PHYSICAL AND RHEOLOGICAL PROPERTIES OF NONIONIC POLYMERS - IONIC SURFACTANTS COMPLEXES

Ms. Khine Yi Mya

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2002

ISBN 974-03-1553-4

Thesis Title :	Physical and Rheological Properties of Nonionic
	Polymers – Ionic Surfactants Complexes
By :	Khine Yi Mya
Program :	Polymer Science
Thesis Advisors :	Assoc. Prof. Anuvat Sirivat
	Prof. Alexander M. Jamieson

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Doctor of Philosophy.

K. Bunyahint.

...... College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

K. Bunyacist. ..(Chairman)

(Assoc. Prof. Kunchana Bunyakiat)

AnnatSound

(Assoc. Prof. Anuvat Sirivat)

(Prof. Alexander M. Jamieson)

Nartaya Janumet.

(Asst. Prof. Nantaya Yanumet)

Aria Enorghet

(Dr. Asira Fuongfuchat)

ABSTRACT

4092002063 : POLYMER SCIENCE PROGRAM
Khine Yi Mya: Physical and Rheological Properties of Nonionic
Polymers - Ionic Surfactants Complexes.
Thesis Advisors: Prof. Alexander M. Jamieson and Assoc. Prof.
Anuvat Sirivat, 376 pp. ISBN 974-03-1553-4

Keywords : Polyethylene oxide/ PEO/ Hexadecyltrimethylammonium chloride/ HTAC/ Hydroxypropyl cellulose/ HPC/ Cocamidopropyl dimethyl glycine/ CADG/ Conductivity/ Viscosity/ Dynamic light scattering/ DLS/ Static light scattering/ SLS/ Refractive index increment/ Dialysis equilibrium

The formation of a polymer-surfactant complex upon mixing a nonionic (PEO), with cationic poly(ethylene oxide) а surfactant. polymer, hexadecyltrimethylammonium chloride (HTAC), was studied by observing the changes in conductivity, specific viscosity (η_{sp}), and hydrodynamic radius (R_h). The conductivity data showed that an interaction between PEO and HTAC occurred at a temperature above 25°C, as indicated by a decrease in the critical aggregation concentration in the presence of PEO relative to the critical micelle concentration of a surfactant in the absence of PEO. The binding of HTAC to PEO induced a chain expansion due to electrostatic repulsions between bound micelles. On further addition of HTAC, η_{sp} and R_h reached a maximum at the saturation of binding, and then decreased because of the contraction of the PEO-HTAC complex due to electrostatic screening from the accumulation of free micelles and counterions in the solution.

From the static light scattering, the structures of PEO-HTAC complexes were determined by means of molecular weight measurement at different concentration ratios of HTAC to PEO. Multichain complexation was observed in aqueous solution in the formation of the complex at the maximum binding. However, in the presence of 0.1 M KNO₃, the structure of the complex changed from multichain to unipolymer complexation. Moreover, the number of bound HTAC molecules per PEO chain increased from 0.12 mole HTAC per mole EO to 0.23 mole HTAC per mole EO in salt solution.

Rheological measurements also indicated that the storage modulus G' and the loss modulus G" of the concentrated PEO-HTAC complex solution show largest values at mass concentration ratio of 1.5, which is near the maximum binding of HTAC to PEO in dilute aqueous solution. It was confirmed that the progressive increase on the PEO-HTAC aggregates induced a cross-linking between PEO and HTAC, leading to an increase in the modulus.

Finally, the interaction between nonionic polymer, hydroxypropyl cellulose (HPC), and amphoteric surfactant, cocamidopropyl dimethyl glycine (CADG), was studied by means of viscosity and light scattering measurements in an isoelectric point (pH = 9). The viscosity and dynamic light scattering showed that a maximum and a minimum occurred [HTAC]/[PEO] ratios (c_s/c_p) at 0.026 and 0.43. From Zimm plot analysis, the molecular weight of complex ($M_{w,com}$)was approximately equal to the molecular weight of pure HPC at maximum point, indicating that there was no interaction between HPC and CADG at $c_s/c_p = 0.026$. The increases in $M_{w,com}$ and the number of bound CADG to HPC were observed due to the binding between polymer and surfactant. At the binding condition, the minimum value was observed because of the electrostatic attractions between positive and negative charges within the polymer chain.

