Ward โดย อาศัยพื้นฐานในการพิจารณาให้อิเล็กตรอนด้องสามารถบ้ามหรือทะลุผ่านกำแพงศักย์ใน สารกึ่งตัวนำชนิด n ที่มีแถบพลังงานว่างแบบกว้างได้ โดยการไหลของประจุอาจไหลจาก ด้าน n ไป ด้าน p หรือจาก p ไปด้าน n แสดงดังรูปที่ 2.6 การไหลของอิเล็กตรอนภายใด้ การไบแอสนี้เป็นผลเนื่องมาจากการปลดปล่อยเนื่องจากความร้อนหรือเนื่องมาจากการ ทะลุผ่านกำแพงศักย์จะขึ้นอยู่กับสมบัติของสารกึ่งด้วนำชนิด n

รูปที่ 2.6 แสคงแบบจำลองการทะถุผ่านที่เกิดขึ้นในแถบพลังงานของ Anderson

จากการประมาณด้วยวิธีแบบคลาสสิค WKB approximation และมีการ ทะลุผ่านจากด้านล่างของแถบนำพลังงาน สำหรับในกรณีที่ แสดงดังในรูปที่ 2.6 การทะลุ ผ่านของอิเล็กตรอนที่เป็นไปได้ที่ด้านล่างของแถบพลังงานเมื่อมีการไบแอสตรงจะเป็นดัง สมการ

$$T = \exp\left[-2 \int_{x_{1}}^{x_{2}} \frac{\left[2m_{\pi}^{*} \{E_{b}(x) - q\alpha V\}\right]^{1/2}}{\hbar} dx\right]$$
(2.12)

เมื่อ E_b(x) เป็นความสูงของกำแพงศักย์ที่จุด x ใค ๆ ที่เหนือระดับของ แถบนำพลังงาน และαV เป็นส่วนของความต่างศักย์ที่ไบแอสให้ซึ่งเป็นผลให้แถบนำพลัง งานของสารกึ่งตัวนำ n สูงขึ้น, m_n* เป็นมวลยังผลของอิเล็กตรอนในสารกึ่งตัวนำ n

เมื่อ E_g(x) เป็นฟังก์ชันของ x ซึ่งจะให้กำตอบของสมการที่ 2.12 ได้หลาย กำตอบ สำหรับกรณีเชิงเส้น (เช่น ก่าของสนาม F_g มีก่ากงที่ในช่วงการส่งผ่าน) Rediker และคณะได้ทำการประมาณก่ากำตอบของสมการได้ดังนี้คือ

$$T \approx \exp\left[-\frac{4}{3}(2m_{n}^{*})^{1/2}\frac{\{E_{b}(\max)\}^{3/2}}{\hbar F_{o}}\right] \cdot \exp\left[2(2m_{n}^{*})^{1/2}\frac{\{E_{b}(\max)\}^{1/2}}{\hbar F_{o}}q\alpha V\right]$$
(2.13)

เมื่อ E (max) เป็นค่าสูงสุดของกำแพงศักย์เทียบกับขอบล่างของแถบนำ เมื่อไม่มีการไบแอส กำแพงศักย์ที่เกิดขึ้นมีลักษณะเป็นรูปพาราโบลิกและคล้ายกับที่ วิเคราะห์โดย Van Ruyven

กระแสที่เกิดจากขบวนการทะฉุผ่านนี้มีค่าเท่ากับผลคูณของค่าความเป็น ไปได้ของการทะฉุผ่านจากสมการที่ 2.12 กับค่าฟลักซ์ของอิเล็กตรอนที่ตกกระทบ ดังนั้น ในแบบจำลองนี้เมื่อมีขบวนการทะฉุผ่านกำแพงศักย์ที่ใหญ่มาก ๆ ก็จะมีการปลดปล่อย ความร้อนออกมาเหนือกำแพงศักย์ ในกรณีทั่วไปสำหรับลักษณะกระแส-ความต่างศักย์ เมื่อมีการไบแอสตรง ก็จะได้ดังสมการ

$$I = I_s(T) \exp(V/V_o)$$
(2.14)

