SELECTIVE ADSORPTION OF NATURAL ZEOLITE FOR CONTROLLED-RELEASE OF FERTILIZER

Ms. Nitida Nakapreecha

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2003

ISBN 974-17-2290-7

Thesis Title:	Selective Adsorption of Natural Zeolite for Controlled-Release
	of Fertilizer.
By:	Ms. Nitida Nakapreecha
Program:	Petrochemical Technology
Thesis Advisors:	Asst. Prof. Pomthong Malakul
	Asst. Prof. Pramoch Rangsunvigit
	Prof. Erdogan Gulari

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

K. Bunyachint-

..... College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

(Asst. Prof. Pomthong Malakul)

Pramoils R.

(Asst. Prof. Pramoch Rangsunvigit)

Indoken (

(Prof. Erdogan Gulari)

(Dr. Sirirat Jitkarnka)

Ritipat S emernord

(Dr. Kitipat Siemanond)

ABSTRACT

4471016063 : PETROCHEMICAL TECHNOLOGY PROGRAM
Ms. Nitida Nakapreecha: Selective adsorption of natural zeolite for controlled-release of fertilizer.
Thesis Advisor: Asst. Prof. Pomthong Malakul, Asst. Prof. Pramoch Rangsunvigit, and Prof. Erdogan Gulari, 79 pp. ISBN 974-17-2290-7
Keywords : Adsorption/ Desorption/ Liquid/ Batch/ Isotherm/ Kinetics/

Keywords : Adsorption/ Desorption/ Liquid/ Batch/ Isotherm/ Kinetics/ Ammonium/ Potassium/ Clinoptilolite.

In this study, batch liquid adsorption of NH_4^+ and K^+ ions on clinoptilolite was carried out to obtain equilibrium and kinetic data at room temperature. From the analysis of the kinetic data, conformity to the Elovich model suggested that the adsorption of both cations was governed by a heterogeneous diffusion process. Equilibrium adsorption studies showed that an increase in pH and the initial concentration of NH₄⁺ and K⁺ ions resulted in faster sorption and greater amounts of both ions being adsorbed. In addition, it was found that K⁺ ions were adsorbed to a much greater extent compared with NH4⁺ ions. From the desorption studies using NaCl, quantitative amounts of sorbed NH_4^+ and K^+ ions on clinoptilolite could be desorbed, depending on salt concentration. When NH_4^+ and K^+ ions were equally loaded on clinoptilolite, approximately the same amount of both ions were released from the adsorbent. In contrast, when the loading ratio of NH_4^+ and K^+ ions was relatively high, a much higher amount of sorbed K⁺ ions was released, suggesting that the desorbed NH_4^+ ions may also be involved in the release of sorbed K⁺. The results indicate that clinoptilolite can potentially be used for the controlled release of ions such as NH_4^+ and K^+ at desired compositions from fertilizers.

บทคัดย่อ

นิธิดา นาคะปรีชา : การดูดซับแบบเฉพาะเจาะจงของสารประกอบซีโอไลท์ธรรม ชาติเพื่อใช้ในการควบคุมการปล่อยปุ๋ย (Selective adsorption of natural zeolite for controlledrelease of fertilizer) อ.ที่ปรึกษา : ผศ.คร. ปมทอง มาลากุล ณ อยุธยา. ผศ.คร. ปราโมช รังสรรค์ วิจิตร และ ศ. เออโคแกน กูลารี (Prof. Erdogan Gulari) 79 หน้า ISBN 974-17-2290-7