บทคัดย่อ

คายน์ ยี เมี้ย : สมบัติทางกายภาพและสภาพการใหลของสารประกอบร่วมของพอลิเมอร์ชนิด ใร้ประจุและสารลดแรงตึงผิวประเภทมีประจุ (Physical and Rheological Properties of Nonionic Polymers – Ionic Surfactants Complexes) อ.ที่ปรึกษา : ศ.ดร. อเล็กซานเดอร์ เอ็ม เจมีสัน และ รศ.ดร. อนุวัฒน์ ศิริวัฒน์ 376 หน้า ISBN 974-03-1553-4

การก่อตัวของสารประกอบร่วมพอลิเมอร์และสารลดแรงตึงผิว โดยการรวมกันระหว่างพอลิ เมอร์ประเภทไร้ประจุ พอลิเอธิลีนออกไซด์ (PEO) กับสารลดแรงตึงผิวประเภทประจุบวก เฮกซะเดค ซิลไตรเมธิลแอมโมเนียมคลอไรด์ (HTAC) ได้มีการศึกษาโดยการสังเกตการเปลี่ยนแปลง ค่าการนำ ไฟฟ้า ค่าความหนืดจำเพาะ (η_{sp}) และค่ารัศมีไฮโดรไดนามิก (R_h) ข้อมูลการนำไฟฟ้าแสดงให้เห็นว่า การทำปฏิกิริยาต่อกันระหว่าง PEO และ HTAC เกิดขึ้นที่อุณหภูมิสูงกว่า 25 องศาเซลเซียสขึ้นไป ซึ่ง เห็นได้จากการลดลงของค่าความเข้มข้นวิกฤติของการรวมตัวในระบบที่มี PEO เทียบกับค่าความเข้ม ข้นวิกฤตของการเกิดไมเซลล์ของสารลดแรงตึงผิว ในระบบที่ไม่มี PEO การรวมตัวกันของ HTAC และ PEO ทำให้สายของพอลิเมอร์ขยาย เนื่องจากแรงผลักทางไฟฟ้าสถิตย์ระหว่างพันธะในไมเซลล์ เมื่อเพิ่มปริมาณของ HTAC ค่า η_{sp} และ R_h จะขึ้นไปสู่ค่าสูงสุดที่สภาวะอิ่มในการรวมตัว หลังจากนั้น จะลดลง เนื่องจากการหดตัวของาสารประกอบร่วม PEO และ HTAC ซึ่งเกิดจากการบดบังทางไฟฟ้า สถิตย์จากการรวมตัวกันของไมเซลล์อิสระ และประจุไฟฟ้าตรงข้ามในสารละลาย

จากการศึกษาด้านกระเจิงแสงสถิตย์ โครงสร้างของสารประกอบร่วม PEO-HTAC ได้มีการ ศึกษาในเรื่องของ การวัดขนาดมวลโมเลกุล ที่อัตราส่วนความเข้มข้นของ HTAC ต่อ PEO ที่แตกต่าง กัน การเกิดสารประกอบร่วมแบบหลายโซ่พบได้ในสารละลายที่มีน้ำเป็นตัวทำละลาย ในสภาวะที่เกิด การรวมตัวสูงสุด อย่างไรก็ตาม ภายหลังจากการเติม KNO₃ 1 โมล โครงสร้างของสารประกอบร่วมมี การเปลี่ยนแปลงจากรูปร่างหลายโซ่ไปเป็นสารประกอบร่วมสายโซ่เดี่ยว ยิ่งไปกว่านั้น จำนวนของ พันธะระหว่างโมเลกุล HTAC ต่อ PEO มีค่าเพิ่มขึ้นจาก 0.12 โมล HTAC ต่อ 1 โมล PEO ไปเป็น 0.23 โมล HTAC ต่อ 1 โมล PEO ในสารละลายเกลือ

การวัดค่าสภาพการไหลยังแสดงให้เห็นว่า ค่ามอดูลัสความเป็นของแข็ง (G') และค่ามอดูลัส ความเป็นของเหลว (G'') ของสารละลายเข้มข้น PEO-HTAC มีค่าสูงสุดเมื่ออัตราส่วนความเข้มข้น โดยมวลเป็น 1.5 ซึ่งใกล้เกียงกับก่าสูงสุดในการรวมตัวกันของ HTAC และ PEO ในสารละลายเจือจาง การทดลองนี้ได้รับการยืนยันว่า การเพิ่มขึ้นของการรวมตัวกันระหว่าง PEO และ HTAC ทำให้เกิด พันธะร่วมกันระหว่าง PEO และ HTAC และนำมาสู่การเพิ่มขึ้นของก่ามอดูลัส