เมื่อ V ูเป็นค่าคงที่และ I ุ(T) เป็นฟังก์ชันเพิ่มค่าตามอุณหภูมิอย่างช้า ๆ นอกจากนี้ยังพบว่าค่าของ I (T) เป็นสัดส่วนกับ exp(T/T ู) ดังนั้นสมการที่ 2.14 จะเขียนได้ ใหม่เป็น

$$I = I_{so} \exp(T/T_o) \exp(V/V_o)$$
(2.15)

รูปที่ 2.7 ผลจากการทคลองแสดงความสัมพันธ์ของ ln I กับความต่างศักย์ที่ทำการไบแอส ของรอยต่อ p-n ที่อุณหภูมิแตกต่างกัน

จากสมการดังกล่าวข้างด้นเป็นความสัมพันธ์ที่บอกถึงความต่างศักย์ ตก คร่อมและอุณหภูมิปรากฏเป็นฟังก์ชันที่แยกกันได้ นั่นคือ $\frac{\delta(\ln I)}{\delta V}$ ไม่ขึ้นกับอุณหภูมิ และ ค่ากระแสขึ้นกับอุณหภูมิแบบเอกซ์โปเนนเชียล (ln I ∝ T)

5. แบบจำลองการทะลุผ่าน-การรวมตัว (Tunnelling-recombination model) ๋

A.R. Riben และ D.L. Feucht ใค้เสนอแบบจำลองที่อาศัยพื้นฐานขบวน การทะลุผ่านแถบพลังงาน(band-to-band tunnelling) ร่วมกันกับขบวนการรวมตัว โดย ขบวนการที่เกี่ยวข้องต่าง ๆ ในแบบจำลองนี้แสดงดังรูปที่ 2.8 ซึ่งในแบบจำลองแสดงถึง การทะลุผ่านของอิเล็คตรอนจากแถบนำพลังงานของสารกึ่งตัวนำชนิด nที่มีช่องว่างแถบ พลังงานกว้างไปยังสถานะที่อยู่ระหว่างแถบพลังงานในสารกึ่งตัวนำชนิด p ที่มีช่องว่าง แถบพลังงานแคบกว่า จากนั้นเกิดการรวมตัวเข้ากับโฮล หรือการทะลุผ่านของโฮลจากสาร กึ่งตัวนำ p ไปยัง occupied states ในแถบนำของสารกึ่งตัวนำ n และจากนั้นเกิดการรวมดัว เข้ากับอิเล็กตรอน(ในกรณีไบแอสกลับ) ถ้ามีการทะลุผ่านที่ด้านล่างของแถบนำพลังงาน หรือด้านบนของแถบวาเลนซ์แล้วขบวนการเหล่านี้จะนำไปสู่ในรูปความสัมพันธ์ของ กระแสขณะไบแอสตรง จะแสดงดังนี้

$$I = B \exp \left[-\alpha (V_D - V)\right]$$
(2.16)

เมื่อ B เป็นฟังก์ชันที่ขึ้นกับ V และ T, V_D เป็นความต่างศักย์การแพร่, V เป็นความต่างศักย์ที่ ไบแอสให้กับระบบ และ a จะขึ้นกับค่ามวลยังผลของอิเล็กตรอนใน บริเวณต้องห้าม (forbidden region), ค่าคงที่ ใดอิเล็กตริก,ความเข้มข้นพาหะในสภาวะ สมดุล และ รูปแบบที่แน่นอนของกำแพงศักย์ที่กั้น, สำหรับการประมาณค่าของกำแพงศักย์ เชิงเส้น (เมื่อสนามมีค่าคงที่กับตำแหน่ง) ในบริเวณเคลื่อนย้าย และการทะลุผ่านส่วนใหญ่ ที่เกิดในสารกึ่งตัวนำชนิด n

$$\alpha = \frac{4}{3\hbar} \left(\frac{m_n^* \varepsilon_n}{N_{Dn}} \right)^{1/2}$$
(2.17)

