

REFERENCES

- Alireza, H., and Mahmoud, K. (2002). Kinetics of nonexchangeable potassium release from soils and soil separates in some central region soils in Iran. Poster presented at 17th WCSS, Thailand.
- Allen, E.R., Hossner, L.R., Ming, D.W., and Henninger, D.L. (1996). Release rates of phosphorus, ammonium, and potassium in clinoptilolite-phosphate rock systems. <u>Soil Sci. Soc. Am. J.</u>, 60, 1467-1472.
- Allen, E.R., Ming, D.W., Hossner, L.R., and Henninger, D.L. (1995). Division S-8nutrient management & soil & plant analysis: Modeling transport kinetics in clinoptilolite-phosphate rock systems. <u>Soil Sci. Soc. Am. J.</u>, 59, 248-255.
- Bache, M.P., and Williams, E.G. (1971). A phosphate sorption index for soils. J. Soil Sci., 22, 289-301.
- Barbarick, K.A., and Pirela, H.J. (1984). Agronomic and horticultural uses of zeolites: A review. <u>Zeo-Agriculture</u>: Use of Natural Zeolites in Agriculture and Aquaculture, 93-103.
- Bart, A., Batterson, T.R., Garling, D.L., and Knud-Hansen, C.F. (2002). Use of clinoptilolite zeolites for ammonia-N transfer and retention in interacted aquaculture systems and for improving pond water quality before discharge. <u>Appropriate Technology Research 5.</u>
- Dwairi, I.M. (1998). Evaluation of Jordanian zeolite tuff as a controlled slow-release fertilizer for NH4⁺. Environmental Geology, 34(1),1-4.
- Ferguson, G.A., and Pepper, I.L. (1987). Ammonium retention in sand amended with clinoptilolite. Soil Sci. Soc. Am. J., 51(1), 231-234.
- Galadima, A., Silvertooth, J.C. (1998). Mathematical models of potassium release kinetics for Sonoran desert soils of Arizona. <u>Cotton: A College of</u> <u>Agriculture Report</u>.
- Griffin, R.A., and Jurinak, J.J. (1974). Kinetics of the phosphate interaction with calcite. <u>Soil Sci. Soc. Am. Proc.</u>, 38, 75-79.
- Harland, C.E. (1994). Water treatment. <u>Ion exchange: theory and practice</u>. 2nd ed. Cambridge: The Royal Society of Chemistry paperbacks.

- Havlin, J.L., Westfall, D.G., and Olsen, R.S. (1985). Mathematical models for potassium release kinetics in calcareous soils. <u>Soil Sci. Soc. Am. J.</u>, 49, 366-370.
- Hernandez, M.A., Corona, L., and Rojes, F. (2000). Adsorption characteristics of natural erionite, clinoptilolite and mordenite zeolite from Mexico. <u>Adsorption</u>. 6, 33-45.
- Jardine, P.M., and Zelazny, L.W. (1986). Mononuclear and polynuclear aluminum speciation through differential kinetic reactions with ferron. <u>Soil Sci. Soc.</u> <u>Am. J.</u>, 50, 895-900.
- Kithome, M., Paul, J.W., Laukulich, L.M., and Bomke, A.A. (1998). Kinetics of ammonium adsorption and desorption by the natural zeolite clinoptilolite. Soil Sci. Soc. Am. J., 62, 622-629.
- Ko, B.S., Cho, Y.S., and Rhee, H.K. (1996). Controlled release of urea from resincoated fertilizer particles. <u>Ind. Eng. Chem. Res.</u>, 35(1), 250-257.
- Kuo, S., and Lotse, E.G. (1972). Kinetics of phosphate adsorption by calcium carbonate and Ca-kaolinite. <u>Soil Sci. Soc. Am. Proc.</u>, 36, 725-729.
- Mumpton, F.A. (1999). Using zeolites in agriculture and industry. <u>Proceedings of</u> <u>the National Academy of Science</u>, 127-143.
- Pepper, I.L., Ferguson, G.A., and Kneebone, W.R. (1982). Clinoptilolite zeolite: A new medium for turfgrass growth. <u>Agronomy Abstracts</u>, 145.
- Peryea, F.J., Bingham, F.T., and Rhoades, J.D. (1985). Kinetics of post-reclamation boron dissolution. <u>Soil Sci.Soc.Am.J.</u>, 49, 836-839.
- Petrovic, A.M. (1993). Research update: Potential for natural zeolite uses on golf courses. <u>USGA Green Section Record</u>, 31(1), 11-14.
- Rozic, M., Cerjan-Stefanovic, S., Kurajica, S., Vancina, V., and Hodzic, E. (2000). Ammoniacal nitrogen removal from water by treatment with clays and zeolites. <u>Wat. Res.</u>, 34(14), 3675-3681.
- Sanjay, A., and Chanal, D.S. (2002). Modeling boron adsorption kinetics in benchmark soils of Punjab, India. Poster presented at 17th WCSS, Thailand.
- Sparks, D.L. (1989). Kinetics of soil chemical processes. <u>Academic Press</u>. San Diego.

- Sparks, D.L., and Jardine, P.M. (1984). Comparison of kinetic equation to describe K-Ca exchange in pure and in mixed systems. <u>Soil Sci.</u>, 138, 115-122.
- Tomazovic, B., Ceramic, T., and Sijaric, G. (1996). The properties of the NH₄. clinoptilolite. Part1. <u>Zeolite.</u> 16, 301-308.