ปฏิกิริยาสัมพันธ์กันระหว่างพอลิเมอร์ไร้ประจุ ไฮดรอกซีโพรพิลเซลลูโลส (HPC) และสาร ลดแรงตึงผิวประเภทประจุคู่ โกคามิโครโพรพิลไดเมธิลไกลซีน (CADG) ได้รับการศึกษาจากก่าความ หนืดและจากการวัดค่าการกระเจิงแสงที่จุดไอโซอิเล็กทรก (pH=9) ค่าความหนืด และก่าการกระเจิง แสงไดนามิก แสดงให้เห็นว่า ค่ามากที่สุด และก่าน้อยที่สุด จะเกิดขึ้นเมื่ออัตราส่วนของ HTAC ต่อ PEO อยู่ที่ 0.026 และ 0.43 จากากรวิเคราะห์โดยซิมพลอต ก่ามวลโมเลกุลของสารประกอบร่วม (M_{w.com}) จะมีก่าโดยประมาณเทียบเท่ากับก่า มวลโมเลกุลของ HPC ที่จุดสูงสุด ซึ่งแสดงให้เห็นว่าไม่มี ปฏิกิริยาสัมพันธ์กันระหว่าง HPC และ CADG ที่อัตราส่วน HTAC ต่อ PEO เท่ากับ 0.026 การเพิ่มขึ้น ของก่ามวลโมเลกุลของสารประกอบร่วม และจำนวนพันธะระหว่าง CADG กับ HPC พบว่าเกิดจาก การรวมตัวกันระหว่างพอลิเมอร์ และสารลดแรงตึงผิว ที่สภาวะที่มีการรวมตัวต่ำสุด พบว่าเกิดจากการ ดึงดูดกันทางไฟฟ้าสถิตย์ระหว่างประจุบวกและลบภายในสายพอลิเมอร์

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and appreciation to the Petroleum and Petrochemical College (PPC) for providing the scholarship for my doctoral program and special thanks to National Metals and Materials Technology Center (MTEC) for funding the research work.

I express my deepest appreciation to my advisor, Professor Alexander M. Jamieson of Case Western Reserve University, Cleveland, Ohio, USA, for providing valuable suggestions, inspiring guidance, and giving me the opportunity to do my research work in his lab for 3 months.

My sincere gratitude to my advisor, Associate Prof. Anuvat Sirivat, for his continuous advice, motivation and support for the success of this study, and providing me with the chance to present my research work in Thailand and USA.

I would like to extend my heartfelt thanks to Associate Professor Kunchana Bunyakiat, Assistant Prof. Nantaya Yanumet, and Dr. Asira Fuongfuchat, who acted as committee members.

I also extend my sincere thanks to all of the staff of the Petroleum and Petrochemical College for giving the permission to freely use the research facilities.

Most of all, this work is dedicated to my parents and my husband, for their tender love and care, generous encouragement, understanding and moral support during this study.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	v
Acknowledgements	vii
Table of Contents	viii
List of Tables	xv
List of Figures	xvii
Abbreviations	xxiv
List of Symbols	xxv

CHAPTER

Ι	INT	RODU	CTION	1
	1.1	Types	of Polymer-Surfactant Complexes	1
		1.1.1	Uncharged Polymer with Anionic Surfactant	1
		1.1.2	Uncharged Polymer with Cationic Surfactant	2
		1.1.3	Uncharged Polymer with Nonionic Surfactant	2
		1.1.4	Polyelectrolyte with Oppositely Charged	
			Surfactant	3
	1.2	Structu	ares of Polymer-Surfactant Complexes	3
	1.3	Genera	al Aspects of Interactions	5
		1.3.1	Binding Isotherms	6
		1.3.2	Strength of Interaction	7
	1.4	Techn	ical Applications of Polymer-Surfactant	
		Comp	lexes	8
		1.4.1	Rheology Control	8
		1.4.2	Pharmaceutical Applications	9
		1.4.3	Cosmetic Formulation	10