เมื่อ m., e. และ N_{Dn} เป็นค่าของสารกึ่งตัวนำชนิด n

เนื่องจากขบวนการทะลุผ่านมีหลายขั้นตอนที่เป็นไปได้แสดงดังในรูปที่ 2.8 ทำให้ค่าของ α ที่ได้จากการคำนวนด้วยทฤษฎีกับค่าที่ได้จากการทดลองไม่สอดคล้อง กันนัก ดังนั้นจึงต้องคำนึงถึงผลของสถานะต่าง ๆ ที่กระจายอยู่ด้วย ซึ่งสถานะเหล่านี้ก็คือ กับดักประจุนั่นเอง

Riben และ Feucht ได้เสนอแบบจำลองทะลุผ่าน Zener ขึ้น (แสดงดังรูป 2.9) เพื่ออธิบายพฤติกรรมของกระแส ไบแอสกลับเป็นฟังก์ชันกับความต่างศักย์และ อุณหภูมิ โดยใช้แบบจำลองนี้ร่วมกับหลักการของกำแพงศักย์เชิงเส้นและขบวนการทะลุ ผ่านในสารกึ่งตัวนำ n จะได้ความสัมพันธ์กระแสขณะไบแอสกลับอยู่ในรูป

$$I = C \exp \left[-A(V_D - V)^{-1/2} \right]$$
 (2.18)

เมื่อ

$$A = \frac{4}{3\hbar} \left(\frac{m_n^* \varepsilon_n}{N_{Dn}}\right)^{1/2} E_{gn}^{3/2}$$

เมื่อ $m_n^*, \epsilon_n, N_{Dn}$ และ E_{gn} หมายถึงค่าของสารกึ่งตัวนำ n

รูปที่ 2.8 แสดงแถบพลังงานของรอยต่อวิวิธพันธุ์ p-n แบบฉับพลันเมื่อมีการไบแอสตรง โคยมีขบวนการทะลุผ่าน-ขบวนการเกิด เกิดขึ้นระหว่างรอยต่อ

รูปที่ 2.9 แสดงแถบพลังงานของรอยต่อฉับพลัน p-n ภายใต้การไบแอสกลับแสดงให้เห็น ถึงขบวนการทะลุผ่าน

<u>ลักษณะของแถบพลังงาน (band profiles)</u> [↑]

จากที่กล่าวมาแล้วข้างค้นทำให้เราทราบว่า ลักษณะของแถบพลังงาน ของรอยต่อวิวิธพันธุ์มีบทบาทสำคัญทำให้เข้าใจถึงกลไกการขนส่งที่เกิดขึ้น โดยหลักการ พื้นฐานแล้วลักษณะของแถบพลังงานนั้นจะขึ้นอยู่กับค่าอิเล็กตรอนอัฟฟินิตี้(χ_n, χ_p), ความของช่องว่างแถบพลังงาน (E_{gn}, E_{gp}) และค่าเวิร์กฟังก์ชัน (ϕ_n, ϕ_p) ของสาร กึ่งด้วนำทั้งสอง รูปแบบของแถบพลังงานรอยต่อวิวิธพันธุ์ที่เป็นไปได้ได้เสนอโดย Anderson ซึ่งจะเป็นแถบพลังงานแบบง่าย ๆ ไม่คำนึงถึงสถานะรอยต่อและแบบจำลอง เหล่านี้จะใช้เป็นพื้นฐานสำหรับการพิจารณาในรอยต่อวิวิธพันธุ์อื่น ๆ ต่อไป ลักษณะของ แถบพลังงานที่เป็นไปได้มีถึง 4 ลักษณะ แสดงดังตารางที่ 2.1

