STRUCTURE AND PROPERTIES OF PA 6/LDPE/IONOMER TERNARY BLENDS AND PA 6/IONOMER BINARY BLENDS

Ms. Panita Leewajanakul

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2002 ISBN 974-03-1606-9

111011 - 1

Thesis Title	•	Structure and Properties of PA 6/LDPE/Ionomer
		Ternary Blends and PA 6/Ionomer Binary Blends
By	e e	Panita Leewajanakul
Program	:	Polymer Science
Thesis Advisors	•	Dr. Manit Nithitanakul
		Mr. John W. Ellis
		Assoc. Prof. Brian P. Grady

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

K. Bunyahint- College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

and Nithitanakul) (Dr Mr. John W. Ellis) (Assoc. Prof. Brian P. Grady) Rathanana Agan (Asst. Prof. Rathanawan Magaraphan)

/ Cyghou

(Dr. Pitt Supaphol)

ABSTRACT

4372015063 : POLYMER SCIENCE PROGRAM

Panita Leewajanakul: Structure and Properties of PA 6/LDPE/ Ionomer Ternary Blends and PA 6/Ionomer Binary Blends. Thesis Advisors: Dr. Manit Nithitanakul, Mr. John W. Ellis, and Assoc. Prof. Brian P. Grady, 76 pp. ISBN 974-03-1606-9

Keywords : Ionomer/ Surlyn[®]/ Polyamide 6/ Compatibilizer/ Immiscible/ Polymer Blend

Ternary blends of PA 6/LDPE/Surlyn[®] 9020 ionomer were prepared by melt mixing in a twin-screw extruder. Dynamic mechanical properties and thermal behavior of these blends were studied. The addition of Surlyn[®] 9020 ionomer as a compatibilizer improved the mechanical properties of the blends. The clearest evidence of this improvement was seen in the dynamic mechanical properties. The drop-off modulus (corresponding to the solid-liquid transition) occurred at higher temperatures when compatibililizer was added.

Binary blends of PA 6/Surlyn[®] 9650 ionomer over a range of compositions were analyzed for morphology, thermal behavior, X-ray diffraction, rheological behavior, dynamic mechanical properties, impact properties, and interactions of the blends. Evidence from a series of glass transition temperatures, together with a positive deviation from the additivity rule for the complex viscosity/composition relationship, clearly indicated that PA 6/ionomer blends had limited miscibility. However, chemical reactions occurred between the two components, thus enhancing the miscibility of the blends. DSC and X-ray diffraction results showed complete absence of any co-crystallization or interactions between the crystalline phases of the blend components. Fracture surfaces of PA 6/ionomer blends showed indistinct dispersed phase morphologies. A significant improvement in impact strength was observed for PA 6/ionomer blends compared with pure PA 6.

บทคัดย่อ

พนิตา ลีวัจนกุล: การศึกษาโครงสร้างและคุณสมบัติของพอลิเมอร์ผสม 3 ชนิคระหว่าง พอลิเอไมค์ พอลิเอทิลีนชนิคความหนาแน่นต่ำและไอโอโนเมอร์ และพอลิเมอร์ผสม 2 ชนิค ระหว่างพอลิเอไมค์และไอโอโนเมอร์ (Structure and Properties of PA 6/LDPE/Ionomer Ternary Blends and PA 6/Ionomer Binary Blends) อ.ที่ปรึกษา: คร. มานิตย์ นิธิธนากุล นาย จอห์น ดับเบิลยู เอลลิส และรศ. คร.ไบรอัน พี เกรดี้ 76 หน้า ISBN 974-03-1606-9

พอลิเมอร์ผสม 3 ชนิคระหว่างพอลิเอไมด์ พอลิเอทิลีนชนิคความหนาแน่นต่ำและเซอร์ ลีนไอโอโนเมอร์ 9020 สามารถเตรียมได้โดยการผสมให้เข้ากันแบบหลอมเหลวในเครื่องอัครีค ชนิดเกลียวคู่ ทุกๆ องค์ประกอบ ซึ่งในงานวิจัยนี้ได้ศึกษาสมบัติเชิงกล สมบัติเชิงกลพลวัตและ สมบัติทางอุณหภูมิของพอลิเมอร์ผสม โดยในการศึกษาพบว่าการใช้เซอร์ลีนไอโอโนเมอร์ 9020 เป็นตัวเชื่อมประสานในพอลิเมอร์ผสมนั้นสามารถปรับปรุงสมบัติเชิงกลของพอลิเมอร์ผสมได้ โดยจะเห็นได้ชัดเจนจากการศึกษาสมบัติเชิงกลพลวัตซึ่งการลคลงของมอดุลัส ณ ตำแหน่งที่ชี้บ่ง ถึงจุดการเปลี่ยนแปลงสถานะจากของแข็งไปเป็นของเหลวนั้นเกิดที่อุณหภูมิสูงขึ้น เมื่อมีการเติม ตัวเชื่อมประสานในพอลิเมอร์ผสม