Π

	1.4.4	Solubilization	10
	1.4.5	Detergency	10
		1.4.5.1 Increasing Soil Removal	10
		1.4.5.2 Dye Transfer Inhibition	10
		1.4.5.3 Preventing Particulate Soil	
		Redeposition	11
1.5	Rheol	ogy	11
	1.5.1	Viscoelastic Properties of Polymeric Materials	11
	1.5.2	Viscoelastic Properties of Surfactant Solutions	12
1.6	Polym	ers	14
	1.6.1	Poly(Ethylene Oxide) (PEO)	14
	1.6.2	Hydroxypropyl Cellulose (HPC)	15
1.7	Surfac	tant Solutions	15
	1.7.1	Hexadecyltrimethylammonium Chloride	
		(HTAC)	15
	1.7.2	Cocamidopropyl Dimethyl Glycine (CADG)	16
1.8	Object	tives	16
LIT	'ERAT	TURE SURVEY	18
2.1	Intera	actions of Polymer-Surfactant Complexes in	
	Dilut	e Solutions	18
	2.1.1	Nonionic Polymer-Anionic Surfactant	18
	2.1.2	Nonionic Polymer-Cationic Surfactant	20
	2.1.3	Nonionic Polymer-Nonionic Surfactant	22
	2.1.4	Polyelectrolyte-Oppositely Charged	24
		Surfactant	
2.2	Rheo	logical Investigations on Polymer-Surfactant	
	Com	plexes	26

	2.3	Sumn	nary	28
	2.4	Rheo	logical Studies on Flexible Elongated Micelles	32
ш	EXI	PERIM	IENTAL	36
	3.1	Mater	ials	36
	3.2	Appa	ratus	37
		3.2.1	Capillary Viscometer	37
			3.2.1.1 Cannn-Ubbelohde Viscometer	37
			3.2.1.2 Thermostatic Water Bath	37
			3.2.1.3 Timing Device	37
		3.2.2	Filtering Accessories	37
		3.2.3	Centrifuge	37
		3.2.4	Conductivity Meter	38
		3.2.5	Du-Nouy Ring Tensiometer	38
		3.2.6	pH Meter	38
		3.2.7	Dialysis Membrane	38
		3.2.8	Refractometer	38
		3.2.9	Light Scattering Instrument	38
		3.2.10) Rheometer	39
	3.3	Samp	le Preparation	39
		3.3.1	Preparation of Polymer Solutions	39
		3.3.2	Preparation of Surfactant Solutions	40
		3.3.3	Preparation of Polymer-Surfactant Complex	
			Solutions	40
	3.4	Meth	odology	41
		3.4.1	Measurements of cmc and cac	41

IV

	3.4.2	Viscosity Measurement	42
	3.4.3	Dialysis Experiment	44
	3.4.4	Refractive Index Measurement	46
	3.4.5	Light Scattering Measurements	47
		3.4.5.1 Static Light Scattering	48
		3.4.5.2 Dynamic Light Scattering	53
	3.4.6	Rheological Measurements	57
		3.4.6.1 Rheological Measurements	57
		3.4.6.2 Viscoelastic Properties of Surfactant	
		Solutions	61
RES	ULTS	AND DISCUSSION	62
4.1	Binar	y System of PEO-Water Mixture	62
	4.1.1	Molecular Weight Measurement	62
		4.1.1.1 Viscosity	62
		4.1.1.2 Light Scattering	63
	4.1.2	Measurement of Hydrodynamic Radius (R _h)	64
	4.1.3	dn/dc Measurement	66
4.2	Binar	y System of HTAC Solution	67
	4.2.1	Determination of Critical Micelle	
		Concentration (cmc)	67
		4.2.1.1 Surface Tension	67
		4.2.1.2 Conductivity	68
	4.2.2	Viscosity Measurement	70
4.3	Terna	ary System of PEO/HTAC/Water	71
	4.3.1	Effect of Surfactant Concentration	71
		4.3.1.1 Conductivity Measurement	71