Case	Conditions	Current-voltage relation	Equilibrium energy band profile
I	$\begin{array}{l} \chi_1 < \chi_2 \\ \phi_1 < \phi_2 \end{array}$	(a) $\chi_{1} > \chi_{1} + E_{e1}$ $I = A \exp \left[-\frac{q(\Delta E_{e} - V_{D1})}{kT} \right]$ $\times \left[\exp \left(\frac{qV_{1}}{kT} \right) - \exp \left(-\frac{qV_{1}}{kT} \right) \right]$ where (refer to Fig. 2.2) $V_{D} = V_{D1} + V_{D2}$	$\frac{1}{ \mathbf{v}_{D1} } = \frac{1}{ \mathbf{v}_{D2} } = \frac{1}$
		$V = V_1 + V_2$ $\Delta E_e = \chi_3 - \chi_1$ $A = aqXN_{D3} \left(\frac{D_{a1}}{\tau_{a1}}\right)^{1/3}$ (b) $\chi_3 < \chi_1 + E_{a1}$	
		The expression for I is the same as in (a)	
п	$\chi_1 < \chi_2 < \chi_1 + E_{e^1}$ $\phi_1 > \phi_2$	$I = A \exp \left[-\frac{q(\Delta E_e + V_D)}{kT} \right]$ $\times \left[\exp \left(\frac{qV}{kT} \right) - 1 \right]$ where the expressions for ΔE_e . V_D , V and A are the same as in case I	
III	$\chi_1 > \chi_2$ $\phi_1 > \phi_2$ $\chi_1 + E_{e^1} < \chi_2 + E_{e^2}$	(a) $\frac{V_{D1} > \Delta E_e}{I = A \exp \left[-\frac{q(V_D - \Delta E_e)}{kT}\right]}$ $\times \left[\exp\left(\frac{qV}{kT}\right) - 1\right]$ where $\Delta E_e = \chi_1 - \chi_2$ and V_D , V and A are the same as in case I. Under forward bias when $V_{D1} - V_1 < \Delta E_e$	
		$I = A \exp\left[-\frac{qV_{DI}}{kT}\right] \left[\exp\left(\frac{qV_{I}}{kT}\right) - \exp\left(-\frac{qV_{I}}{kT}\right)\right]$	

ตารางที่ 2.1 แสคง ความสัมพันธ์ของพลังงานที่เกี่ยวของในแถบพลังงานเมื่อขณะสมคุล ของรอยต่อวิวิธพันธุ์ p-n เมื่อ E_{gn} < E_{gp}

Case	Conditions	Current-voltage relation	Equilibrium energy band profile
III (cont.)	•	(b) $\frac{V_{D1} < \Delta E_{e}}{I = A \exp \left[-\frac{qV_{D2}}{kT}\right] \left[\exp\left(\frac{qV_{1}}{kT}\right) - \exp\left(-\frac{qV_{1}}{kT}\right)\right]$ where the expressions for ΔE_{e} , V_{D} , V and A are the same as in case III(a). Under reverse bias when $V_{D1} + V_{1} > \Delta E_{e}$. $I = A \exp \left[-\frac{q(V_{D} - \Delta E_{e})}{kT}\right]$ $\times \left[\exp\left(-\frac{q V }{kT}\right) - 1\right]$	
IV	$\chi_1 > \chi_2$ $\chi_1 < \chi_2 + E_{g2}$ $< \chi_1 + E_{g1}$	(a) $V_{D1} > \Delta E$. The expression for I is the same as in case III(a)	Eg; Δ Eg; Δ
	-	(b) $V_{D1} < \Delta E_{e}$ The expression for <i>l</i> is the same as in case III(b)	

ตารางที่ 2.1 แสคง ความสัมพันธ์ของพลังงานที่เกี่ยวของในแถบพลังงานเมื่อขณะสมคุล ของรอยต่อวิวิธพันธุ์ p-n เมื่อE_{gn} < E_{gp} (ต่อ)

21

ลักษณะของแถบพลังงานเมื่อมีผลของสถานะรอยต่อแสคงคังรูปที่ 2.9 ซึ่งลักษณะจะขึ้นอยู่กับประจุสุทธิของสถานะรอยต่อ

รูปที่ 2.10 แสดงแถบพลังงานเมื่อมีผลของสถานะรอยต่อ ของรอยต่อวิวิธพันธุ์ p-n เมื่อ ประจุของสถานะที่รอยต่อเป็นบวก (+) และ ลบ(-)