DEVELOPMENT OF POLYPYRROLE-BASED SENSORS FOR VAPORS OF FLAMMABLE CHEMICALS

Ms. Ladawan Ruangchuay Wannatong

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2002 ISBN 974-17-1368-1

:	Development of Polypyrrole-Based Sensors for Vapors
	of Flammable Chemicals
:	Ms. Ladawan Ruangchuay Wannatong
:	Polymer Science
:	Assoc. Prof. Anuvat Sirivat and Prof. Johannes W. Schwank

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Doctor of Philosophy.

K. Bunyacuint.

College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

K. Bunyalu'at.

(Assoc. Prof. Kunchana Bunyakiat)

Anuvat Gerwal

(Assoc. Prof. Anuvat Sirivat) (Frof. Johannes W. Schwank) - Seg. 62 . .

(Asst. Prof. Pitt Supaphol)

Supa Hannomgbus

(Asst. Prof. Supa Hannongbua)

ABSTRACT

4082001063 : POLYMER SCIENCE PROGRAM

Ms. Ladawan Ruangchuay Wannatong: Development of Polypyrrole-Based Sensors for Vapors of Flammable Chemicals Thesis Advisors: Assoc. Prof. Anuvat Sirivat and Prof. Johannes W. Schwank, 222 pp. ISBN 974-17-1368-1

Keywords : Conductive Polymers/ Polypyrrole/ Sensor/ Flammable Chemicals/ Acetone/ Toluene/ Water/ Acetic Acid/ Lacquer/ Polymer Blends/ PEO/ PMMA/ HDPE/ PS/ ABS/ Sensitivity/ Selectivity/ Stability

Serial issues concerning development of polypyrrole-based sensors for vapors of flammable chemicals were studied in this dissertation work. Polypyrrole (PPy) was chemically prepared *via* an *in situ* doped polymerization utilizing seven dopant anions (dopant to monomer molar ratio, D/M = 1/12) to stabilize the positive charges on N of pyrrole rings. These dopant anions were found to play important roles on physical, chemical, and electrical properties of PPy as revealed by several techniques, e.g. X-ray photoelectron spectrometer and the custom-made four-point probe conductivity meter. PPys doped with α -naphthalene sulfonate (PPy/A) and β -naphthalene sulfonate (PPy/B) have good pellet appearance, solubility, thermal stability, specific conductivity, and stability in conductivity. PPy/A was chemically synthesized at various D/M ratios. The D/M ratio giving PPy/A with high specific conductivity and stability in conductivity is 1/12.

Upon exposure to acetone vapor at 16.7 vol.% in N₂, negative changes in specific conductivity, $\Delta\sigma$, of PPys were observed. These changes depend critically on the type of the dopants used. For the sulfonate dopants, $\Delta\sigma$ exponentially depended on the doping level (N⁺/N) and the initial specific conductivity. It depended linearly on the proportion of the bipolaron species and the ordering and inversely on the proportion of the imine-like nitrogen defect (=N-). PPy/A exhibited the largest specific conductivity decrement: 0.4 S/cm. Various techniques, e.g. an environmental scanning electronmicroscope, were used to investigate the interaction

between PPy and acetone molecules. Swelling, H-bonding, and reduction reaction by acetone are suggested to cause the decrease in specific conductivity of PPy.

In order to improve the selectivity of PPy toward acetone and toluene, which are flammable components in lacquer over the non-flammable components acetic acid and water, PPy/A with D/M ratio of 1/5, PPy/A5 has been blended with several insulating polymers: PEO; PMMA; HDPE; PS; and ABS, by three different methods namely dry mixing, solution mixing, and coating. The electrical conductivity responses towards liquid of water, acetone, acetic acid, or toluene of PPy/A5/PMMA, PPy/A5/PS and PPy/A5/ABS blends from solution mixing towards acetone and toluene were enhanced but those towards water were diminished, relative to that of pure PPy/A5. However, the sensitivity towards acetic acid was not significantly different from that of pure PPy/A5.

The selectivity improvement had been extended focusing on the solution mixing of PPy/A and PMMA. PPy/A with D/M ratio of 1/12 was blended with PMMA by means of solution mixing, with various weight ratios of PMMA. Compared with pure PPy/A, the selectivity ratio of acetone/acetic acid response of PPy/A/PMMA blend with a PMMA/PPy weight ratio of 3.0 was ca. 3.8 times higher. The film was found to be insensitive to moisture unless the relative humidity was lower than 20 %RH in which the selectivity ratio was enhanced. The time required to reach the equilibrium signal at relative humidity of 20 - 30 %RH was 6 - 15 min; it became as high as 20 - 26 min at 50 - 70 %RH.

The surface compositions of non-aging PPy/A were investigated by XPS. Employing liquid nitrogen cooling of the sample holder, the spectra in the regions of C 1s, O 1s, N 1s, and S 2p were found to be reproducible with a gradual change in S 2p spectrum when the accumulated X-ray exposure time was less than 1050 min. Beyond this accumulated X-ray exposure time, dramatic changes were observed in all spectral regions suggesting the deprotonation of the polaron by the dopant and the desulfonation of the protonated dopant. This degradation became more severe when the liquid nitrogen cooling system of the spectrometer was not used. The results indicate that the degradation was mainly induced by heat from the X-ray beam.