นอกจากนี้ในงานวิจัยยังได้ศึกษาลักษณะโครงสร้าง สมบัติทางอุณหภูมิ สมบัติการ กระเจิงแทรกสอดของลำแสงเอ็กซ์-เรย์ สมบัติการไหล สมบัติเจิงกลพลวัต สมบัติการด้านแรง กระแทกและการมีปฏิกิริยาต่อกันของพอลิเมอร์ผสม 2 ชนิดระหว่างพอลิเอไมด์และเซอร์ลีนไอโอ โนเมอร์ 9650 ในทุกๆ องค์ประกอบ จากผลการทคลองพบว่าพอลิเมอร์ผสม 2 ชนิดระหว่างพอลิ เอไมด์และเซอร์ลีนไอโอโนเมอร์ 9650 แสดงอุณหภูมิกลาสทรานซิชันเป็นชุดและการเบี่ยงเบน ในด้านบวกจากกฎของการผสมในความสัมพันธ์ระหว่างความหนืดและองค์ประกอบ ซึ่งจากผล การทดลองทั้งสองชนิดนี้ซึ่บ่งว่าพอลิเมอร์ผสม 2 ชนิดระหว่างพอลิเอไมด์และเซอร์ลีนไอโอโน เมอร์ 9650 ไม่สามารถรวมเป็นเนื้อเดียวกัน แต่อย่างไรก็ตามปฏิกิริยาเคมีที่เกิดขึ้นระหว่างพอลิเอ ไมด์และเซอร์ลีนไอโอโนเมอร์นั้นช่วยให้องค์ประกอบทั้งสองชนิดเข้ากันได้ดี จากการศึกษา สมบัติทางอุณหภูมิและการแทรกสอดของลำแสงเอ็กซ์-เรย์ พบว่าไม่เกิดการตกผลึกรวมกันหรือมี ปฏิกิริยาต่อกันระหว่างส่วนสัณฐานขององก์ประกอบทั้งสองชนิด การศึกษาลักษณะโครงสร้างพื้น ผิวที่แตกหักของพอลิเมอร์ผสมนั้น พบว่าโครงสร้างของพอลิเมอร์ผสมไม่สามารถแยกองค์ ประกอบแต่ละชนิดได้ นอกจากนี้จะพบว่าในพอลิเมอร์ผสมยังให้สมบัติการด้านแรงกระแทกที่ดี

ACKNOWLEGEMENTS

The author would like to thank the Petroleum and Petrochemical College, Chulalongkorn University where the author gained her knowledge in Polymer Science. The author would also like to acknowledge DuPont (USA) Co., Ltd., TPE Co., Ltd., and UBE Nylon (Thailand) Co., Ltd. for providing the raw materials used throughout this work.

The author would like to express her grateful appreciation to her advisors, Dr. Manit Nithitanakul, Mr. John W. Ellis and Assoc. Prof. Brian P. Grady for their invaluable suggestions, criticisms and encouragement. The author would like to give special thanks to Assoc. Prof. Anuvat Sirivat and Dr. Pitt Supaphol for providing useful technical knowledge and helpful suggestions. The author would like to thank the Ph. D. student Mr. Wanchai Lerdwijitjarud and all Ph.D. students for giving useful suggestions. The author would like to thank PPC staff for providing technical help.

The author is also indebted to her family for giving their love, understanding, and encouragement during her studies and thesis work.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	ix
List of Figures	xi

CHAPTER

Ι	INTRODUCTION	1
II	LITERATURE SURVEY	4
	2.1 Ternary Blends of PA/PE/Compatibilizers	4
	2.2 Binary Blends of PA with Multifunctional Polymers	8
	2.3 Binary Blends of Ionomer with the Other Polymers	11
	2.4 Studies for More Understanding of Ionomer	12
III	EXPERIMENTAL	14
	3.1 PA 6/LDPE/Ionomer Ternary Blends	14
	3.1.1 Materials	14
	3.1.2 Blends Preparation	14
	3.1.3 Specimen Preparation	15
	3.1.4 Differential Scanning Calorimetry	15
	3.1.5 Dynamic Mechanical Analysis	16
	3.1.6 Mechanical Properties Measurements	16

