INHIBITION OF BARIUM SULFATE SCALE PRECIPITATION USING SCALE INHIBITORS

Mr. Thammanoon Sreethawong

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2002 ISBN 974-03-1570-4

Thesis Title	•	Inhibition of Barium Sulfate Scale Precipitation Using
		Scale Inhibitors
By	:	Mr. Thammanoon Sreethawong
Program	:	Petrochemical Technology
Thesis Advisors	:	Assoc. Prof. Sumaeth Chavadej
		Dr. Pomthong Malakul
		Prof. H. Scott Fogler

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

K. Bunyahint. College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

Simith Clivedej

(Assoc. Prof. Sumaeth Chavadej)

······

(Dr. Pomthong Malakul)

H. Sent Logt

(Prof. H. Scott Fogler)

(Prof. Somchai Osuwan)

Pramoch R.

(Asst. Prof. Pramoch Rangsunvigit)

ABSTRACT

4371025063 : PETROCHEMICAL TECHNOLOGY PROGRAM Thammanoon Sreethawong: Inhibition of Barium Sulfate Scale Precipitation Using Scale Inhibitors. Thesis Advisors: Assoc. Prof. Sumaeth Chavadej, Dr. Pomthong Malakul, and Prof. H. Scott Fogler, 86 pp. ISBN 974-03-1570-4 Keywords : Barium Sulfate/ Scale/ Precipitation/ Scale Inhibitor/ ATMP/ DTPMP/ PPCA/ Supersaturation Ratio/ Critical Supersaturation Ratio

Barium sulfate (BaSO₄) scale deposition is a serious problem encountered during the secondary oil recovery process. Many scale inhibitors are currently used to prevent the scale formation. Therefore, this research focused on studying the effect of testing time, scale inhibitor concentration, initial solution pH, and type of scale inhibitors on the formation of BaSO₄ precipitates. The scale inhibitors used in this work were Aminotri(methylene phosphonic acid) (ATMP), Diethylenetriamine--penta(methylene phosphonic acid) (DTPMP), and Phosphinopolycarboxylic acid polymer (PPCA). The concept of a critical supersaturation ratio was developed to characterize the effectiveness of the scale inhibitors on the BaSO₄ scale inhibition. The critical supersaturation ratio at which the BaSO₄ precipitation occurs was obtained at different testing times and used as an index to evaluate the effect of various precipitating conditions on BaSO₄ scale inhibition. The results indicated that the critical supersaturation ratios decreased with increasing testing time until reaching a constant value, but increased with increasing scale inhibitor concentration and initial solution pH. Higher scale inhibitor concentration and initial solution pH resulted in smaller and more spherical BaSO₄ particles. The results also revealed that a longer testing time, a higher scale inhibitor concentration, a higher initial solution pH, and a greater number of ionizable protons gave a broader particle size distribution and a smaller mean diameter of the BaSO₄ precipitate. PPCA was found to be more effective for BaSO₄ inhibition than DTPMP or ATMP.

บทคัดย่อ

ธรรมนูญ ศรีทะวงศ์ : การยับยั้งการเกิดตะกรันแบเรียมซัลเฟตโดยการใช้สารยับยั้งการ เกิดตะกรัน (Inhibition of Barium Sulfate Scale Precipitation Using Scale Inhibitors) อ. ที่ปรึกษา : รศ. สุเมธ ชวเดช, คร. ปมทอง มาลากุล ณ อยุธยา, และ ศ. เอช สก็อตต์ ฟ็อกเลอร์ (Prof. H. Scott Fogler) 86 หน้า ISBN 974-03-1570-4