		4.3.1.2	Viscosity and R _h Measurement	72
	4.3.2	Effect of	f Polymer Concentration	74
		4.3.2.1	Viscosity Measurement	74
		4.3.2.2	R _h Measurement	76
	4.3.3	Effect of	fTemperature	78
		4.3.3.1	Measurements of cmc and cac	78
		4.3.3.2	Viscosity Measurement	79
		4.3.3.3	Hydrodynamic Radius (R _h)	
			Measurement	82
	4.3.4	Effect of	f Molecular Weight	83
		4.3.4.1	Viscosity Measurement	83
		4.3.4.2	Measurement of R _h	85
	4.3.5	Effect o	of Salt	86
		4.3.5.1	Conductivity Measurement	86
		4.3.5.2	Viscosity Measurement	87
	4.3.6	Determ	ination of the Structure of PEO-	
		HTAC	Complex	88
		4.3.6.1	PEO-HTAC Complex in Water	88
		4.3.6.2	PEO-HTAC Complex in 0.1 M	
			KNO ₃ Solution	97
4.4	Visco	elastic Pr	operties of PEO in Water	103
	4.4.1	Salt Effe	ect	104
	4.4.2	Tempera	ature Effect	105
4.5	Visco	elastic Pr	operties of HTAC Micelles	108
4.6	Visco	elastic Pr	operties of PEO-HTAC Complex	
	Soluti	ons		116
	4.6.1	PEO-H7	TAC Complex in Water	116

V

	4.6.2	PEO-HTAC Complex in 0.1 M KNO ₃	123
		Solution	
4.7	Invest	igation of HPC-CADG Interaction	125
	4.7.1	cmc and cac Measurements	125
	4.7.2	Viscosity Measurement	127
	4.7.3	Hydrodynamic Radius Measurement	128
	4.7.4	Determination of Structure of HPC-CADG	
		System	129
CON	ICLUS	IONS AND RECOMMENDATIONS	132
5.1	Intera	ction of PEO-HTAC Complex in Dilute	
	Soluti	ons	132
	5.1.1	Effect of Surfactant Concentration	132
	5.1.2	Effect of Polymer Concentration	132
	5.1.3	Effect of Temperature	132
	5.1.4	Effect of Molecular Weight	133
	5.1.5	Effect of Salt	133
5.2	The S	tructures of PEO-HTAC Complex in Dilute	
	Soluti	ions	133
	5.2.1	Effect of Ionic Strength	134
5.3	Visco	elastic Properties of PEO in Water	135
5.4	Visco	elastic Properties of HTAC Micelles	135
5.5	Visco	elastic Properties of PEO-HTAC Complexes	136
5.6	Intera	ction of HPC-CADG Complex in Dilute	
	Soluti	ions	137
5.7	Recor	nmendations	138

CHAPTER		PAGE
	REFERENCES	139
	APPENDICES	149
	APPENDIX - 1	149
	APPENDIX - 2	164
	APPENDIX - 3	167
	APPENDIX - 4	241
	APPENDIX - 5	265
	APPENDIX - 6	272
	APPENDIX - 7	357
	CURRICULUM VITAE	373

LIST OF TABLES

TABLE		PAGE
1.1	The cmc values for surfactant micelles in water and the	
	corresponding cac values in the presence of polymer	9
2.1	Literature studies of the interactions between polymers and	
	surfactants	28
2.2	Previous studies of physical parameters determination by static	
	light scattering measurement	30
2.3	Investigation of physical parameters by static light scattering	
	measurement	32
2.4	Summary for the rheological studies of elongated worm-like	
	micelles	35
4.1	Zimm plot results for PEO in water at 30°C	64
4.2	Viscosity and light scattering results for PEO in aqueous	
	solution	66
4.3	The saturation concentrations of HTAC and the saturation ratios	
	of HTAC/PEO at different PEO concentrations	76
4.4	Refractive index increments and molecular weight obtained by	
	thermodynamic treatment method	91
4.5	Physical parameters of PEO(2)-HTAC complexes obtained from	
	light scattering measurements	92
4.6	Variation of $M_{w,com}$, R_g , $R_{h,f}$, and $R_{h,\eta}$ with addition of HTAC	93
4.7	The comparative study of PEO-HTAC complex in aqueous	
	solution and in the presence of 0.1 M KNO ₃ solution at the	
	maximum binding point	99
4.8	The deviation from single exponential function, together with	
	the values of G_0 and η_0 at different temperatures	114
4.9	The data of DFS, $\overline{\zeta}$, τ_R and τ_b for different temperatures	115

TABLE

4.10	Physical parameters of HPC-CADG complexes at different c _s /c _p					
	ratios, determined by refractive index and light scattering					
	measurements					
5.1	Summary for the formation of PEO-HTAC complex					