บทคัดย่อ

ลดาวัลย์ เรื่องช่วย วรรณทอง : การพัฒนาเครื่องตรวจวัดไอระเหยของสารเคมีไวไฟ จากพอลิไพรอล (Development of Polypyrrole-Based Sensors for Vapors of Flammable Chemicals) อ. ที่ปรึกษา : รศ. ดร. อนุวัฒน์ ศิริวัฒน์ และ ศ. ดร. โจฮานเนส ชวางค์ 222 หน้า ISBN 974-17-1368-1

พอลิไพรอล ได้ถูกสังเคราะห์ด้วยวิธีทางเคมีและโคปในขั้นตอนเดียวกัน ด้วยตัวโคป 7 ชนิด ในอัตราส่วนโดยโมล ของตัวโดปต่อไพรอล เท่ากัน คือ 1/12 หน้าที่หลักของตัวโดป คือช่วย ให้ประจุบวกที่ในโตรเจนเสถียร นอกจากนี้ ยังพบว่า ตัวโดปยังมีผลต่อคุณสมบัติทางกายภาพ ทาง เคมี และทางไฟฟ้า ของพอลิไพรอล ตามที่ได้วิเคราะห์ด้วยเครื่องมือหลายชนิดเช่น เครื่องเอ็กซ์เรย์ โฟโตอิเล็กตรอนสเปกโตรมิเตอร์ และเครื่องวัดค่าการนำไฟฟ้าจำเพาะแบบสี่ขั้วซึ่งสร้างขึ้นเองใน ห้องปฏิบัติการ พอลิไพรอลที่โดปด้วยอัลฟ่า-แนฟทาลีน ซัลโฟเนต และเบด้า-แนฟทาลีน ซัลโฟ เนต มีคุณสมบัติทางกายภาพ การละลาย ความเสถียรต่อความร้อน ค่าการนำไฟฟ้าจำเพาะ และ ความเสถียรของค่าการนำไฟฟ้าที่ดี จากการสังเคราะห์พอลิไพรอลที่โดปด้วยอัลฟ่า-แนฟทาลีน ซัล โฟเนต ในอัตราส่วนโดยโมลของตัวโดปต่อไพรอลต่าง ๆ พบว่า อัตราส่วนโดยโมลของตัวโดป ต่อไพรอล ที่ให้ก่าการนำไฟฟ้าจำเพาะ และความเสถียรของก่าการนำไฟฟ้าสูง ได้แก่ 1/12

เมื่อให้พอลิไพรอลอยู่ในบรรยากาศของไอระเหยของอะซิโตนในไนโตรเจนที่ความเข้ม ข้นร้อยละ 16.7 โดยปริมาตร พบว่า ค่าการนำไฟฟ้าจำเพาะลดลง การเปลี่ยนแปลงดังกล่าวขึ้นกับ ชนิดของตัวโดป อย่างเห็นได้ชัด ค่าการนำไฟฟ้าจำเพาะที่ลดลง ขึ้นกับ ระดับการโดป (N⁺/N) และ ค่าการนำไฟฟ้าจำเพาะเริ่มด้น ตามความสัมพันธ์แบบเอกซ์โปเนนเซียล และขึ้นกับ สัดส่วนของไบ โพลารอน และ ความเป็นระเบียบของโมเลกุล ตามความสัมพันธ์แบบเชิงเส้น และแปรผกผันกับ สัดส่วนของส่วนบกพร่อง =N- พอลิไพรอลที่โดปด้วยอัลฟ่า-แนฟทาลีน ซัลโฟเนต แสดงค่าการ นำไฟฟ้าจำเพาะลดลงถึง 0.4 ซีเมนส์ต่อเซนติเมตร จากศึกษาปฏิกริยาระหว่างพอลิไพรอล และอะ ซิโตน ด้วยเครื่องมือหลายชนิด เช่นเครื่องอิเล็กตรอนไมโครสโคปแบบสูญญากาศต่ำ พบว่า พันธะ ไฮโครเจน การบวมตัว และการสูญเสียความเป็นระเบียบระดับโมเลกุล เป็นสาเหตุของการลดลง ของค่าการนำไฟฟ้าจำเพาะของพอลิไพรอลภายใต้บรรยากาศของอะซิโตน

เพื่อที่จะปรับปรุงความจำเพาะของพอลิไพรอลที่มีต่ออะซิโตน และโทลูอีน ซึ่งเป็นสาร ไวไฟในน้ำยาเคลือบเงา ให้มากกว่ากรดอะซิติก ซึ่งเป็นส่วนผสมในน้ำยาเคลือบเงาเช่นกัน แต่ไม่ ไวไฟมาก และน้ำ ซึ่งมีอยู่ทั่วไปในบรรยากาศ ได้ศึกษาพอลิไพรอลที่โดปด้วย อัลฟ่า-แนฟทาลีน ซัลโฟเนต ที่อัตราส่วน 1/5 โดยผสมกับพอลิเมอร์ที่ไม่นำไฟฟ้า อันได้แก่ PEO PMMA HDPE PS และ ABS ด้วยวิธีการผสม 3 แบบ คือ แบบแห้ง แบบสารละลาย และ แบบเคลือบ เมื่อให้ของเหลว ของน้ำ อะซิโตน กรดอะซิติก หรือโทลูอีน สัมผัสกับตัวอย่าง ผลปรากฏว่า ของผสมระหว่างพอลิ ไพรอล กับ PMMA PS หรือ ABS จากการผสมแบบสารละลาย มีสภาพไวต่อ อะซิโตน และโทลู อีน มากขึ้น และมีสภาพไวต่อน้ำลดลง เมื่อเทียบกับพอลิไพรอล อย่างไรก็ตาม สภาพไวต่อกรดอะ ซิติก ยังคงไม่แตกต่างไปจากพอลิไพรอล