การพอกเกาะของตะกรันแบเรียมซัลเฟตเป็นปัญหาสำคัญที่ต้องเผชิญในระหว่าง กระบวนการผลิตน้ำมันขั้นทุติยภูมิ ในปัจจุบันสารยับยังตะกรันหลายชนิดได้ถูกนำมาใช้ในการ ป้องกันการเกิดตะกรัน ดังนั้นงานวิจัยนี้ได้มุ่งเน้นศึกษาถึงอิทธิพลของเวลาที่ใช้ในการทดสอบ, ้ความเข้มข้นของสารยับยั้งตะกรัน, ค่าความเป็นกรคค่างเริ่มต้นของสารละลาย, และชนิดของสาร ยับยั้งตะกรัน ที่มีต่อการเกิดตะกรันแบเรียมซัลเฟต สารยับยั้งตะกรันที่ใช้ในการศึกษานี้ได้แก่ Aminotri(methylene phosphonic acid) (ATMP), Diethylenetriaminepenta(methylene phosphonic acid) (DTPMP), และ Phosphinopolycarboxylic acid polymer (PPCA) แนว ้ความคิดเกี่ยวกับอัตราส่วนเหนือความอิ่มตัววิกฤตได้ถูกพัฒนาขึ้น เพื่อนำมาใช้ในการจำแนกประ สิทธิผลในการยับยั้งการเกิดตะกรันแบเรียมซัลเฟตของสารยับยั้งตะกรันต่างๆ อัตราส่วนเหนือ ความอิ่มตัววิกฤต ณ จุดที่เกิดการตกตะกอนของแบเรียมซัลเฟตในช่วงเวลาที่ใช้ในการทดสอบ ได้ถูกนำมาศึกษา และใช้เป็นครรชนีในการประเมินผลกระทบของสภาวะของการตก ต่างๆ ้ตะกอนที่มีค่อการยับยั้งการเกิดตะกอนแบเรียมซัลเฟต จากผลการศึกษาพบว่า เมื่อเพิ่มเวลาที่ใช้ใน การทคสอบ อัตราส่วนเหนือความอิ่มตัววิกฤตมีค่าลคลงจนกระทั่งมีค่าคงที่ค่าหนึ่งในที่สุด แต่จะมี ้ ค่าเพิ่มขึ้น เมื่อเพิ่มความเข้มข้นของสารยับยั้งตะกรัน และค่าความเป็นกรดค่างเริ่มต้นของสาร ้ละลาย การเพิ่มความเข้มข้นของสารยับยั้งตะกรัน และค่าความเป็นกรคค่างเริ่มต้นของสารละลาย ้ส่งผลให้ตะกอนแบเรียมซัลเฟตที่เกิดขึ้นมีขนาดเล็กลง และมีความเป็นทรงกลมมากขึ้น นอกจากนี้ ้ยังพบว่า การเพิ่มเวลาที่ใช้ในการทดสอบ, ความเข้มข้นของสารยับยั้งตะกรัน, ก่าความเป็นกรดค่าง เริ่มต้นของสารละลาย, และจำนวนโปรตอนที่สามารถแตกตัวเป็นไอออนได้ ส่งผลทำให้อนุภาค ของแบเรียมซัลเฟตที่เกิดขึ้น มีการกระจายตัวของขนาดอนุภาคกว้างขึ้น และเส้นผ่านศูนย์กลาง เฉลี่ยของอนุภาคลคลง การสังเกตนี้พบว่า PPCA มีประสิทธิภาพในการยับยั้งการเกิดตะกรัน แบเรียมซัลเฟตสูงกว่า DTPMP หรือ ATMP

ACKNOWLEDGEMENTS

This thesis could not have been completed without all invaluable helps of the following individuals and organizations.

First of all I would like to express my sincere gratitude to Professor H. Scott Fogler, my US advisor, Associate Professor Sumaeth Chavadej and Dr. Pomthong Malakul, my Thai advisors, for their invaluable guidance, understanding, and constant encouragement throughout the course of this research and the great opportunity to perform the research at the University of Michigan, Ann Arbor, USA. Their positive attitude significantly contributed to inspiring and maintaining my enthusiasm in the field.

I would like to express my special thanks to Professor Somchai Osuwan and Assistant Professor Pramoch Rangsunvigit for serving on my thesis committees. Their sincere suggestions are definitely imperative for accomplishing my thesis.

My gratitude is absolutely extended to all of the US Professors and all staffs of the Petroleum and Petrochemical College, Chulalongkorn University, for all necessary knowledge and their kind assistance and cooperation. I am always very proud to be their student.