LIST OF FIGURES

FIGURE

	1.1	Schematic representations of structures of polymer-surfactant	
		complexes	4
	1.2	A typical isotherm for the binding of a surfactant to a polymer	6
	1.3	Symbolic representation of long-range and short-range contour	
		relationships in a flexible polymer molecules	11
	1.4	Schematic representation of a Cole-Cole plot	14
	1.5	Chemical structure of hydroxypropylcellulose (HPC)	15
	1.6	Chemical structure of hexadecyltrimethylammonium chloride	
		(HTAC)	16
	1.7	Chemical structure of cocamidopropyl dimethyl glycine	
		(CADG): (a) in solid form, (b) in aqueous solution	16
	3.1	Flow chart diagram for dilute polymer-surfactant solution	
		preparation	40
	3.2	Diagram for concentrated polymer-surfactant solution	
		preparation	41
	3.3	Effect of micelle formation on surface tension of a surfactant	
		solution	42
	3.4	Schematic diagram for the determination of critical micelle	
		concentration (cmc) and critical aggregation concentration	
		(cac)	42
1	3.5	Schematic diagram of simple dialysis experiment	45
	3.6	Diagram describing the bending of light rays by refractive	
		index gradient	46
	3.7	The schematic diagram of light scattering instrument	49
	3.8	The general features of time intensity autocorrelation function	54

•

3.9	Linear viscoelastic spectrum of the shear storage modulus, G'	
	and loss modulus, G" for an entangled polymer solution	58
3.10	Schematic of cone and plate geometry utilized in fluid	
	rheometry	61
4.1	Reduced viscosity (η_{red}/c_p) as a function of PEO concentration	
	for PEO(2) solution at 30° C	63
4.2	Zimm plot for PEO(2) solution in water at 30°C	64
4.3	Apparent diffusion coefficient (D_{app}) as a function of square of	
	scattering wave vector (q ²) at different PEO concentrations	65
4.4	Center of mass diffusion coefficient vs. PEO concentration	66
4.5	Refractive index of PEO as a function of PEO concentration	67
4.6	Surface tension of HTAC in water as a function of HTAC	
	concentration at 30°C	68
4.7	Variation of conductivity with HTAC concentration to	
	determine the critical micelle concentration (cmc)	69
4.8	Variation of the conductivity of HTAC solution with the	
	HTAC concentration at 30 $^{\circ}$ C in the presence of 0.1 M KNO ₃	69
4.9	Semi-logarithmic plot of the specific viscosity as a function of	
	HTAC concentration	70
4.10	Variation of conductivity with HTAC concentration in the	
	presence of PEO(2)	71
4.11	Specific viscosity (η_{sp}) as a function of HTAC concentration	
	for PEO(2) solutions	72
4.12	Center of mass diffusion coefficient (D_{cm}) as a function of	
	HTAC concentration for PEO(2) solution	73
4.13	Dependence of specific viscosity on surfactant concentration at	
	different polymer concentrations	74
4.14	Dependence of specific viscosity on c_s/c_p ratio at different PEO	
	concentrations	75

4.15	Diffusion coefficient as a function of surfactant to polymer	
	concentration ratio (c_s/c_p)	77
4.16	Hydrodynamic radius (R_h) as a function of surfactant to	
	polymer concentration ratio (c_s/c_p)	77
4.17	Variation of the cmc and the cac with temperature for HTAC	
	in water and in the presence of PEO	78
4.18	Dependence of specific viscosity on HTAC concentration at	
	four different temperatures	79
4.19	Temperature dependence of specific viscosity on surfactant	
	concentration	81
4.20	Apparent hydrodynamic radius (R _h) as a function of HTAC	
	concentration at three different temperatures	82
4.21	Dependence of specific viscosity on HTAC concentration at	
	four different PEO molecular weights	83
4.22	The ratio of $\eta_{sp}(PEO+HTAC)/\eta_{sp}(PEO)$ as a function of	
	HTAC concentration	84
4.23	Dependence of apparent hydrodynamic radius on HTAC	
	concentration at different PEO molecular weights	85
4.24	Variation of the conductivity of PEO-HTAC complex with	
	HTAC concentration at 30° C in the presence of 0.1 M KNO ₃	86
4.25	Dependence of specific viscosity on HTAC to PEO	
	concentration ratio in water (O); and in the presence of 0.1 M	
	KNO ₃ solution (\Box). PEO concentration: 0.1 g/dL.	87
4.26	Zimm plot for PEO(2)-HTAC complex solution at the	
	maximum binding point ($c_s/c_p = 1.75$)	89
4.27	Molecular weight of PEO(2)-HTAC complex as a function of	
	surfactant to polymer concentration ratio in ternary solution at	
	30°C	94