้งานวิจัยนี้เป็นการศึกษาการดูดซับแอม โมเนียมและ โพแทสเซียม ไอออน โดยคลิ นอพทิลโอไลท์โดยใช้การทคลองในภาวะของเหลวแบบกะที่อุณหภูมิห้อง การศึกษาทาง ้งถนศาสตร์พบว่าการคุดซับและการคายแอม โมเนียมและ โพแทสเซียมไอออนของคลินอพทิล โอ ใลท์เป็นไปตามสมการเอลโอวิช ซึ่งแสดงว่าการแลกเปลี่ยนแอมโมเนียมและโพแทสเซียมไอออน ถูกควบคุมโดยกระบวนการแพร่แบบหลากหลาย จากการทดลองสมดุลการดูดซับ พบว่าการดูดซับ แอมโมเนียมและโพแทสเซียมไอออนเพิ่มขึ้นเมื่อค่า pH และความเข้มข้นเริ่มต้นมีค่าสูงขึ้น นอก ้งากนี้โพแทสเซียมไอออนยังถูกดูคซับโดยคลินอพทิลโอไลท์ในปริมาณที่มากกว่าแอมโมเนียม ใอออน การศึกษาการคายแอมโมเนียมและโพแทสเซียมใอออนพบว่าปริมาณการคายใอออนที่ถูก ดูดซับเพิ่มขึ้นเมื่อความเข้มข้นของสารละลายเกลือที่ใช้และปริมาณของแอมโมเนียมและ โพแทสเซียมไอออนที่ถูกดูดซับมีค่าเพิ่มขึ้น ในขั้นตอนสุดท้ายเป็นการศึกษาการปล่อย แอมโมเนียมและโพแทสเซียมไอออนจากคลินอพทิลโอไลท์ที่มีการดูดซับของไอออนทั้งสองใน อัตราส่วนต่างๆ พบว่าเมื่อทำการดูดซับไอออนทั้งสองในอัตราส่วนที่ใกล้เคียงกัน ปริมาณการ ปล่อยออกของไอออนทั้งสองมีค่าใกล้เคียงกัน แต่เมื่อแอมโมเนียมไอออนถูกดูดซับมากกว่า ์โพแทสเซียม พบว่าสัคส่วนปริมาณโพแทสเซียมไอออนที่ถูกปล่อยออกมามากกว่าสัคส่วนปริมาณ ์โพแทสเซียมไอออนที่ถูกปล่อยออกในกรณีแรก ในขณะที่สัคส่วนปริมาณแอมโมเนียมไอออนที่ ้ถูกปล่อขออกมีค่าใกล้เคียงกับสัดส่วนปริมาณแอมโมเนียม ใอออนที่ถูกปล่อขออกในกรณีแรก การ ศึกษานี้แสดงให้เห็นว่าคลินอพทิลโอไลท์สามารถนำมาใช้เป็นตัวดูคซับแอมโมเนียมและ โพแทสเซียมไอออนเพื่อนำมาประยุกต์ใช้ในการควบกุมการปล่อยสารอาหารในปุ๋ยได้ดี

ACKNOWLEDGEMENTS

This thesis work was partially funded by Postgraduate Education and Research Programs in Petroleum and Petrochemical Technology (PPT Consortium).

This work gave me a precious memorable and incredibly joyful experience. However, this thesis could not have been accomplished without the assistance of graceful persons.

First of all, I would like to express my deepest gratitude to my advisor, Dr. Pomthong Malakul for his priceless guidance, constructive criticism, and admirable discussion and recommendations all the time he contributed to my work. He also teaches me the invaluable thing and encourages me through out the tough time.

I would like to thank Prof. Erdogan Gulari, my US advisor, and Dr. Pramoch Rangsunvigit, my co-advisor, for their support and proofreading the thesis.

I would like to acknowledge Dr. Sirirat and Dr. Kitipat for their kind advice and serving on my thesis committee.

I would like to extent my thankfulness to all professors who provided me the useful knowledge at the Petroleum and Petrochemical College, Chulalongkorn University. In addition, I would like to thank the Petroleum and Petrochemical College's staff for their helpful assistance and warm support.

Moreover, I would like to express my sincere thanks to all of my friends and Ph.D. students for their assistance and helpful discussion. The greatly cheerful time and the wonderful friendship mean a lot to me.

Finally, I would like to express my heartfelt gratitude to my family for their unconditional love and greatest support throughout my life. Thank you for believing in me.