เพื่อการปรับปรุงความจำเพาะของพอลิไพรอลให้ดียิ่งขึ้น ได้ศึกษาโดยมุ่งไปที่การผสม แบบสารละลายระหว่าง พอลิไพรอลที่โดปด้วยอัลฟ่า-แนฟทาลีน ซัลโฟเนต ที่อัตราส่วน 1/12 กับ PMMA โดยปรับเปลี่ยนสัดส่วนโดยน้ำหนักของ PMMA พบว่า เมื่อสัดส่วนโดยน้ำหนักของ PMMA ต่อพอลิไพรอลเป็น 3.0 ก่าสัดส่วนสภาพไวที่มีต่ออะซิโตน ต่อกรดอะซิติก สูงกว่าพอลิไพ รอลที่ไม่ได้ผสม 3.8 เท่า ฟิล์มดังกล่าวไม่ไวต่อความชื้นสัมพัทธ์ในอากาศ เว้นแต่เมื่อความชื้น สัมพัทธ์ในบรรยากาศต่ำกว่า ร้อยละ 20 ก่าสัดส่วนสภาพไวนี้ จะเพิ่มขึ้น เวลาที่ใช้เพื่อให้ได้ สัญญาณกงที่ เมื่อความความชื้นสัมพัทธ์อยู่ระหว่าง ร้อยละ 20 ถึง 30 เป็น 6 ถึง 15 นาที เวลาดัง กล่าวจะนานถึง 20 ถึง 26 นาทีเมื่อความชื้นสัมพัทธ์เป็น ร้อยละ 50 ถึง 70

จากการศึกษาองค์ประกอบที่พื้นผิวของพอลิไพรอลที่โดปด้วยอัลฟ่า-แนฟทาลีน ซัลโฟ เนต ที่อัตราส่วน 1/12 และมีคุณสมบัติที่ไม่เปลี่ยนแปลงตามเวลา ด้วยเครื่องเอ็กซ์เรย์โฟโตอิเล็ก ตรอนสเปกโตรมิเตอร์ โดยมีระบบหล่อเย็นด้วยในโตรเจนเหลว พบว่า สเปกตรัมในช่วงของ C1s O1s N1s และ S2p สามารถทำซ้ำได้ โดยที่ spectra ของ S 2p มีการเปลี่ยนแปลงเล็กน้อย เมื่อเวลา สะสมของการฉายรังสีเอ็กซ์น้อยกว่า 1050 นาที หลังจากเวลานี้ ได้พบการเปลี่ยนแปลงอย่างเห็น ได้ชัดในทุกช่วงของสเปกตรัม ผลเหล่านี้ ชี้ให้เห็นถึงการสูญเสียโปรตอนที่โพลารอน โดยตัวโดป และการสูญเสียซัลเฟอร์ของตัวโดปที่ดึงโปรตอนมาจากโพลารอน กระบวนการสลายตัวนี้จะเกิด เร็วขึ้น และรุนแรงขึ้น เมื่อไม่ใช้ระบบหล่อเย็นด้วยในโตรเจนเหลว ซึ่งชี้ให้เห็นว่า การสลายตัวนี้ เกิดขึ้นจากความร้อนจากลำแสงของรังสีเอ็กซ์เป็นหลัก

ACKNOWLEGEMENTS

The author would like to express her appreciation to her advisors, Assoc. Prof. Anuvat Sirivat and Prof. Johannes Schwank, for their kind supports and advice. The appreciation is extended to all faculty member, dissertation committee, and staffs at the Petroleum and Petrochemical College, Chulalongkorn University and at the Department of Chemical Engineering, University of Michigan, especially C.P.O. Poon Arjpru and Dr. Corinna Wauchope, who have been kindly providing her knowledge and all assistances in the facilities through the years she has spent for her PhD degree.

This work would not be carried out successfully without financial supports from: the Rajadapisek Fund of Chulalongkorn University Thailand; a RGJ grant from Thailand Research Fund, no. PHD/4/2541; and a BGJ award, no. BGJ/5/2543.

The author would like to give her special thanks to her family for unconditional love and supports. She is indebted to all of her teachers in her life who have been her inspiration. She is thankful to all of her friends and all of students in her research group for their sincere friendship and interesting fruitful discussion.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	v
Acknowledgements	vii
Table of Contents	viii
List of Tables	xiv
List of Figures	xxi
List of Abbreviations	xxix
List of Symbols	xxxi

CHAPTER

Ι	INTRODUCTION	1
II	EFFECT OF DOPANT ANIONS ON THE	
	PROPERTIES OF CHEMICALLY	
	SYNTHESIZED POLYPYRROLE	12
	Abstract	13
	Introduction	14
	Experimental	15
	Results and Discussion	18
	Conclusion	42
	Acknowledgements	42
	References	43

III	ELECTRICAL RESPONSE OF POLYPYRROLE	
	TO ACETONE VAPOR: EFFECT OF DOPANT	
	ANIONS AND INTERACTION MECHANISM	45
	Abstract	46
	Introduction	47
	Experimental	48
	Results and Discussion	51
	Conclusion	58
	Acknowledgements	64
	References	64
IV	SELECTIVITY IMPROVEMENT OF A	
	SENSOR BASED ON α-NAPHTHALENE	
	SULFONATE DOPED POLYPYRROLE	
	TOWARD FLAMMABLE CHEMICALS	
	IN LACQUER	66
	Abstract	67
	Introduction	68
	Experimental	70
	Results and Discussion	74
	Conclusion	90
	Acknowledgements	90
	References	90

CHAPTER

\mathbf{V}	SELECTIVITY IMPROVEMENT OF		
	POLYPYRROLE/POLY(METHYL		
	METHACRYLATE) BLEND TOWARD		
	FLAMMABLE CHEMICALS IN LACQUER	92	
	Abstract	93	
	Introduction	94	
	Experimental	95	
	Results and Discussion	97	
	Conclusion	105	
	Acknowledgements	105	
	References	106	

