СНАРТЕВ П

LITERATURE REVIEW

P. mirifica was a herbal plant, classified in the family Leguminosae, subfamily Papilinoideae, tribe Phaseoleae (Ridley, 1967, Suvatti, 1978). The local names were varied in various parts of Thailand such as Thong Kwao, Thong Krua, Hua Kwao, Tan Krua, White Kwao Krua, Chan Krua (Northeastern) and Potagu (Kanchanaburi province). There were many plants that looked similar to *P. mirifica*. The name of Kwao Krua was commonly applied to more than ten different plants in different genus, at least three kinds of Kwao Krua were very common, the White, Red and Black Kwao Krua which all were recorded in Luang Anusan's pamplet (Suntara, 1931). Noticed that *P. mirifica* was previously refered as *Butea superba*. Until February 1947, it was identified as a new species of *Pueraria* and was named *Pueraria mirifica* Airy Shaw & Suvatabandhu (Kashemsanta et al., 1957). Its species name meaned wonder working.

I. Botanical background

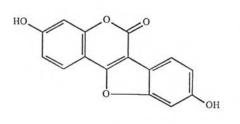
The plant was a long-living twinning wood. The leaves were pinnately 3 foliate stipulate; terminal leaflet. The globular tuberous roots were varied in sizes. The flower was bluish-purple butterfly shaped, flowering during February-March. The length of the catkin inflorescences was approximately 15-40 cm. It contained five sepals. The petal were one standard with two keels. The pod was slender typically short, hairy, including 2-5 single seeds when fully matured and dried which turned into brown color. The mature seed was first found to be green-purple pattern (Smitasiri and Wungjai, 1986).

P. mirifica was closely related to both *P. candollei* Wall ex. Beth, of Myanmar and Thailand and *B. superba* Roxb. The different aspects between *P. mirifica* and *P. candollei* were shapes, color of leaves and size of the inflorescences. The different aspects between *P. mirifica* and *B. superba* were shape, color and thickness of the leaves and tuberous root (Kashemsanta and Suvatabandhu, 1952). *P. mirifica* might exist in two cultivars which were nearly similar in the external morphology except the color of the flower and the pod i.e. bluish-purple flower and short hair pod versus, purple flower and long hair pod. Furthermore an estrogenic potency was also found to be different (Wungjai et al., 1987).

II. Chemical constituents

P. mirifica had been found to contain many chemical constituents in the group of phytoestrogen. Miroestrol was the first to be isolated and studied and was believed to be the most important active compound. It had been found in the amount of approximately 15 mg per kg dry weight (Bound and Pope, 1960). Although the effect was found to be similar to estrogen but the chemical structure was not classified as steroid (Benson, Cowie and Howsking, 1961). The other constituents mainly found in *P. mirifica* were coumarins, isoflavone, chromene,

5


sterol and others such as alkane alcohol. Chromene and coumarins were also found to contain estrogenic activity. Lipid and sucrose were commonly found macromolecules. List of chemical constituents found in the tuberous root was summerized and shown in Table 1.

Category	Chemical	Reference
Coumarins	Coumestrol	Ingham, Tahara and Dziedzic, 1986,
		1988
	Mirificoumestan	Ingham, Tahara and Dziedzic, 1988
	Mirificoumestan glycol	Ingham, Tahara and Dziedzic, 1988
	Mirificoumestan hydrate	Ingham, Tahara and Dziedzic, 1988
Isoflavone	Daidzein	Ingham et al., 1986
	Daidzin	Ingham, Tahara and Dziedzic, 1986
	(daidzein-7-o-glucoside)	
-	Genistein	Ingham, Tahara and Dziedzic, 1986
	Genistin	Ingham, Tahara and Dziedzic, 1986,
	(genistein-7-o-glucoside)	1989
	Kwakhurin	Ingham, Tahara and Dziedzic, 1986
	Kwakhurin hydrate	Ingham, Tahara and Dziedzic, 1989
	Mirificin	Ingham, Tahara and Dziedzic, 1986,
	(puerarin 6"-o-β -apiofuranoside)	Ingham et al., 1986

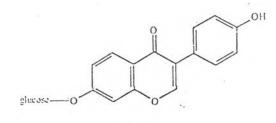
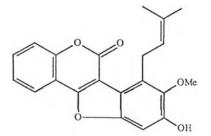
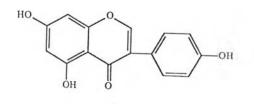
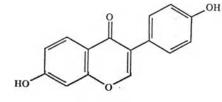
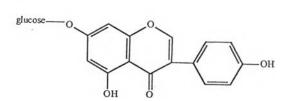

Table 1Summarize of the chemical constituents of *P. mirifica*

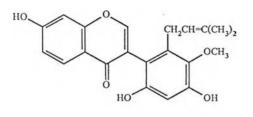
Table 1(continued)