TABLE OF CONTENTS

-9

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	viii
List of Figures	ix

CHAPTER

I	INTROD	UCTION	1
II	BACKGF	ROUND AND LITERATURE REVIEW	3
	2.1 Thaila	and's Agriculture	3
	2.2 Clino	ptilolite	6
	2.2.1	Relevant Properties of clinoptilolite	7
		2.2.1.1 Chemical Composition	7
		2.2.1.2 Adsorption Properties	8
		2.2.1.3 Ion Exchange Properties	8
	2.2.2	Selective Adsorption of Fertilizers by	9
		Natural Zeolite	
	2.2.3	Related Kinetic Model	12
Ш	EXPERIN	MENTAL	15
	3.1 Mater	ials	15
	3.2 Exper	imental Procedure	15
	3.2.1	Characterization	16
		3.2.1.1 Mineral Purity	16
		3.2.1.2 Surface Area	16

vii

CHAPTER

PAGE

	3.2.2	Adsorption	16
		3.2.2.1 Adsorption Isotherm	16
		3.2.2.2 Adsorption Kinetics	17
	3.2.3	Desorption	17
		3.2.3.1 Desorption Isotherm	17
		3.2.3.2 Desorption Kinetics	17
	3.2.4	Release of NH_4 and K at different	18
		Loading ratio	
IV	RESULTS	S AND DISCUSSION	19
	4.1 Chara	cterization	19
	4.1.1	Mineral Purity	19
	4.1.2	Surface Area and Pore Volume	19
	4.2 Ammo	onium Adsorption and Desorption	19
	4.2.1	Ammonium Adsorption Isotherm	19
	4.2.2	Kinetics of Ammonium Adsorption	20
	4.2.3	Ammonium Desorption	25
	4.2.4	Kinetics of Ammonium Desorption	27
	4.3 Potass	sium Adsorption and Desorption	30
	4.3.1	Potassium Adsorption Isotherm	30
	4.3.2	Kinetics of Potassium Adsorption	30
	4.3.3	Potassium Desorption	34
	4.3.4	Kinetics of Potassium Desorption	36
	4.4 Releas	se of NH_4^+ and K^+ from Preloaded	39
	Clinop	otilolite with Mixed-Nutrients different	
V	CONCLU	SIONS AND RECOMMENDATIONS	41

REFERENCES

43

÷

CHAPTER		PAGE
APPENDICI	ES	46
Appendix A	Calculation	46
Appendix B	Experimental Data	52
CURRICUL	UM VITAE	79

viii

LIST OF TABLES

TABLE

CHAPTER II

2.1	Various kinetics models to describe nutrients	12
	(NH ₄ ⁺ or K ⁺) adsorbed on the clinoptilolite sample	
2.2	Various kinetics models to describe nutrients	13
	NH_4^+ or K^+) desorbed on the clinoptilolite sample	

CHAPTER IV

4.1	Initial rate of adsorption (k_i) of NH ₄ ⁺ on natural	21
	clinoptilolite at various pH conditions	
4.2	Linear coefficient of determination (r^2) and standard	22
	error (SE) of estimates obtained from various	
	kinetic models for the adsorption of NH_4 on natural	
	clinoptilolite at various pH conditions	
4.3	The rate parameter $k_{ap,i}$ ($i = 1-3$) of kinetics of NH ₄ ⁺	24
	adsorption on clinoptilolite at various pH conditions	
	obtained from the plot of fractional ion adsorbed (Fa) as	
	a function of $t^{1/2}$	
4.4	Linear coefficient of determination (r^2) and standard	29
	error (SE) of estimates for NH_4^+ obtained from various	
	kinetic models for the desorption of NH4' from natural	
	clinoptilolite.	
4.5	The rate parameter $k_{dp,i}$ ($i = 1-3$) of kinetics of	29
	NH4 ⁺ desorption from clinoptilolite at pH 9 obtained	
	from the plot of fractional ion adsorbed (Fa) as a function	
	of $t^{1/2}$	
4 6	Initial rate of adsorption (k_i) of K ⁺ on natural	32
	clinoptilolite at various pH conditions	