VI	SURFACE DEGRADATION OF α -	
	NAPHTHALENE SULFONATE DOPED	
	POLYPYRROLE DURING XPS	
	CHARACTERIZATION	107
	Abstract	108
	Introduction	109
	Experimental	110
	Results and Discussion	112
	Conclusion	127
	Acknowledgements	127
	References	127

VII	CONCLUSTIONS AND RECOMMENDATIONS	130
	7.1 Sensitivity Improvement of PPy-Based Sensor for	
	Acetone Vapor	130
	7.2 Selectivity Improvement of PPy-Based Sensor for	
	Vapors of Flammable Chemicals Vapors in Lacquer	131
	7.3 Stability Improvement of PPy-Based Sensor for	
	Vapors of Flammable Chemicals Vapors in Lacquer	132
	7.4 Surface Degradation of α -Naphthalene Sulfonate	
	Doped Polypyrrole during XPS Characterization	132
	7.5 Recommendations for Future Work	133
	APPENDICES	134
	Appendix A Polymerization mechanism and yield of PPy	142
	Appendix B Determination of the molecular structure	
	of undoped and doped PPy from an elemental analysis	
	and a thermogravimatric analysis	145
	Appendix C Determination of the functional groups in	
	PPy by a Fourier transform infrared spectroscopy	149
	Appendix D Determination of the water content and	
	degradation temperature of PPy by	
	a thermogravimatric analysis	152

Appendix EDetermination of the order aggregation inPPy by an X-Ray diffractometer155Appendix FDetermination of the morphology ofPPy and its blends by a scanning electron microscope160

CHAPTER

Appendix G	Determination of the doping level by	
a scanning ele	ectron microscope in	
an energy disp	persive mode	163
Appendix H	Determination of the charge carrier	
species by an	ultraviolet-visible spectroscopy	165
Appendix I	Determination of the surface compositions	
of PPy by an 2	X-ray photoelectron spectroscopy	170
Appendix J	Determination of the surface compositions	
of PPy blends	by an X-ray photoelectron spectroscopy	175
Appendix K	Determination of the contact angle of	
water on PPy	and its blends	177
Appendix L	Effect of contact force of probe	
on the specific	e conductivity of PPy	182
Appendix M	Determination of the geometric correction	
factor of the c	ustom-made four-point probe	184
Appendix N	Determination of chemical vapor	
concentration	for the flow system	189
Appendix O	Experimental data of conductivity	
measurement	and electrical conductivity response of	
PPy and its bl	ends	190
Appendix P	Experimental data of electrical	
conductivity n	neasurement of PPy at aging time	
more than 1 ye	ear	197
Appendix Q	Experimental data of electrical	
conductivity r	esponse measurement of PPy toward	
acetone vapor	at 16.7 vol.% in N ₂	201
Appendix R	Experimental data of electrical	
conductivity r	esponse measurement of PPy toward	
acetone vapor	at various concentration in N ₂	203

CHAPTER

Appendix S	Comparison of electrical responses	
of PPy/A5 in	Chapter IV and PPy/A in Chapter V	207
Appendix T	Effect of acetone exposures on	
charge carrier	species of PPy	208
Appendix U	Effect of chemical exposures on	
chemical struc	cture of PPy	210
Appendix V	Effect of chemical exposures on	
order aggrega	tion in PPy	212
Appendix W	Determination of the surface degradation	
of PPy/A by a	n X-ray photoelectron spectroscopy	215

CURRICULUM VITAE

221

LIST OF TABLES

TABLE

Chapter II

1	The notations for the dedoped PPy, the undoped PPy,	
	and the doped PPys with various dopants, along with	
	the moisture content and the onset temperature of degradation	
	of dopants, and the physical properties of PPys:	
	the pellet appearance, the solubility in m-cresol,	
	the moisture content, the onset temperature of degradation	
	$(T_{degrade})$ when D/M ratio was 1/12	20
2	The charge carrier species as characterized by UV-Vis, MSB,	
	and XPS techniques (with their proportions) and the doping	
	levels as characterized from EA, SEM/EDS, XPS, in terms	
	of atomic ratio and charge ratio, and the specific conductivity	
	at the age of ca. 2 months and of more than 1 year of the	
	dedoped PPy, the undoped PPy, and the doped PPys with	
	various dopants when fed D/M ratio was 1/12	30

Chapter III

1	The type of response, the sensitivity, and the maximum	
	detectable concentration of some PPys toward acetone	
	vapor in N ₂	55

Chapter IV

1	Solubility parameter, δ in [MPa] ^{1/2} of chemicals	
	(shown in parentheses) and some insulating polymers	69

TABLE

2 The processing property, the response time $(t_{response})$, the change in σ ($\Delta \sigma_{eqb}/\sigma_i \ge 100\%$), and the time required to reach an equilibrium response (t_{eqb}) toward water, acetone, acetic acid, and toluene of PPy/ α -NS⁻ and its blends 86