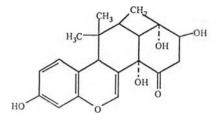

Category	Chemical	Reference
Isoflavone	Puerarin	Nilandihi et al., 1957
	(daidzein-8-glucoside)	Ingham, Tahara and Dziedzic, 1986,
		1989
		Ingham et al., 1986
	Puerarin 6"-monoacetate	Ingham et al., 1989
Chromene	Miroestrol	Schoeller, Dohrn and Hohweg, 1940
		Bound and Pope, 1960
		Jones and Pope, 1960
	Deoxymiroestrol	Chansakaew et al., 2000.
Sterol	β-sitosterol	Hoyodom, 1971
	Stigmatosterol	Hoyodom, 1971

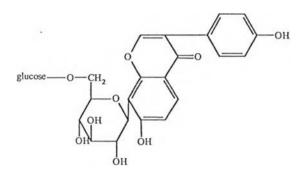

Coumestrol

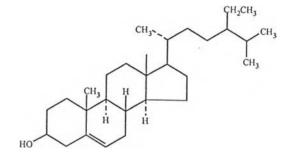


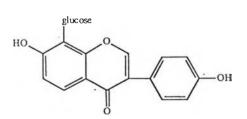

Mirificoumestan

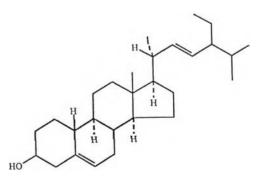

Genistein


Daidzein


Genistin


Kwakhurin





 β -sitosterol

Puerarin

Stigmatosterol

Numerous studies on P. *mirifica* were established in an attempt to understand all the positive and adverse effects. The early stage of the study was the attempt to test if there was an estrogen principle in the root of P. *mirifica* in both experimental animal and human model

3.1 Equivalency of *P. mirifica* powder and crude extract to that of estradiol

In the aspect of the estrogenic potency evaluated by bioassay, the crude extract of 1 mg *P. mirifica* powder was found to be equal to 0.02-0.04 mg of oestradiol-17 β as submitted to the immature mouse uterine weight method (Jones and Pope, 1961) and 0.52-0.75 mg of ethinylestradiol by using immature rat uterine weight method (Smitasiri et.al, 1986). Miroestrol was first believed to be the key bioactive compound present in this herb. It had been found to contain high estrogenic potency that 1-g of the dry powder was found to be equivalated to 0.67 mg of estradiol benzoate in ovariectomized mice (Jones and Pop). In rats, 1 mg of dry powder equivalated to 0.02 µg of oestradiol-17 β by oral administration and 0.01 µg of oestradiol-17 β by subcutaneous injection (Jones and Pope, 1960). Therefore, the rich in estrogenic effect that was depended on the method of bioassay was clearly shown. The effect of *P. mirifica* on pharmacognosy in animal models was summarized in **Table 2**.

Animal	Dosage and Method	Target	Result	Reference
Mosquito	1 g dried tuber powder / l of	Sperm	Abnormal	Nirasabutr et al., 1989
(Cules pipens fatigans	water	Ovule	Abnormal	
Widermann)		Larvae	+ve developmental to adult	
			+ve survival of third instar	
		Egg	-ve hatching rate	
(Anopheles dirus	2 g dried tuber powder / 1 of	Sperm	-ve density and size	Tentriratana et al., 1990
Peyton, Harrison)	water	Ovarioles	-ve number and size	
		Wings	-ve size	
American cockroach	200 and 400 mg / ml of	Ovary, Ovum	-ve size, number and character of	Radomsuk and Smitasiri,
Periplaneta americana	ethanolic and aqueous		the ovaries	1994
	extract mixed with food, 15	Ootheca	-ve hatching	
	and 30 days			

Table 2Summarize of the test results of *P. mirifica* on animals

Animal	Dosage and Method	Target	Result	Reference
Pegion (Columba sp.)	dried tuber powder mixed with	Behavior	-ve courship, mating behavior	Smitasiri and Sakdarat,
-Male pigeon	dried cooked cut rice, 3 day	Testis	-ve testicular development	1985
-Female pigeon	per week, 16 weeks	Follicle	-ve egg laying	
		Oviduct	-ve oviductual weight	
		Birth control	+ve birth control	
Quail	0.5% dried tuber powder	Oviduct	+ve number and size	Muangdet and
(Coturnic coturnic	mixed with food, 10 days			Anuntalabhochai, 1985
Japonica)				
	0.5% dried tuber powder	Liver	+ve weight	Muangdet and
	mixed with food, 20 days	Liver cell	+ve lipid content	Anuntalabhochai, 1985