My gratefulness is conveyed to all members of the Porous Media Group and Thai Ph.D. students at the University of Michigan, especially Veerapat Tantayakom (Five), Piyarat Wattana (Ann), and Duc Anh Nguyen (Duc) for generously providing me great welcome and warm-heartedness during nine months of my stay there.

My thankfulness is also offered to Monsanto Chemical Company and Bio-Lab, Inc. for their supports on the essential chemicals used in the research.

Furthermore, I would like to take this important opportunity to thank all of my graduate friends for their unforgettable friendship and hospitality.

Finally, my deepest appreciation and whole-hearted gratitude are everlastingly dedicated to my beloved family whose endless love, support, motivation, and understanding play the greatest role in my success.

TABLE OF CONTENTS

Title Page	i
Acceptance Page	ii
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	x
List of Figures	xiii

CHAPTER

Ι	INTRODUCTION	1
II	LITERATURE SURVEY	3
	2.1 Formation Waters	3
	2.1.1 Cations	3
	2.1.2 Anions	4
	2.2 Scales	4
	2.3 Scale Treatments	7
	2.3.1 Mechanical Treatments	7
	2.3.2 Chemical Treatments	7
	2.4 Scale Inhibitors	9
	2.5 Scale Inhibition with Scale Inhibitors	10
	2.5.1 Continuous Injection	10
	2.5.2 Squeeze Treatment	10
	2.6 Related Works	13

Ш

IV

EX	PERI	MENTAL	15
3.1	Mater	ials	15
3.2	Batch	Experiments of BaSO ₄ Precipitation	18
3.3	Deter	mination of the Amount of BaSO ₄ Precipitates	19
3.4	Chara	cterization of BaSO ₄ Precipitates	20
	3.4.1	Morphology and Elemental Analysis	20
	3.4.2	Particle Size Distribution Analysis	20
RE	SULT	S AND DISCUSSION	23
4.1	The C	Correlation between Amount of BaSO ₄ Precipitates	
	and T	urbidities	23
4.2	The E	Existence of Critical Supersaturation Ratio	23
4.3	The E	Effect of Testing Time	27
	4.3.1	The Effect of Testing Time on the Critical	
		Supersaturation Ratio	27
	4.3.2	The Effect of Testing Time on the Particle Size	
		Distribution and the Mean Diameter of $BaSO_4$	
		Precipitates	29
4.4	The E	Effect of Scale Inhibitor Concentration	33
	4.4.1	The Effect of Scale Inhibitor Concentration on	
		the Critical Supersaturation Ratio	33
	4.4.2	The Effect of Scale Inhibitor Concentration on	
		the Morphology of BaSO ₄ Precipitates	36
	4.4.3	The Effect of Scale Inhibitor Concentration on	
		the Particle Size Distribution and the Mean	
		Diameter of BaSO ₄ Precipitates	37

PAGE

CHAPTER

V

.

4.5	The E	Effect of Initial Solution pH	41
	4.5.1	The Effect of Initial Solution pH on the Critical	
		Supersaturation Ratio	41
	4.5.2	The Effect of Initial Solution pH on the	
		Morphology of BaSO ₄ Precipitates	45
	4.5.3	The Effect of Initial Solution pH on the Particle	
		Size Distribution and the Mean Diameter of	
		BaSO ₄ Precipitates	46
4.6	The E	Effect of Type of Scale Inhibitors	49
	4.6.1	The Effect of Type of Scale Inhibitors on the	
		Critical Supersaturation Ratio	49
	4.6.2	The Effect of Type of Scale Inhibitors on the	
		Normalized Critical Supersaturation Ratio	51
	4.6.3	The Effect of Type of Scale Inhibitors on the	
		Morphology of BaSO ₄ Precipitates	53
	4.6.4	The Effect of Type of Scale Inhibitors on the	
		Particle Size Distribution and the Mean Diameter	
		of BaSO ₄ Precipitates	54
4.7	Possil	ble Interaction between Scale Inhibitors and	
	Nucle	eated BaSO ₄ Precipitates	56
CO	NCLU	JSIONS AND RECOMMENDATIONS	58
5.1	Concl	lusions	58
5.2	Recor	nmendations	59
DF	FFDI	INCES	60