IV

3.2 PA 6/Ionomer Binary Blends	17
3.2.1 Materials	17
3.2.2 Blend Preparation	17
3.2.3 Specimen Preparation	17
3.2.4 Fourier Transform Infrared Spectroscopy	18
3.2.5 Morphological Studies	18
3.2.6 Dynamic Mechanical Analysis	18
3.2.7 Rheological Studies	18
3.2.8 Differential Scanning Calorimetry	19
3.2.9 X-ray Diffraction	19
3.2.10 Mechanical Properties Measurements	20
3.2.10.1 Tensile properties measurements	20
3.2.10.2 Izod impact strength measurements	20
3.2.10.3 Hardness measurements	20
3.2.11 Gloss	20
RESULTS AND DISCUSSION	21
4.1 PA 6/LDPE/Ionomer Ternary Blends	21
4.1.1 Differential Scanning Calorimetry	21
4.1.2 Dynamic Mechanical Analysis	24
4.1.3 Mechanical Properties	29
4.1.3.1 Tensile strength	29
4.1.3.2 Elongation at break	30
4.2 PA 6/Ionomer Binary Blends	32
4.2.1 Characterization of Blends	32
4.2.1.1 Specific interaction	32
4.2.1.2 Morphological studies	35
4.2.2 Dynamic Mechanical Analysis	37
4.2.3 Rheological Studies	39
4.2.3.1 Complex viscosity	39

CHAPTER

PAGE

4.2.3.2 Viscoelastic Behavior	41
4.2.4 Differential Scanning Calorimetry	43
4.2.5 X-ray Diffraction	46
4.2.6 Mechanical Properties	47
4.2.6.1 Tensile properties	47
4.2.6.2 Izod impact properties	48
4.2.6.3 Hardness	49
4.2.7 Surface Gloss	50

V CONCLUSIONS

REFERENCES

53

52

APPENDICES	56
Part I. PA 6/LDPE/Ionomer Ternary Blends	56
Appendix A Differential scanning calorimetry	56
Appendix B Mechanical properties	58
Part II. PA 6/Ionomer Binary Blends	59
Appendix C Fourier transform infrared spectrosc	ору 59
Appendix D Dynamic mechanical analysis	61
Appendix E Rheological studies	62
Appendix F Differential scanning calorimetry	69
Appendix G X-ray diffraction	70
Appendix H Tensile properties, izod impact	71
strength, hardness and gloss	

CURRICULUM VITAE

76

LIST OF TABLES

TABLE		PAGE
3.1	Blend ratios of PA 6/LDPE/Surlyn [®] 9020 ionomer	14
3.2	Operating temperature of each zone of twin-screw extruder barrel	
	for PA 6/LDPE/ionomer ternary blends	15
3.3	Operating temperature of each zone of twin screw extruder barrel	
	for PA 6/ionomer binary blends	17
4.1	Crystalline properties of LDPE in PA 6/LDPE/ionomer ternary	
	blends as determined by DSC	22
4.2	Crystalline properties of PA 6 in PA 6/LDPE/ionomer ternary	
	blends as determined by DSC	23
4.3	Temperature at E' drop-off corresponding to the melting	
	transition of the blends	25
4.4	Mechanical properties of pure PA 6, LDPE and ionomer	29
4.5	Relaxation peak temperatures for PA 6/ionomer blends	38
4.6	Crystalline properties of PA 6 and ionomer in PA 6/ionomer	
	binary blends as determined by DSC	45
4.7	Ultimate tensile properties of PA 6/ionomer binary blends	48
A1	Delta H (Δ H) of LDPE in PA 6/LDPE/ionomer ternary blends	
	as determined by DSC	56
A2	Delta H (Δ H) of PA 6 in PA 6/LDPE/ionomer ternary blends	
	as determined by DSC	57
B1	Tensile strength of PA 6/LDPE/ionomer ternary blends	58
B2	Elongation at break of PA 6/LDPE/ionomer ternary blends	58
C1	Peaks present in FTIR spectra of PA 6/ionomer blends	59
E1	Rheological properties of pure PA 6	62
E2	Rheological properties of 80/20 PA 6/ionomer blend	63
E3	Rheological properties of 60/40 PA 6/ionomer blend	64

TABLE

PAGE

E4	Rheological properties of 50/50 PA 6/ionomer blend	65
E5	Rheological properties of 40/60 PA 6/ionomer blend	66
E6	Rheological properties of 20/80 PA 6/ionomer blend	67
E7	Rheological properties of pure Surlyn [®] ionomer	68
F	Delta H (Δ H) of PA 6 and ionomer in PA 6/ionomer	
	blends as determined by DSC	69
G	WAXS data of PA 6/ionomer binary blends	70
H1	Tensile strength of pure PA 6, pure ionomer and	
	PA 6/ionomer blends	71
H2	Elongation at break of pure PA 6, pure ionomer and	
	PA 6/ionomer blends	71
H3	Tensile modulus of pure PA 6, pure ionomer and	
	PA 6/ionomer blends	72
H4	Impact strength of pure PA 6 and PA 6/ionomer blends	72
H5	Hardness of pure PA 6, pure ionomer and PA 6/ionomer blends	73
H6	Gloss measured at 60 ° reflectance angle of pure PA 6,	
	pure ionomer and PA 6/ionomer blends	74
H7	Gloss measured at 85 ° reflectance angle of pure PA 6,	
	pure ionomer and PA 6/ionomer blends	75