Appendices

C1	Peak positions in FT-IR spectra of PPy/De, PPy/U,	
	and PPy doped with various dopants (excluding data of PPy/A	
	which are shown in Table C.2).	150
C2	Peak positions in FT-IR spectra of PPy/A at various D/M ratios.	151
D1	Water content in starting materials and PPy/De, PPy/U,	
	and PPy doped with various dopants at D/M ratio of 1/12.	153
D2	On-set of degradation temperature of starting materials	
	and PPy/De, PPy/U, and PPy doped with various dopants	
	at D/M ratio of 1/12.	154
D3	Water content in PPy/A at various D/M ratios.	154
El	The deconvoluted results from X-ray diffractograms	
	of PPy/De, PPy/U, and doped PPys with various dopants.	158
E2	The deconvoluted results from X-ray diffractograms	
	of PPy/A with various D/M ratios.	159
Gl	Doping level of PPy/De, PPy/U and PPy doped with	
	various dopants D/M ratio of 1/12 as determined by SEM/EDS.	164
H1	Absorption peaks or transition energies for PPy reported	
	in literatures.	166
H2	Transition energies in soluble PPys synthesized	
	in our laboratory, along with their percentages.	168
H3	ε values of all transitions found in PPy/B in NMP solution	
	and their fit goodness, R^2 .	169
I1	Binding energy (BE) of PPy components from literaturess.	170

I2	Nitrogen compositions of PPy/De, PPy/U, and PPy doped	
	with various dopants at D/M ratio of 1/12.	171
13	Nitrogen compositions of PPy/A at various D/M ratios.	173
I4	Sulfur compositions of PPy/A at various D/M ratios.	174
J1	Parameters in XP spectra of PMMA (Wagner, 1989).	175
J2	PMMA fraction at surface of PPy/A5 blends from three	
	different mixing methods.	176
J3	PMMA fraction at surface of PPy/A blends from	
	solution mixing with various fed PMMA/PPy ratios.	176
K1	Experimental data from the contact angle measurement	
	between water and the surface of PPy/A5.	179
K2	Experimental data from the contact angle measurement	
	between water and the surface of PPy/A5/PMMA	
	as obtained from dry mixing.	179
K3	Experimental data from the contact angle measurement	
	between water and the surface of PPy/A5/PMMA	
	as obtained from solution mixing.	180
K4	Experimental data from the contact angle measurement	
	between water and the surface of PMMA-coated PPy/A5.	180
K5	Experimental data from the contact angle measurement	
	between water and the surface of PMMA sheet.	181
L1	The specific conductivity of PPy/A at D/M ratio of 1/60	
	and at APS/M of 1/1 at different loading weights on the	
	upper piece of the custom-made four-point probe, thickness	
	of pellet = 0.008 cm and K of probe = 1.65 .	183
M1	Experimental data of K determination for the custom-built	
	four-point probe #1 (linear array for gas exposure),	
	measured at 25 ± 1 °C, 50 ± 10 %RH.	186

M2	Experimental data of K determination for the custom-built	
	Four-point probe #2 (linear array for gas exposure),	
	measured at 25 ± 1 °C, 50 ± 10 %RH.	187
M3	Experimental data of K determination for the custom-built	
	four-point probe (square array for liquid exposure),	
	measured at 26 ± 1 °C, 55 ± 5 %RH.	188
N1	Antoine parameters of chemical studied in this work.	189
01	The experimental conditions and data of conductivity	
	measurement and electrical conductivity response	
	toward water liquid of PPy/A5 and its blends.	190
02	The experimental conditions and data of conductivity	
	measurement and electrical conductivity response	
	toward toluene liquid of PPy/A5 and its blends.	191
03	The experimental conditions and data of conductivity	
	measurement and electrical conductivity response	
	toward acetone liquid of PPy/A5 and its blends.	191
O4	The experimental conditions and data of conductivity	
	measurement and electrical conductivity response	
	toward glacial acetic acid liquid of PPy/A5 and its blends.	192
05	The experimental conditions and data of reproducibility	
	measurement in electrical conductivity response	
	toward saturated acetone vapor in N_2 of PPy/A/PMMA	
	from solution mixing at various PMMA:PPy weight ratios.	193
06	The experimental conditions and data of reproducibility	
	measurement in electrical conductivity response	
	toward saturated acetic acid vapor in N_2 of PPy/A/PMMA	
	from solution mixing at various PMMA:PPy weight ratios.	194

xviii

TABLE

07	The experimental conditions and data of a study of	
	the effect of humidity on electrical conductivity response	
	toward saturated acetone vapor in N_2 of PPy/A/PMMA	
	from solution mixing at PMMA:PPy weight ratios of 1:3.	196
08	The experimental conditions and data of a study of	
	effect of humidity on electrical conductivity response	
	toward saturated acetic acid vapor in N_2 of PPy/A/PMMA	
	from solution mixing at PMMA:PPy weight ratios of 1:3.	196
P1	Experimental conditions and data of electrical conductivity	
	measurement of PPy/U and PPy doped with various dopants	
	at D/M of 1/12 at aging time more than 1 year.	197
P2	Experimental conditions and data of electrical conductivity	
	measurement of PPy/A with various D/M ratios	
	at aging time more than 1 year.	199
Q1	Experimental data of electrical conductivity response study	
	of PPy toward acetone vapor at 16.7 vol.% in N_2 , 1 atm	
	and at 23-26 $^{\circ}$ C, sample thickness values are shown	
	with their standard derivations in parentheses (data of PPy/B	
	are excluded; they are shown only in Table Q3 due to the	
	different data format).	201
Q2	Experimental data of electrical conductivity response study	
	of PPy/A with various D/M ratios toward acetone vapor	
	at 16.7 vol.% in N ₂ , 1 atm and at 25 \pm 1 $^{o}\mathrm{C}$ (excluding data	
	of PPy/A with D/M ratio of 1/12 which is shown in Table Q1).	202
R1	Experimental data of electrical conductivity response study	
	of PPy/U toward acetone vapor at various concentrations	
	in N ₂ , 1 atm and at 23-25 $^{\circ}$ C, sample thickness values are	
	shown with their standard derivations in parentheses.	203