4.7	Linear coefficient of determination (r^2) and standard	33
	error (SE) of estimates obtained from various	
	kinetic models for the adsorption of K+ on natural	
	clinoptilolite at various pH conditions	
4.8	The rate parameter $k_{ap,i}$ ($i = 1-3$) of kinetics of K'	34
	adsorption on clinoptilolite obtained from the plot	
	of fractional K^+ ion adsorbed (Fa) at pH 3 as a function	
	of $t^{1/2}$	
4.9	Linear coefficient of determination (r^2) and standard	38
	error (SE) of estimates for K^{\dagger} obtained from various	
	kinetic models for the desorption of K' from natural	
	clinoptilolite	
4.10	The rate parameter $k_{dp,i}$ ($i = 1-3$) of kinetics of K ⁺	39
	desorption from clinoptilolite obtained from the plot of	
	fractional K ion desorbed (Fd) at pH 7 as a function	
	of $t^{1/2}$	
4.11	The percentage of ions loading on natural clinoptilolite	40
4.12	and amount of ions released as percentage of original	
4.13	loading	

APPENDIX B

B.1	Experimental data of ammonium adsorption	52
	isotherm of natural clinoptilolite at pH 3 and initial	
	concentration of 50, 100, 200, 500, 900, 1500,	
	and 3000 mg/l	
B.2	Experimental data of ammonium adsorption isotherm	52
	for blank condition at pH 3 and initial concentration	
	of 50, 100, 200, 500, 900, 1500, and 3000 mg/l	

PAGE

B.3	Experimental data of ammonium adsorption	53
	isotherm of natural clinoptilolite at pH 5 and initial	
	concentration of 50, 100, 200, 500, 900, 1500,	
	and 3000 mg/l	
B 4	Experimental data of ammonium adsorption	53
	isotherm for blank condition at pH 5 and initial	
	concentration of 50, 100, 200, 500, 900, 1500,	
	and 3000 mg/l	
B 5	Experimental data of ammonium adsorption	54
	isotherm of natural clinoptilolite at pH 7 and initial	
	concentration of 50, 100, 200, 500, 900, 1500, and	
	3000 mg/l	
B_6	Experimental data of ammonium adsorption isotherm	54
	for blank condition at pH 7 and initial concentration	
	of 50, 100, 200, 500, 900, 1500, and 3000 mg/l	
B .7	Experimental data of ammonium adsorption	55
	isotherm of natural clinoptilolite at pH 9 and initial	
	concentration of 50, 100, 200, 500, 900, 1500,	
	and 3000 mg/l	
B.8	Experimental data of ammonium adsorption isotherm	55
	for blank condition at pH 9 and initial concentration	
	of 50, 100, 200, 500, 900, 1500, and 3000 mg/l	
B.9	Experimental data of kinetics of ammonium	56
	adsorption of natural clinoptilolite at pH 3 and initial	
	concentration of 900 mg/l	
B .10	Experimental data of kinetics of ammonium	57
	adsorption of natural clinoptilolite at pH 5 and initial	
	concentration of 900 mg/l	

PAGE

B .11	Experimental data of kinetics of ammonium	58
	adsorption of natural clinoptilolite at pH 7 and	
	initial concentration of 900 mg/l	
B.12	Experimental data of kinetics of ammonium	59
	adsorption of natural clinoptilolite at pH 9 and initial	
	concentration of 900 mg/l	
B.13	Experimental data of ammonium desorption	60
	isotherm of natural clinoptilolite at pH 9 and initial	
	concentration of 50, 100, 200, 500, and 900 mg/l	
	with NaCl 10 mM	
B .14	Experimental data of ammonium desorption	61
	isotherm of natural clinoptilolite at pH 9 and initial	
	concentration of 50, 100, 200, 500, and 900 mg/l	
	with NaCl 50 mM	
B 15	Experimental data of ammonium desorption	62
	isotherm of natural clinoptilolite at pH 9 and initial	
	concentration of 50, 100, 200, 500, and 900 mg/l	
	with NaCl 100 mM	
B .16	Experimental data of ammonium desorption	62
	isotherm of natural clinoptilolite at pH 9 and initial	
	concentration of 50, 100, 200, 500, 900, and 1500 mg/l	
	with KCI 100 mM	
B .17	Experimental data of ammonium desorption	63
	isotherm of natural clinoptilolite at pH 9 and initial	
	concentration of 50, 100, 200, 500, 900, and 1500 mg/l	
	with NaCl 100 mM	
B.18	Experimental data of ammonium desorption	64
	isotherm of natural clinoptilolite at pH 9 and initial	
	concentration of 50, 100, 200, 500, 900, and 1500 mg/l	
	with CaCl ₂ 100 mM	