Animal	Dosage and Method	Target	Result	Reference
Quail	1% dried tuber powder mixed	Body weight	-ve body weight	Anuntalabhochai et al., 1984
	with food, 30 days	Egg laying	-ve egg laying	
	1.5% dried tuber powder	Oviduct	+ve number and size	Muangdet and
	mixed with food, 10 days			Anuntalabhochai, 1985
	1.5% % dried tuber powder	Liver	+ve weight	Muangdet and
	mixed with food, 20 days	Liver cell	+ve lipid content	Anuntalabhochai, 1985
	4.5% dried tuber powder mixed with food, 10 and 20 days	Oviduct cell	+ve weight, +ve follicle -ve ovarian weight	Jersrichai et al., 1985
	5% dried tuber powder mixed	Testis	-ve weight	Smitasiri et al., 1986
	with food, 10 days	Oviduct and		
		ovary		

Table 2(continued)

Animal	Dosage and Method	Target	Result	Reference
Quial	5% dried tuber powder mixed	Testis	-ve testis weight	Anuntalabhochai et al., 1984
	with food, 10 days	Oviduct	+ve oviductal weight	
		Body weight	+ve body weight	
	5% dried tuber powder mixed	Testis	-ve weight	Smitasiri et al., 1986
	with food, 10 days	Oviduct and		
		ovary		
	5% dried tuber powder mixed	Red blood cell	-ve % haematocrit within 7 days	Thaiyanun et al., 1992 a
	with food, 28 days	and	-ve hemoglobin	
		White blood	-ve Red blood cell count	
		cell		
	5% dried tuber powder mixed	Seminiferous	No effect to weight and size of	Jersrichai et al., 1985
	with food, 60 days	tubule	diameter	
			-ve spermatocyte development	

Table 2(continued)

Animal	Dosage and Method	Target	Result	Reference
Quail	5% dried tuber powder mixed	Blood serum	-ve calcium concentration and	Anuntalabhochai and
	with food, 60 days and		chloresterol	Jersrichai, 1986
	7% dried tuber powder mixed		+ve calcium, protein ans	
	with food, 60 days		chloresterol level in female was	
			higher than male quail	
	10% dried tuber powder mixed	Follicle and	-ve egg laying both before and	Smitasiri and Thupapong,
	with food, 13 days	ovulation	after laying period, especially	1985
			before laying period	
	10% dried tuber powder mixed	Red blood cell	-ve % haematocrit within 7 days	Thaiyanun et al., 1992 a
	with food, 28 days	and	-ve hemoglobin	
		White blood	-ve Red blood cell count	
		cell		

Animal	Dosage and Method	Target	Result	Reference
Quail	10% dried tuber powder mixed	Body weight	+ve Body weight	Thaiyanun et al.,1992 b
	with food, 28 days	Protein, Lipid	+ve globulin protein increased to	
		and Cholesterol	4 folds	
		level	+ve total cholesterol increased to	
			5 folds within 7 days	
	10% dried tuber powder mixed	Blood serum	-ve calcium concentration and	Anuntalabhochai and
	with food, 60 days		chloresterol	Jersrichai, 1986
			+ve calcium, protein ans	
			chloresterol level in female was	
			higher than male quail	

Table 2(continued)

Animal	Dosage and Method	Target	Result	Reference
Mice (Mus muscules)	10 mg crude extract,	Uterus	+ve weight of uterus	Sawatdipong, 1981
- immature mice	subcutaneous injected at	Vaginal	+ve fertilization	
	0, 12, 24, 36, 48 hrs.	opening		
- adult mice	Crude extract of 1 g dried	Serum	-ve calcium level	Intavaree, 1976
	tuber powder, subcutaneous	Oviduct	+ve oviducal weight	
	injected for eight days			
Rat	1 mg of alcoholic crude	Estrus cycle	+ve estrus cycle	Sukhavachana, 1941
(Rattus norvegicus)	extract. subcutaneous			
	injectected			
	11.32 mg alcoholic crude	Serum, calcium	+ve calcium concentration	Bulintarathikul, 1978
	extract, subcutaneous injected,	Epiphyseal	+ve growth, -ve width	
	21 days	(proximal end		
		of tibia)		

Animal	Dosage and Method	Target	Result	Reference
-pregnant rat	50 dried tuber powder during	Uterus	-ve pregnancy during mid-period	Sangkaew and Smitasiri, 1985
	mid-pregnancy by oral			
	administration, (day12-18)			
	100 mg dried tuber powder per	Uterus	-ve pregnancy especially postcoital	Smitasiri et al., 1986
	day, oral administration, 10 days		fertility	
	100 dried tuber powder during	Uterus	-ve pregnancy during mid-period	Sangkaew and Smitasiri, 1985
	mid-pregnancy by oral			
	administration, (day12-18)			
-adult rat	100 mg dried tuber powder per	Sperm	-ve number and less sperm	Langkalichan and Smitasiri,
	kg, oral administration, 14 days		mobility	1985
			no effect on length and congenital	
			malformation of the young	