R2	Experimental data of electrical conductivity response study	
	of PPy/A toward acetone vapor at various concentrations	
	in N ₂ , 1 atm and at 23-25 $^{\circ}$ C.	204
R3	Experimental data of electrical conductivity response study	
	of PPy/B toward acetone vapor at various concentrations	
	in N ₂ , 1 atm and at 23-25 $^{\circ}$ C.	205
R4	Experimental data of electrical conductivity response study	
	of PPy/AB toward acetone vapor at various concentrations	
	in N ₂ , 1 atm and at 23-25 $^{\circ}$ C.	206
T1	Transition energies in the fresh PPy/B film and the film	
	under saturated acetone vapor.	209
Ul	FWHM, percentages of =N-, -NH-, -NH $^+$ -, and =NH $^+$ -	
	of the fresh PPy/A at D/M of $1/12$ and the ones treaded	
	with saturated chemical vapors, and the percentage of change	
	as compared with the fresh PPy/A.	211
V1	Diffraction peaks (2 θ), d-spacing (D), order aggregation extent (t),	
	and area of diffraction peaks of the fresh PPy/A at D/M of 1/12	
	and the ones treated with saturated chemical vapors,	
	and the percentage of change in area as compared with XRD patterns	;
	of the fresh PPy/A (see the line-broadening assignments	
	in Appendix E).	214
W1	Deconvoluted results from XP spectra of C 1s in PPy/A	
	at different accumulated X-ray exposure times.	215
W2	Deconvoluted results from XP spectra of N 1s in PPy/A	
	at different accumulated X-ray exposure times.	216
W3	Deconvoluted results from XP spectra of O 1s and S 2p in PPy/A	
	at different accumulated X-ray exposure times.	217
W4	Deconvoluted results from XP spectra of C 1s in PPy/A	
	at different accumulated X-ray exposure times	
	when there was no liquid nitrogen cooling kit used.	218

W5	Deconvoluted results from XP spectra of N 1s in PPy/A	
	at different accumulated X-ray exposure times	
	when there was no liquid nitrogen cooling kit used.	219
W6	Deconvoluted results from XP spectra of O 1s and S 2p	
	in PPy/A at different accumulated X-ray exposure times	
	when there was no liquid nitrogen cooling kit used.	220

LIST OF FIGURES

FIGURE

Chapter II

1	The scanning electron micrographs of: a) PPy/U powder;	
	b) PPy/U pellet; c) PPy/B powder; d) PPy/A pellet;	
	e) PPy/D powder; and f) PPy/D pellet at 20 kV	
	and 3,500 times magnification.	21
2	The X-ray diffractograms of: a) PPy/U pellet; and b) PPy/A	
	pellet, along with their deconvoluted results underneath.	24
3	The FT-IR spectra of PPys.	27
4	The X-ray photoelectron spectrum of PPy/A in the region	
	of N 1s.	29
5	The visible spectra of soluble PPy films cast from <i>m</i> -cresol	
	solution: () PPy/B, and () PPy/D.	32
6	The moisture content of: (\Box) PPy/A at various D/M ratios;	
	(Δ) α -naphthalene sulfonate (the dopant); and	
	(O) APS (the oxidant).	37
7	a) The doping levels in terms of: (Δ) N ⁺ /N and	
	(O) (S IV & S VI)/N from XPS; and	
	(\Box) S/N from EA of PPy/A as a function of	
	fed D/M ratios and D/APS ratios: and	
	b) the ratios of (∇) S IV and (\bullet) S VI toward N.	39
8	The specific conductivity of PPy/A at various D/M ratios	
	and D/APS ratios, measured at the age of:	
	(O) two months and (Δ) more than one year.	41

FIGURE

Chapter III

1	The schematic draw of the flow system: A) the three way	
	value; B) the dryer column; C) the water reservoir;	
	D) the 2-neck round bottom flask; E) the syringe for	
	acetone injection; F) the chamber consisting of the four	
	probe conductivity meter and the thermohygrometer;	
	G) the pressure gauge; H) the diaphragm pump; and I)	
	the data acquisition system.	50
2	The electrical responses of PPys to acetone vapor at the	
	concentration of 17 vol.% in N ₂ in terms of $-\Delta\sigma$,	
	at 25 ± 1 °C and at 50 ± 10 %RH,	
	plotted with the specific conductivity of the fresh PPys and	
	their nitrogen compositions: imine-like nitrogen (=N-);	
	polaron (- NH^+ -); and bipolaron (= NH^+ -) species.	52
3	The electrical responses of: (\Box) PPy/A; (Δ) PPy/B;	
	(O) PPy/U (x 10); and (\bigtriangledown) PPy/AB (x 100)	
	to acetone vapor at various concentrations in N_2	
	at 25 ± 1 °C and at 50 ± 10 %RH.	53
4	The electrical responses of PPy/A at various D/M ratios	
	to acetone vapor at the concentration of 17 vol.% in N_2	
	in terms of $-\Delta\sigma$, at 25 ± 1 °C and at 50 ± 10 %RH,	
	plotted with the specific conductivity of the fresh pellets	
	and their nitrogen compositions: imine-like nitrogen (=N-);	
	polaron (- NH^+ -); and bipolaron (= NH^+ -) species.	55
5	The morphology of PPy/B pellet: a) before and b) after	
	exposure to the saturated acetone vapor in N_2 for 24 hours	
	at the magnification of 40x: c) before and	
	d) after exposure to the saturated acetone vapor for 24 hours	
	at the magnification of 3500x.	59

xxiii

FIGURE

PAGE

6	The X-ray diffractograms of: a) fresh PPy/A pellet; and	
	b) the same PPy/A pellet after immersing in the acetone	
	liquid for 30 min, with their deconvoluted results underneath.	60
7	The TGA thermograms of: a) fresh PPy/B; and PPy/B	
	after the exposure to the saturated acetone vapor in N_2	
	for 24 hours; and their derivatives c) and d), respectively.	61
8	The FT-IR spectra of: a) fresh PPy/D; b) PPy/D	
	after the exposure to the saturated acetone vapor in N_2	
	for 24 hours; and c) acetone vapor.	62
9	The visible spectra of a) the fresh PPy/B film, and	
	b) the same film upon exposure to saturated acetone vapor.	63