B.19	Experimental data of kinetics of ammonium	65
	desorption of natural clinoptilolite at pH 9 and	
	Qa = 28.06 mg/l	
B.20	Experimental data of potassium adsorption	66
	isotherm of natural clinoptilolite at pH 3 and initial	
	concentration of 50, 100, 200, 500, 900, 1500, 2000,	
	2500, and 3000 mg/l	
B.21	Experimental data of potassium adsorption isotherm	66
	for blank condition at pH 3 and initial concentration of	
	50, 100, 200, 500, 900, 1500, 2000, 2500, and 3000 mg/l	
B 22	Experimental data of potassium adsorption	67
	isotherm of natural clinoptilolite at pH 5 and initial	
	concentration of 50, 100, 200, 500, 900, 1500,	
	and 3000 mg/l	
B.23	Experimental data of potassium adsorption isotherm	67
	for blank condition at pH 5 and initial concentration	
	of 50, 100, 200, 500, 900, 1500, and 3000 mg/l	
B.24	Experimental data of potassium adsorption	68
	isotherm of natural clinoptilolite at pH 7 and initial	
	concentration of 50, 100, 200, 500, 900, 1500, 2000,	
	2500, and 3000 mg/l	
B.25	Experimental data of potassium adsorption isotherm	68
	for blank condition at pH 7 and initial concentration	
	of 50, 100, 200, 500, 900, 1500, 2000, 2500,	
	and 3000 mg/l	
B.26	Experimental data of potassium adsorption	69
	isotherm of natural clinoptilolite at pH 9 and initial	
	concentration of 50, 100, 200, 500, 900, 1500,	

and 3000 mg/l

PAGE

•

B .27	Experimental data of potassium adsorption isotherm	69
	for blank condition at pH 9 and initial concentration of	
	50, 100, 200, 500, 900, 1500, and 3000 mg/l	
B.28	Experimental data of kinetics of potassium	70
	adsorption of natural clinoptilolite at pH 3 and initial	
	concentration of 900 mg/l	
B.29	Experimental data of kinetics of potassium	71
	adsorption of natural clinoptilolite at pH 5 and initial	
	concentration of 900 mg/l	
B.30	Experimental data of kinetics of potassium	71
	adsorption of natural clinoptilolite at pH 7 and initial	
	concentration of 900 mg/l	
B 31	Experimental data of kinetics of potassium	72
	adsorption of natural clinoptilolite at pH 9 and initial	
	concentration of 900 mg/l	
B.32	Experimental data of potassium desorption	73
	isotherm of natural clinoptilolite at pH 9 and initial	
	concentration of 100, 200, 500, 900, and 1500 mg/l	
	with NaCl 100 mM	
B.33	Experimental data of potassium desorption	74
	isotherm of natural clinoptilolite at pH 9 and initial	
	concentration of 100, 200, 500, 900, and 1500 mg/l	
	with NaCl 500 mM	
B.34	Experimental data of potassium desorption	75
	isotherm of natural clinoptilolite at pH 9 and initial	
	concentration of 50, 100, 200, 500, 900. and 3000 mg/l	
	with NaCl 1000 mM	

B.35	Experimental data of potassium desorption	76
	isotherm of natural clinoptilolite at pH 9 and initial	
	concentration of 50, 100, 200, 500, 900, and 3000 mg/l	
	with CaCl ₂ 1000 mM	
B .36	Experimental data of kinetics of potassium	76
	desorption of natural clinoptilolite at pH 9 and	
	Qa = 46.97 mg/g	
B.37	Experimental data of NH_4^{-1} loading at pH 7 using	77
	ammonium ion selective electrode (ISE)	
B.38	Experimental data of K loading at pH 7 using	77
	Atomic Adsorption Spectrophotometer (AAS) with	
	5000 times dilution	
B. 39	Experimental data for calibration of K' loading	78
	at pH 7 using Atomic Adsorption Spectrophotometer	
	(AAS)	
B.40	Experimental data of NH_4^+ and K^+ release at pH 7 using	78
	ammonium and potassium ion selective electrode (ISE)	