Animal	Dosage and Method	Target	Result	Reference
-lactating rat	100 mg dried tuber powder by	Mammary gland	-ve weight and growth	Smitasiri ,Pangjit and
	oral administration, 14 days		-ve milk production	Somboon Anuntalabhochai,
		Ovarian	No effect in the ovarian weight	1986
			+ve weight	
		Uterus		
-adult rat	200 mg dried tuber powder per	Sperm	-ve number and less sperm	Langkalichan and Smitasiri,
	kg, oral administration, 14 days		mobility	1985
			no effect on length and congenital	
			malformation of the young	

Table 2(continued)

Animal	Dosage and Method	Target	Result	Reference
-pregnant rat	1 g dried tuber powder per	Follicle and	+ve 100% antifertility	Smitasiri and Pangjit,
	week by oral administration,	ovulation		1986
	45 days			
Dog	1-2 g dried tuber powder	Mating behavior	+ve antifertility	Smitasiri, 1988
-female and	mixed with food / day, 2-3	and fertility		
male dog	weeks			

21

3.2 Toxicity test of the active ingredients derived from P. mirifica

The LD₅₀ of butanin, a crystalline glucoside isolated from *P*. *mirifica* was assumed to be the toxic substance that caused death in some test animals. The toxicity was studied by peritoneal injection of butanin into dogs and rabbits at the dosage of 20 and 25 mg per kg body weight respectively. The adverse effect was shown to be disorder in the central nervous system as well as the blood circulation which caused to death when taking at such overdose (Ketu-Sihn, 1941). The other animal experiment, 5% and 10% dried tuber powder was mixed with chick pellets and treated the quail for 15, 30 and 76 days. It showed an inflammation and became suppurative in some part of the body such as head and legs. These symptoms might cause by the destruction of the immune system. The intensity of its effect was found to be depended on the quantity and duration of feeding (Chuaychoo et al, 1984).

The acute toxicity test reported by the Department of Health Science, Ministry of Public Health on rats revealed that at 16 g per kg body weight showed no toxicity. The subchronic toxicity on rat at the dosage of 10 mg per kg body weight for 3 months showed no toxicity to blood and all organsChivapat et al., 2000).

3.3 Clinical study results

In the clinical trial at Siriraj Hospital Thailand on castrated female patients, it was found that 480 g of *P. mirifica* tuberous root powder within 15 days effected to the thickness and proliferated attaining of endometrium tissue while causing no ill. The secretary mucosa corresponding was also found. On vegetative ovarian insufficiency with amenorrhoea patients who was administrated the 200 g of powder for 10 successive days, it was found that the endometrium tissue was thicken. The patient bled as a remenstruation. Futhermore, it was also found to be posive side at the mentality. Eventhough there were signs of adverse effects such as malaise, headache, nausea and in some case vomiting, but these symptoms were less than that exhibited by consumption of synthetic estrogen hormone such as Stilloestrol and Dienooestrol (Sukhavachana, 1949).

At the Chelsea Hospital London, the administering of Miroestrol on amenorrhoea patients revealed that miroestrol exhibited oestrogenic response in vaginal smear. One mg of miroestrol for 4 occasions could induced the enlargement and tenderness of breats and the hot flushes symtops was diminished. Nevertheless, these effects were not stable and some time to wear off (cited by Cain, 1960)

IV. Dritrubution and Cultivation of P. mirifica

P. mirifica was found to be an endemic herb found mainly in the deciduous forests in the North, Northeast and Central part of Thailand. It was usually grown on the steep slope of mountainous and sandy soil between attitudes of 300-800 meters (Kashemsanta and Suvatabandhu, 1952).

P. mirifica could be propagated by both sexual reproduction from seedling (Smitasiri and Wangjai, 1986) and also asexual reproduction from internode or rhizome. Moreover, it had been propagated with plantlets derived from tissue culture (Sompornpailin, 1995, Reechareon, 1996). Callus could produce the oestrogenic substance that was tested by uterine weight method (Smitasiri and Sornsrichai, 1986).

The survey and collection of plant could be done on the site which contained the high of varieties (Frankel, 1970). There were 2 methods of the collection sampling as non-selective sampling and selective sampling for the plant which had the phenotype as desire. The collection source can be divided into 4 types; farmland, fruit garden, local market and in natural place such as the side of the roads (Hawkes, 1980). Since *P. mirifica* was a wide plant which had a self-pollination. The plants could be grown and generated in a nutural place. Thus, the survey and collection of this plant could be done in the forest which will be adventage in the further study.