REFERENCES

60

CHAPTER

PAGE

APPENDICES	62
Appendix A Solubility of BaSO ₄ Precipitates in EDTA	62
Appendix B Experimental Data	64
Appendix C Calculation Method for Deprotonation Curve	
of Scale Inhibitors	78

CURRICULUM VITAE

86

LIST OF TABLES

TABLE		PAGE
2.1	Analysis of field brine and scale	6
3.1	Physical and chemical properties of ATMP, DTPMP,	
	PPCA, and EDTA	16
B.1	The critical supersaturation ratio data for the absence of	
	scale inhibitors	64
B.2	The critical supersaturation ratio data for ATMP 2.5 x 10^{-5}	
	M and initial solution pH of 6	64
B.3	The critical supersaturation ratio data for ATMP 5.0×10^{-5}	
	M and initial solution pH of 6	65
B.4	The critical supersaturation ratio data for ATMP 7.5 x 10^{-5}	
	M and initial solution pH of 6	65
B.5	The critical supersaturation ratio data for ATMP 1.0×10^{-4}	
	M and initial solution pH of 6	65
B.6	The critical supersaturation ratio data for ATMP 7.5 x 10^{-3}	
	M and initial solution pH of 6	66
B.7	The critical supersaturation ratio data for ATMP 7.5 x 10^{-5}	
	M and initial solution pH of 4	66
B.8	The critical supersaturation ratio data for ATMP 7.5 x 10^{-5}	
	M and initial solution pH of 8	66
B.9	The critical supersaturation ratio data for DTPMP 2.5 x 10^{-5}	
	M and initial solution pH of 6	67
B.10	The critical supersaturation ratio data for DTPMP 5.0 x 10^{-5}	
	M and initial solution pH of 6	67
B.11	The critical supersaturation ratio data for DTPMP 7.5 x 10^{-5}	
	M and initial solution pH of 6	67
B.12	The critical supersaturation ratio data for DTPMP 1.0×10^{-4}	
	M and initial solution pH of 6	68

B.13	The critical supersaturation ratio data for DTPMP 7.5 x 10^{-3}	
	M and initial solution pH of 6	68
B.14	The critical supersaturation ratio data for DTPMP 7.5 x 10^{-5}	
	M and initial solution pH of 4	68
B.15	The critical supersaturation ratio data for DTPMP 7.5 x 10^{-5}	
	M and initial solution pH of 8	69
B.16	The critical supersaturation ratio data for PPCA 2.5 x 10^{-5}	
	M and initial solution pH of 6	69
B.17	The critical supersaturation ratio data for PPCA 5.0 x 10^{-5}	
	M and initial solution pH of 6	69
B.18	The critical supersaturation ratio data for PPCA 7.5 x 10^{-5}	
	M and initial solution pH of 6	70
B.19	The critical supersaturation ratio data for PPCA 1.0×10^{-4}	
	M and initial solution pH of 6	70
B.20	The critical supersaturation ratio data for PPCA 7.5 x 10^{-3}	
	M and initial solution pH of 6	70
B.21	The critical supersaturation ratio data for PPCA 7.5 x 10^{-5}	
	M and initial solution pH of 4	71
B.22	The critical supersaturation ratio data for PPCA 7.5 x 10^{-5}	
	M and initial solution pH of 8	71
B.23	The particle size distribution data for ATMP 2.5 x 10^{-5} M	
	and initial solution pH of 6	72
B.24	The particle size distribution data for ATMP $5.0 \ge 10^{-5}$ M	
	and initial solution pH of 6	72
B.25	The particle size distribution data for ATMP 7.5 x 10^{-5} M	
	and initial solution pH of 6	72
B.26	The particle size distribution data for ATMP $1.0 \ge 10^{-4} \text{ M}$	
	and initial solution pH of 6	73