4.28	Radius of gyration and apparent hydrodynamic radius as a	
	function of HTAC to PEO concentration ratio for PEO(2)-	
	HTAC complex	94
4.29	Zimm plot for PEO-HTAC complex solution in 0.1 M KNO ₃	
	solution at 30 °C, at the maximum binding point ($c_s/c_p = 1.75$)	98
4.30	The particle size distribution of PEO solution	102
4.31	The particle size distribution of PEO-HTAC solution at	
	HTAC/PEO ratio = 1.75 (maximum binding point)	102
4.32	Double logarithmic plot of the storage modulus (G'), the loss	
	modulus (G"), and the complex viscosity (η^*) as a function of	
	frequency (ω) for PEO 4 g/dL at 30 °C	103
4.33	Double logarithmic plot of the storage modulus G', the loss	
	modulus G", and the complex viscosity η^* as a function of	
	frequency ω for PEO 8 g/dL at 30 °C	104
4.34	Double logarithmic plot of G', G", and η^* as a function of ω	
	for 4 g/dL PEO in water (open, closed, and dotted circles) and	
	in 0.1 M KNO ₃ solution (open, closed, and dotted squares) at	
	30°C	104
4.35	Double logarithmic plot of the reduced storage modulus G_R ',	
	and the reduced loss modulus G_R " versus the reduced	
	frequency ω_R for PEO 4 g/dL at different temperatures	105
4.36	Double logarithmic plot of the reduced storage modulus G_R ',	
	and the reduced modulus G_R " versus the reduced frequency ω_R	
	for PEO 8 g/dL at different temperatures	106
4.37	The complex viscosity η^* versus frequency for PEO 4 g/dL at	
	different temperatures	107
4.38	The complex viscosity η^* versus frequency for PEO 8 g/dL at	
	different temperatures	107

4.39	The complex viscosity (η^*) as a function of frequency for two	
	different concentrations	108
4.40	The schematic drawing for flexible wormy micelles	109
4.41	Logarithmic plot of the storage modulus G', the loss modulus	
	G" versus frequency for a solution of 0.5 M HTAC (16 g/dL)	
	at different temperatures	110
4.42	The temperature dependence of plateau modulus (G_0) and the	
	stress relaxation time (τ_R)	111
4.43	The variation of the complex viscosity (η^*) as a function of	
	frequency at different temperatures for 0.5 M HTAC (16 g/dL)	
	solution	111
4.44	The Cole-Cole plot, represented as the loss modulus G" versus	
	the storage modulus G', for 0.5 M HTAC solution at different	
	temperatures	113
4.45	Experimental Cole-Cole diagram, plotted as μ "(ω) vertical and	
	$\mu'(\omega)$ horizontal) for five different	114
4.46	Diameter of fitted semicircle (DFS) plotted against	
	$\overline{\zeta}$ (horizontal axis). Numerical points joined by simple	
	interpolation and constrained to pass through (1,0)	115
4.47	The reduced moduli (G_R ' and G_R '') as a function of reduced	
	frequency (ω_R) for PEO (4 g/dL)-HTAC (2 g/dL) ($c_s/c_p = 0.5$)	
	at different temperatures	116
4.48	The complex viscosity as a function of frequency for PEO-	
	HTAC at $c_s/c_p = 0.5$ at different temperatures	117
4.49	The reduced moduli (G_R ' and G_R '') as a function of reduced	
	frequency (ω_R) for PEO (4 g/dL)-HTAC (6 g/dL) ($c_s/c_p = 1.5$)	
	at different temperatures	118
4.50	Frequency dependence of viscosity at different temperatures	
	for $c_{s}/c_{p} = 1.5$	118