LIST OF FIGURES

FIGURE

CHAPTER II

1.	Thailand: Agricultural Planted Area, by Region,	
	1961-1995 (rai).	3
2.	Fertilizer trends in Thailand.	4

CHAPTER III

3.1	Schematic diagram of experimental apparatus for batch	17
	operation	

CHAPTER IV

4.1	Adsorption isotherms of NH4 ⁺ on natural clinoptilolite	19
	at various pH conditions.	
4.2	Liquid phase concentration of NH_4^+ (Ca _t) during	20
	adsorption on clinoptilolite at various pH conditions	
	as a function of time.	
4.3	Solid phase concentration of NH4' (Qa1) during	21
	adsorption on clinoptilolite at various pH conditions	
	as a function of time.	
4.4	Kinetics of NH4 ⁺ adsorption on clinoptilolite at various	23
	pH conditions described by Elovich model.	
4.5	The plot of fractional NH_4^+ ion adsorbed (Fa) as a function	24
	of $t^{1/2}$ (pH 9).	
4.6	Desorption of ammonium ions adsorbed on natural	25
	clinoptilolite at various concentrations of NaCl.	
4.7	Desorption of ammonium ion adsorbed on natural	26
	clinoptilolite with different types of salt in the solution.	

FIGURE

4.8	Liquid phase concentration of NH_4^+ (Cd _t) during	27
	desorption from clinoptilolite at pH 9 with initial amount	
	adsorbed NH_4^+ of 28.06 mg NH_4^+/g CL using $CaCl_2$	
	1000 mM.	
4.9	Solid phase concentration of NH_4 (Qd _t) during desorption	28
	from clinoptilolite at pH 9 with initial amount adsorbed	
	NH_4 of 28.06 mg NH_4 /g CL using $CaCl_2$ 1000 mM.	
4.10	The plot of fractional NH_4^+ ion desorbed (Fd) as a function	29
	of <i>t</i> ^{1/2} (pH 9).	
4.11	Adsorption isotherms of K on clinoptilolite at various	30
	pH conditions.	
4.12	Liquid phase concentration of K (Cat) during adsorption	31
	on clinoptilolite at various pH conditions as a function	
	of time	
4.13	Solid phase concentration of $K^{+}(Qa_{t})$ during adsorption	31
	on clinoptilolite at various pH conditions as a function	
	of time.	
4.14	Kinetics of K ₄ adsorption on clinoptilolite at various	33
	pH conditions described by Elovich model.	
4.15	The plot of fractional K ⁺ ion adsorbed (Fa) as a function	34
	of <i>t</i> ^{1/2} (pH 3).	
4.16	Desorption of potassium ions adsorbed on natural	35
	clinoptilolite at various concentrations of NaCl.	
4.17	Desorption of adsorbed potassium ions on natural	36
	clinoptilolite by two types of cations.	
4.18	Liquid phase concentration of K (Cdt) during desorption	37
	from clinoptilolite at pH 7 with initial amount adsorbed K	
	of 46.97 mg K ^{$^{+}$} /g CL using CaCl ₂ 1000 mM.	

xviii

FIGURE

PAGE

4.19	Solid phase concentration of K^+ (Qd _t) during desorption	37
	from clinoptilolite at pH 7 with initial amount adsorbed K^{\dagger}	
	of 46.97 mg K ⁺ /g CL using CaCl ₂ 1000 mM.	
4.20	The plot of fractional K^* ion desorbed (Fd) as a function	38
	of <i>t</i> ^{1/2} (pH 7).	
4.21	The ratio of NH_4 ' and K' loaded on natural clinoptilolite.	39
4.22	The amount of NH_4^+ and K^+ released compared to the	40
	amount of NH4' and K' adsorbed.	

APPENDIX B

B 1	Calibration curve of K loading at pH 7 using Atomic	78
	Adsorption Spectrophotometer (AAS).	