TABLE

PAGE

B.27	The particle size distribution data for ATMP 7.5 x 10^{-5} M	
	and initial solution pH of 4	73
B.28	The particle size distribution data for ATMP 7.5 x 10^{-5} M	
	and initial solution pH of 8	73
B.29	The particle size distribution data for DTPMP 2.5 x 10^{-5} M	
	and initial solution pH of 6	74
B.30	The particle size distribution data for DTPMP 5.0 x 10^{-5} M	
	and initial solution pH of 6	74
B.31	The particle size distribution data for DTPMP 7.5 x 10^{-5} M	
	and initial solution pH of 6	74
B.32	The particle size distribution data for DTPMP $1.0 \ge 10^{-4} \text{ M}$	
	and initial solution pH of 6	75
B.33	The particle size distribution data for DTPMP 7.5 x 10^{-5} M	
	and initial solution pH of 4	75
B.34	The particle size distribution data for DTPMP 7.5 x 10^{-5} M	
	and initial solution pH of 8	75
B.35	The particle size distribution data for PPCA 2.5 x 10^{-5} M	
	and initial solution pH of 6	76
B.36	The particle size distribution data for PPCA 5.0 x 10^{-5} M	
	and initial solution pH of 6	76
B.37	The particle size distribution data for PPCA 7.5 x 10^{-5} M	
	and initial solution pH of 6	76
B.38	The particle size distribution data for PPCA $1.0 \ge 10^{-4} \text{ M}$	
	and initial solution pH of 6	77
B.39	The particle size distribution data for PPCA 7.5 x 10^{-5} M	
	and initial solution pH of 4	77
B.40	The particle size distribution data for PPCA 7.5 x 10^{-5} M	
	and initial solution pH of 8	77

LIST OF FIGURES

FIGURE

2.1	Procedure of squeeze treatment technique	11
2.2	Comparison between an ideal and a typical elution curves	12
3.1	Molecular structures of ATMP, DTPMP, PPCA, and EDTA	17
3.2	Schematic diagram of overall experiments	22
4.1	The correlation between the amount of BaSO ₄ precipitates	
	and the turbidities	24
4.2	The typical plot between the amount of BaSO ₄ precipitates	
	and supersaturation ratio to determine the critical	
	supersaturation ratio	26
4.3	The typical plots between the amount of BaSO ₄ precipitates	
	and supersaturation ratio for different testing times in the	
	presence of ATMP	27
4.4	The typical plots between the amount of BaSO ₄ precipitates	
	and supersaturation ratio for different testing times in the	
	presence of DTPMP	28
4.5	The typical plots between the amount of BaSO ₄ precipitates	
	and supersaturation ratio for different testing times in the	
	presence of PPCA	28
4.6	The typical variation of the critical supersaturation ratios	
	with the testing times	29
4.7	The effect of testing time on the particle size distribution of	
	the BaSO ₄ precipitates in the presence of ATMP	30
4.8	The effect of testing time on the particle size distribution of	
	the $BaSO_4$ precipitates in the presence of DTPMP	30
4.9	The effect of testing time on the particle size distribution of	
	the BaSO ₄ precipitates in the presence of PPCA	31

xiii

FIGURE

.

4.10	The effect of testing time on the mean diameter of the	
	BaSO ₄ precipitates in the presence of ATMP	31
4.11	The effect of testing time on the mean diameter of the	
	BaSO ₄ precipitates in the presence of DTPMP	32
4.12	The effect of testing time on the mean diameter of the	
	BaSO ₄ precipitates in the presence of PPCA	32
4.13	The variation of the critical supersaturation ratios with the	
	testing times for different scale inhibitor (ATMP)	
	concentrations	34
4.14	The effect of scale inhibitor (ATMP) concentration on the	
	critical supersaturation ratio	35
4.15	The effect of scale inhibitor (DTPMP) concentration on the	
	critical supersaturation ratio	35
4.16	The effect of scale inhibitor (PPCA) concentration on the	
	critical supersaturation ratio	36
4.17	The morphological structures of the BaSO ₄ precipitates for	
	different scale inhibitor concentrations: (a) in the absence of	
	scale inhibitor (ATMP), $SR = 380$; (b) and (c) in the	
	presence of ATMP, $SR = 6,515$ and $5,832$ respectively;	
	testing time = $2 h$	37
4.18	The effect of scale inhibitor (ATMP) concentration on the	
	particle size distribution of the BaSO ₄ precipitates	38
4.19	The effect of scale inhibitor (DTPMP) concentration on the	
	particle size distribution of the BaSO ₄ precipitates	38
4.20	The effect of scale inhibitor (PPCA) concentration on the	
	particle size distribution of the BaSO ₄ precipitates	39
4.21	The effect of scale inhibitor (ATMP) concentration on the	
	mean diameter of the BaSO ₄ precipitates	39