4.51	Master curve for PEO (4 g/dL)-HTAC (8 g/dL) at $c_s/c_p = 2.0$ at	
	different temperatures	119
4.52	The complex viscosity versus frequency for $c_s/c_p = 2.0$ at	
	different temperatures	120
4.53	The complex viscosity as a function of temperature for	
	different HTAC concentration	121
4.54	The reduced storage and loss moduli (G_R ' and G_R '') as a	
	function of reduced frequency (ω_R) for PEO-HTAC complex	
	at $c_s/c_p = 1.5$	121
4.55	The logarithmic plot of complex viscosity as a function of	
	frequency at different temperatures	122
4.56	The temperature dependence of complex viscosity for different	
	HTAC concentrations	123
4.57	The reduced storage (G_R ') and loss moduli (G_R ") plotted as a	
	function of reduced frequency (ω_R) for PEO (4 g/dL) and	
	HTAC (6 g/dL) in 0.1 M KNO ₃ solution at $c_s/c_p = 1.5$ at	
	different temperatures	124
4.58	The frequency dependence of complex viscosity for PEO (4	
	g/dL)-HTAC (6 g/dL) in 0.1 M KNO ₃ solution at $c_s/c_p = 1.5$	
	for five different temperatures	124
4.59	Dependence of critical micelle concentration (cmc) on pH at	
	30°C for amphoteric surfactant (CADG) solutions	126
4.60	The variation of conductivity of CADG in the presence of	
	HPC as a function of CADG concentration at $pH = 9$	127
4.61	The specific viscosity (η_{sp}) as a function of CADG	
	concentration at 30° C for HPC-CADG system at pH = 9	128
4.62	The apparent hydrodynamic radius (R_h) of HPC as a function	
	of CADG concentration at $pH = 9$ for HPC-CADG system	128

4.63	Zimm plot for HPC-CADG system at $c_s/c_p = 0.026$	130
4.64	Zimm plot for HPC-CADG system at $c_s/c_p = 0.43$	130
5.1	5.1 The proposed model for PEO-HTAC complex in aqueous	
	solution at maximum binding	134
5.2	The proposed model for PEO-HTAC complex in 0.1 M KNO ₃	
	solution at maximum binding	135

ABBREVIATIONS

Polymers: Poly(ethylene oxide) PEO Ethylhydroxyethyl cellulose EHEC Poly(vinyl pyrrolidone) PVP Poly(vinylmethyl ether) PVME POE Poly(oxyethylene) Poly(ethylene glycol) PEG Hydroxypropyl cellulose HPC HEC Hydroxyethyl cellulose Poly(propylene oxide) PPO Polyacrylamide PAM Poly(4-vinylpyridine N-oxide) PVPNO Poly(N,N,N-trimethylammonio) ethyl acrylate PCMA Polyacrylic acid PAA PE Polyelectrolytes

Surfactants:

SDS	Sodium dodecylsulfate
DDAB	Didodecyldimethylammonium bromide
НТАВ, НТАС	Hexadecyltrimethylammonium bromide and chloride
DoTAB	Dodecyltrimethylammonium bromide
HTASal	Hexadecyltrimethylammonium salicylate
CTAB, CTAC	Cetyltrimethylammonium bromide and chloride
TTAB	Tetradecyltrimethylammonium bromide
RTAB, RTAC	Alkyltrimethylammonium bromide and chloride
NP ₁₄ , NP ₂₀	Polyethylene oxide nonyl phenyl ether
Slovafol 909	Nonylphenol polyethylene glycol
OTG	N-octyl thioglucoside
$C_{12}E_{5}$	Pentaethylene glycol mono-n-dodecyl ether

LIST OF SYMBOLS

- cmc = Critical micelle concentration
- cac = Critical aggregation concentration
- M_w = Molecular weight of polymer in binary system
- $M_{w,p}$ = Molecular weight of polymer in the complex
- $M_{w,com} =$ Molecular weight of complex
- D' = Preferential binding of surfactant to polymer
- f = Binding fraction
- N_s/N_p = Total number of surfactant per polymer chain
- $N_{s,b}/N_p$ = Number of bound surfactant per polymer chain
- $R_g = Radius of gyration$
- $R_h = Hydrodynamic radius$
- η_{sp} = Specific viscosity
- $\eta^* = Complex viscosity$
- $\eta_0 =$ Zero-shear viscosity
- G_0 = Shear plateau modulus
- G'= Shear storage modulus
- G" = Shear loss modulus
- $G_R' = Reduced storage modulus$
- G_R " = Reduced loss modulus
- $\omega_R = Reduced \ frequency$
- τ_R = Terminal relaxation time
- τ_{break} = Breaking time of worm-like micelle
- τ_{rep} = Reptation time of worm-like micelle