LIST OF FIGURES

FIGURE		PAGE
1.1	Characteristics of jonomer in molten and solid states	2
1.2	Structure of zinc-neutralized ethylene-methacrylic	
1.2	acid (F-MAA) ionomer	3
21	Speculative model of the interactions between the jonomer	Ū.
2.1	and (a) the matrix and (b) dispersed phase polymer, during	
	one and two step mixing. The stars represent the jonomer	
	and the arrows represent figuratively the interactions across	
	the DE/DA interface	5
4 1	DMA exacting of complex with DA 6/LDDE ratio 20/20	5
4.1	DMA spectra of samples with PA 0/LDPE failo 80/20	24
4.0	at selected compatibilizer levels	24
4.2	DMA spectra of pure PA 6 (dotted line) and a representative	
	PA 6/LDPE/ionomer blend sample (80/20/5, solid line)	
	which shows higher storage modulus (E') in the melting	
	transition region. The inset is shown to illustrate this	
	phenomenon more clearly	26
4.3	DMA spectra of samples with PA 6/LDPE ratio 60/40 at	
	selected compatibilizer levels	27
4.4	DMA spectra of samples with PA 6/LDPE ratio 40/60 at	
	selected compatibilizer levels	28
4.5	DMA spectra of samples with PA 6/LDPE ratio 20/80 at	
	selected compatibilizer levels	28
4.6	Tensile strength of PA 6/LDPE blends as a function of	
	ionomer content	30
4.7	Elongation at break of PA 6/LDPE blends as a function	
	of ionomer content	31
4.8	Proposed chemical reaction between terminal amine group	
	of PA and carboxylic group of ionomer	32

FIGURE

4.9	FTIR spectra of PA 6/Surlyn [®] ionomer blends: (a) 100/0,	
	(b) 80/20, (c) 60/40, (d) 50/50, (e) 40/60, (f) 20/80, (g) 0/100	33
4.10	Molau test solutions consisting of 80 % formic acid added	
	to each of the following blends: (a) 80/20 PA 6/ionomer	
	(b) 80/20 PA 6/LDPE	34
4.11	Scanning electron micrographs of fractured surfaces of	
	PA 6/ionomer blends: a) 80/20, b) 60/40, c) 50/50, d) 40/60,	
	e) 20/80	35
4.12	Scanning electron micrographs of fractured/etched surfaces	
	of PA 6/ionomer blends: a) 80/20, b) 60/40, c) 50/50, d) 40/60,	
	e) 20/80	36
4.13	Temperature dependence of loss modulus E" of pure PA 6,	
	pure ionomer and PA 6/ionomer blends	37
4.14	Complex viscosity, η^* , as a function of frequency for pure PA 6,	
	pure ionomer and PA 6/ionomer blends	39
4.15	Complex viscosity, η^* , as a function of blend composition for	
	PA 6/ ionomer blends at various frequencies	40
4.16	Storage moduli, G', as a function of frequency for pure PA 6,	
	pure ionomer and PA 6/ionomer blends	41
4.17	Loss moduli, G", as a function of frequency for pure PA 6,	
	pure ionomer and PA 6/ionomer blends	42
4.18	DSC melting thermograms of PA 6/ionomer blends: (a) 100/0,	
	(b) 80/20, (c) 60/40, (d) 50/50, (e) 40/60, (f) 20/80, (g) 0/100	43
4.19	Percentage weight fraction crystallinity of PA 6 and ionomer	
	in PA 6/ionomer blends as a function of ionomer content,	
	calculated from DSC melting peak areas	44
4.20	DSC crystallization thermograms of PA 6/ionomer blends:	
	(a) 100/0, (b) 80/20, (c) 60/40, (d) 50/50, (e) 40/60, (f) 20/80,	
	(g) 0/100	45

FIGURE

4.21	WAXS patterns of PA 6/ionomer blends: (a) 100/0, (b) 80/20,	
	(c) 60/40, (d) 50/50, (e) 40/60, (f) 20/80, (g) 0/100	46
4.22	Izod impact properties of pure PA 6 and PA 6/ionomer blends	49
4.23	Shore D hardness of pure PA 6, pure ionomer and	
	PA 6/ionomer blends as a function of ionomer content	50
4.24	Surface gloss measured at 60 $^{\circ}$ and 80 $^{\circ}$ reflectance angles for	
	pure PA 6, pure ionomer and PA 6/ionomer blends as	
	a function of ionomer content	51
D	Temperature dependence of storage modulus E' of pure PA 6,	
	pure ionomer and PA 6/ionomer blends	61