FIGURE

PAGE

4.22	The effect of scale inhibitor (DTPMP) concentration on the	
	mean diameter of the BaSO ₄ precipitates	40
4.23	The effect of scale inhibitor (PPCA) concentration on the	
	mean diameter of the BaSO ₄ precipitates	40
4.24	The variation of the critical supersaturation ratios with the	
	testing time for different initial solution pHs	42
4.25	The deprotonation curve of ATMP and the resulting species	
	composition as a function of solution pH	42
4.26	The deprotonation curve of DTPMP and the resulting	
	species composition as a function of solution pH	43
4.27	The effect of initial solution pH on the critical	
	supersaturation ratio in the presence of ATMP	43
4.28	The effect of initial solution pH on the critical	
	supersaturation ratio in the presence of DTPMP	44
4.29	The effect of initial solution pH on the critical	
	supersaturation ratio in the presence of PPCA	44
4.30	The morphological structures of the BaSO ₄ precipitates for	
	different initial solution pHs at testing time = $2 h$ in the	
	presence of ATMP 7.5 x 10^{-5} M: (a) SR = 5,832, (b) SR =	
	5,832, and (c) SR = 7,402	45
4.31	The effect of initial solution pH on the particle size	
	distribution of the BaSO ₄ precipitates in the presence of	
	ATMP	46
4.32	The effect of initial solution pH on the particle size	
	distribution of the BaSO ₄ precipitates in the presence of	
	DTPMP	47
4.33	The effect of initial solution pH on the particle size	
	distribution of the BaSO ₄ precipitates in the presence of	
	PPCA	47

FIGURE

4.34	The effect of initial solution pH on the mean diameter of the	
	BaSO ₄ precipitates in the presence of ATMP	48
4.35	The effect of initial solution pH on the mean diameter of the	
	BaSO ₄ precipitates in the presence of DTPMP	48
4.36	The effect of initial solution pH on the mean diameter of the	
	BaSO ₄ precipitates in the presence of PPCA	49
4.37	The variation of the critical supersaturation ratios with the	
	testing times for different types of scale inhibitors	50
4.38	The effect of scale inhibitor concentration on the critical	
	supersaturation ratio for different types of scale inhibitors	51
4.39	The effect of initial solution pH on the critical	
	supersaturation ratio for different types of scale inhibitors	52
4.40	The effect of scale inhibitor concentration on the	
	normalized critical supersaturation ratio for different types	
	of scale inhibitors	52
4.41	The effect of initial solution pH on the normalized critical	
	supersaturation ratio for different types of scale inhibitors	53
4.42	The morphological structures of the $BaSO_4$ precipitates in	
	the presence of different scale inhibitors at testing time $= 2$	
	h and scale inhibitor concentration = 7.5×10^{-5} M: (a) SR =	
	5,832, (b) SR = 17,500, and (c) SR = 40,844	54
4.43	The effect of type of scale inhibitors on the particle size	
	distribution of the BaSO ₄ precipitates	55
4.44	The effect of type of scale inhibitors on the mean diameter	
	of the BaSO ₄ precipitates	55
4.45	The EDS analysis of the BaSO ₄ precipitates	57
A.1	The solubility of $BaSO_4$ in EDTA solution at pH 4.6 and 13.0	63
A.2	The deprotonation curve of EDTA and the resulting species	
	composition as a function of solution pH	63