Chapter IV

1	The schematic draw of the custom-built four-point probe	
	for liquid exposure: a) side view; and b) the view	
	that shows probe terminals arrangement.	73
2	The electron micrographs of: a) PPy/ α -NS ⁻ powder at 1000x;	
	b) PPy/ α -NS ⁻ pellet at 3500x; c) PPy/ α -NS ⁻ /HDPE pellet	
	from dry mixing at 1000x; d) PPy/α-NS ⁻ /PMMA film	
	from solution mixing at 1000x; and	
	e) cross sectional view of PMMA coated PPy/ α -NS ⁻ at 35x.	75
3	The C 1s XPS envelope of PPy/ α -NS ⁻ /PMMA film from	
	solution mixing with the deconvoluted results underneath.	77
4	The specific conductivity of: pristine PPy/ α -NS ⁻ pellets;	
	pellets of its blends form dry mixing; films of its blends	
	from solution mixing; and polymer-coated PPy/ α -NS ⁻ ,	
	measured at 26 \pm 1 °C and at 65 \pm 5 % RH.	79

FIGURE

- a) The water volume, and b) the contact angle between water and five different samples: PMMA sheet, pure PPy/α-NS⁻ pellet, PPy/α-NS⁻/PMMA pellet obtained from dry mixing, PPy/α-NS⁻/PMMA film obtained from solution mixing, and PMMA-coated PPy/α-NS⁻, as a function of the contact time.
- 6 The electrical conductivity responses toward deionized water of: a) PPy/α-NS⁻; and b) PPy/α-NS⁻/PMMA from solution blending, measured at 25 °C and at 59 % RH. The y-axes are between 60% and +160% of the initial specific conductivity values.
- The electrical conductivity responses of PMMA-coated PPy/α-NS⁻ toward: a) acetone; and b) toluene, measured at 26 °C, 70 % RH and at 25 °C, 69 % RH, respectively. The y-axes are between 60% and +160% of the initial specific conductivity values.

Chapter V

 (Δ) The fraction of PPy at the surfaces of the PPy/α-NS⁻ pellets and the PPy/α-NS⁻/PMMA films with various weight ratios of PMMA; and (O) their specific conductivity values, measured in N₂ at 25 ± 1°C and at 50 ± 5 %RH.
 The percentages of changes in specific conductivity values of the PPy/α-NS⁻ pellets and the PPy/α-NS⁻/PMMA films with various weight ratios of PMMA during the exposures to:
 (Δ) saturated acetone vapor, and (O) saturated acetic acid vapor in N₂: b) their acetone/acetic acid response ratios, measured at 25 ± 1°C and at 50 ± 5 %RH.

81

84

83

FIGURE

3 The ratios of recovered specific conductivity values (σ_n) to the fresh values (σ_{1st} , n = 0) of the PPy/ α -NS⁻ pellets and the PPy/ α -NS⁻/PMMA films with various weight ratios of PMMA after the exposure to: a) saturated acetone vapor, and b) saturated acetic acid vapor in N₂, for 3 - 4 times, measured at $25 \pm 1^{\circ}$ C and at 50 ± 5 %RH. 101 4 a) The percentages of changes in specific conductivity values of the PPy/ α -NS⁻/PMMA films with PMMA/PPy weight ratio of 3.0 during the exposures to: (\triangle)saturated acetone vapor; and (O) saturated acetic acid vapor: b) the time needed to reach the equilibrium conductivity changes when exposed to: (\triangle) saturated acetone vapor; and (O) saturated acetic acid vapor, as a function of relative humidity, measured at 25 ± 1 °C. 104

Chapter VI

1	The XPS core level spectra of α -naphthalene sulfonic acid,	
	sodium salt in the regions of: a) C 1s, c) O 1s, and e) S 2p,	
	comparing with the spectra of PPy/ α -NS ⁻ in the regions of:	
	b) C 1s, d) O 1s, and f) S 2p, with their deconvolution	
	results underneath.	113
2	The N 1s XPS spectra of PPy/ α -NS ⁻ with its	
	deconvolution results underneath.	116
3	The calculated results of elemental compositions of the	
	PPy/α -NS ⁻ in the envelopes of: a) C 1s; b) O 1s; c) N 1s;	
	and d) S 2p, expressed in terms of atomic ratios referenced	
	to N, as functions of accumulated X-ray exposure time	
	in the XPS experiment.	119

xxvi

FIGURE

4	The comparison of the calculation results for:	
	a) the ratio of \underline{C} -O/ \underline{O} -C and the ratio of \underline{C} =O/ \underline{O} =C and	
	b) all charge carrier species and all sulfur containing dopants.	122
5	a) The FWHM of the deconvoluted Gaussian peaks in	
	S 2p XPS spectra at various accumulated X-ray exposure	
	times; and S 2p XPS spectra (moving average of 9 data	
	points) with their deconvolution results underneath at:	
	b) 150 min; c) 2100 min where the deconvoluted results	
	became broader; and d) 2550 min, where the new S	
	containing species could be dissolved.	124
6	Possible deprotonation of PPy and desulfonations of	
	α -naphthalene sulfonate dopant under the prolonged	
	exposure to the X-ray flux in XPS.	125
7	The calculated results of elemental compositions of the	
	PPy/ α -NS ⁻ in the envelopes of S 2p, expressed in terms	
	of atomic ratios referenced to N, as functions of accumulated	
	X-ray exposure times in the XPS experiment when there	
	was no liquid nitrogen cooling outfit used.	126
	Appendices	
A1	Oxidative coupling polymerization of Py to PPy	
	(Zotti, 1997).	142
A2	Effect of oxidant (APS):Py ratio on percent yield	
	(normalized with the weight of loaded Py monomer).	144
A3	Effect of APS:Py ratio on conductivity and aging time.	144
C1	FT-IR spectrum of PPy/A at D/M of 1/12 with peak	
	positions.	149
Dl	Thermogram of PPy/B at D/M of 1/12 with its derivative.	152
E1	Bond lengths and bond angles in pyrrole ring	
	(Geiss <i>et al.</i> , 1983).	156

FIGURE

E2	The X-ray diffraction pattern of PPy/A ($D/M = 1/12$) and its		
	deconvoluted results attributed to its order aggregations.	156	
E2	The X-ray diffraction patterns with deconvoluted results		
	underneath of: a) PPy/De; b) PPy/U; c) PPy/B; d) PPy/C;		
	e) PPy/D; f) PPy/E; g) PPy/P; and h) PPy/AB.	157	
F1	The scanning electron micrographs of: a) PPy/U; b) PPy/A;		
	c) PPy/B; d) PPy/C; e) PPy/D; f) PPy/E; g) PPy/P;		
	and PPy/AB with D/M ratio of 1/12, taken		
	at 20 kV and 3,500 times magnification.	161	
F2	The scanning electron micrographs of: a) PPy/A5/PEO film;		
	b) PPy/A5/PS film; c) PPy/A5/ABS film; d) PPy/A5/PMMA		
	film from solution mixing; e) PMMA-coated PPy/A5		
	(upper side); and d) PMMA-coated PPy/A5 (lower side);		
	taken at 25 kV and 1,5000 times magnification.	162	
Gl	EDS spectrum of PPy/P at D/M of 1/12.	163	
H1	Electronic structure of the bandgap of p-type doped PPy		
	in its neutral, polaron and bipolaron states:		
	CB = conducting band; VB = valence band.	165	
H2	a) The visible spectrum of PPy/B in NMP solution; and		
	b) its converted data with deconvoluted results.	167	
H3	Calibration curves from PPy/B samples in NMP solution.	169	
L1	Geometry of the custom-made four-point probe.	182	
S1	Comparison of electrical responses of: (O) PPy/A5 in		
	Chapter IV and (\Box) PPy/A in Chapter V upon exposures		
	to chemical liquids.	207	
T1	The visible spectra of a) the fresh PPy/B film, and		
	b) the same film upon exposure to saturated acetone vapor.	208	

xxviii

FIGURE

PAGE

U1 XPS spectra with deconvoluted results of the pellets of:
a) fresh PPy/A; b) PPy/A after exposure to saturated
water vapor; c) PPy/A after exposure to saturated toluene
vapor; d) PPy/A after exposure to saturated acetone vapor;
and e) PPy/A after exposure to saturated acetic acid vapor.
210
V1 XRD patterns with deconvoluted results of: a) the fresh
PPy/A pellet; b) the same pellet after exposure to saturated
water vapor; c) the fresh PPy/A pellet; d) the same pellet
after exposure to saturated acetone vapor; e) the fresh
PPy/A pellet; and f) the same pellet after exposure to
saturated acetic acid vapor.

ABS	Poly(acrylonitrile-co-butadiene-co-styrene)
APS	Ammonium persulfate
APS/M	Oxidant (ammonium persulfate) to pyrrole monomer
	molar ratio
BE	Binding energy
D/M	Dopant to pyrrole monomer molar ratio
Deg.	Degree
EA	Elemental analyzer
EDS/SEM	Scanning electron microscope in the energy dispersive
	mode
EV	Electron volt
FT-IR	Fourier transform infrared spectrometer
FWHM	Full width at half-maximum
HDPE	High density polyethylene
K	Correction factor
MSB	Magnetic susceptibility balance
PEO	Poly(ethylene oxide)
PMA	Poly(methacrylic acid)
PMMA	Poly(methylmethacrylate)
PPy	Polypyrrole
PPy/A	Polypyrrole doped with α -naphthalene sulfonate
PPy/A5	PPy/A with D/M ratio of 1/5
PPy/AB	Polypyrrole doped with p-aminobenzoate
PPy/B	Polypyrrole doped with β -naphthalene sulfonate
PPy/C	Polypyrrole doped with camphor sulfonate
PPy/D	Polypyrrole doped with dodecylbenzene sulfonate
PPy/De	Dedoped polypyrrole
PPy/E	Polypyrrole doped with ethane sulfonate
PPy/P	Polypyrrole doped with perchlorate
PPy/U	Undoped polypyrrole

PPy/a-NS	Polypyrrole doped with α -naphthalene sulfonate
PPy/β-NS ⁻	Polypyrrole doped with β -naphthalene sulfonate
PS	Polystyrene
RH	Relative humidity
SD	Standard deviation
SEM	Scanning electron microscope
TGA	Thermogravimetric analyzer
UV-Vis	Ultraviolet-visible spectrometer
XPS	X-ray photoelectron spectrometer
XRD	X-ray diffractometer

LIST OF SYMBOLS

σ	Specific conductivity (S/cm)
ρ	Specific resistivity (Ω cm)
X covr.M	Corrected molar magnetic susceptibility (cgs mole ⁻¹)
λ	Wavelength (nm)
θ	Contact angle (degree)