Vaughan, D.E.W. (1978). Properties of natural zeolites. Pergamon Press, 353-372.

Wu, F.C., Tseng, R.L., and Juang, R.S. (2000). Comparative adsorption of metal and dye on flake- and bead-types of chitosans prepared from fishery wastes. <u>Journal of Hazardous Materials</u>, 73, 63-75.

APPENDICES

APPENDIX A: Calculation

1. Sample preparation

Ammonium solution 1.1

The ammonium stock solution was firstly prepared, and then the ammonium solutions with desired concentration were prepared from the stock solution. The desired concentration of ammonium solution were 50, 100, 200, 500, 900, 1500, 2000, 2500, and 3000 mg/l.

Preparation of stock solution

The concentration of ammonium stock solution was 5000 mg/l. It was prepared from ammonium chloride (NH₄Cl).

M _w :	N = 14, H = 1, Cl = 35.5				
NH4	18 g	from NH ₄ Cl	53.5 g		
$\rm NH_4$	5000 *10 ⁻³ g	from NH ₄ Cl	14.8611 g		

Therefore NH₄Cl was weight 14.8611 g, then the buffer solution was added to make total volume to 1000 ml.

Preparation of ammonium sample solution

	From	$C_1 V$	$_{1} = C_{2}V_{2}$		(A1)	
Where	C_1 , and	C ₂ were	e concentration	n of stock	solution and	
	ammonium sample solution, respectively					
	V_1 , and V_2 were volume of stock solution and ammonium					

sample solution, respectively

For this system V_2 was 15 ml.

Therefore,

C ₂	50	100	200	500	900	1500	2000	2500	3000
V_1	0.15	0.30	0.60	1.50	2.70	4.50	6.00	7.50	9.00

Thus, V1 ml of the stock solution was diluted with the buffer solution into 15 ml final solution.

1.2 Potassium solution

The potassium stock solution was firstly prepared, and then the potassium solutions with desired concentration were prepared from the stock solution. The desired concentration of potassium solution were 50, 100, 200, 500, 900, 1500, 2000, 2500, and 3000 mg/l.

Preparation of stock solution

The concentration of potassium stock solution was 5000 mg/l. It was prepared from potassium chloride (KCl).

M _w :	K = 39.1, Cl =	35.5	
Κ	39.1 g	from KCl	74.6 g
Κ	5000 *10 ⁻³ g	from KCl	9.5396 g

Therefore KCl was weight 9.5396 g, then the buffer solution was added to make total volume to 1000 ml.

Preparation of potassium sample solution

From $C_1V_1 = C_2V_2$ Where C_1 , and C_2 were concentration of stock solution and potassium sample solution, respectively V_1 , and V_2 were volume of stock solution and potassium sample solution, respectively

For this system V₂ was 15 ml.

Therefore,

C ₂	50	100	200	500	900	1500	2000	2500	3000
V_1	0.15	0.30	0.60	1.50	2.70	4.50	6.00	7.50	9.00

Thus, V_1 ml of the stock solution was diluted with the buffer solution into 15 ml final solution.

2. Buffer preparation

Two buffer solutions were used in this study. The first buffer, acetate buffer, was used to obtain pH 3 and 5, while the second buffer, trisma buffer, provide pH 7 and 9. The buffer strength was fixed at 0.05 M. The volume of each

buffer solution was 1000 ml. Both buffer solution were prepared by using this following equation

pH = pKa + log (A/HA)(A2)

Where A and HA represented base and weak acid, respectively

2.1 Acetate buffer solution

Acetate buffer with pH 3

pKa of acetate buffer was 4.74

From equation (A2),

pН	Ŧ	pKa + log (A/HA)
3	=	4.74 + log (A/HA)
A/HA	=	0.0182

$M_{b,t} = V_b M_b$	(A3)
---------------------	------

Where	M _{b.1} was total millimoles of buffer needed					
	V _b was volume of buffer in ml.					
	M _b was m	olar concentratio	on of	buffer		
M _{b.t}	=	(1000)(0.05)	=	50 mmol total buffer		

Then the total mmol was divided into A and HA form

50/(1+0.01	182)	=	49.1063
Thus,	HA	=	49.1063
	Α	=	0.8937

It was meant that there were 49.1063 and 0.8937 mmol of acetate acid and sodium acetate in 1000 ml of buffer solution, respectively.

• Preparation of acetic acid

Molecular weight and density of acetic acid were 60 and 1.05 g/ml, respectively.

Thus, acetic acid used = $49.1063(10^{-3})(60) = 2.9464 \text{ g}$

= 2.9464/1.05 = 2.8061 ml

• Preparation of sodium acetate

Molecular weight of sodium acetate was 136

Thus, sodium acetate used = $0.8937(10^{-3})(136) = 0.1215$ g

Therefore, 2.8061 ml of acetic acid and 0.1215 g of sodium acetate were mixed together, and then the distilled water was added into the mixture in order to make total volume to 1000 ml.

Acetate buffer with pH 5

Likewise, acetic acid and sodium acetate used were 1.0133 and 4.3884, respectively.

2.2 Trisma buffer solution (tris(hydroxymethyl)aminomethane)

Trisma buffer with pH 7

pKa of trisma buffer was 8.1.

From equation (A2),

pH = pKa + log (A/HA) 7 = 8.1 + log (A/HA) A/HA = 0.0794

From equation (A3),

 $M_{b,t} = (1000)(0.05) = 50 \text{ mmol total buffer}$

Then the total mmol was divided into A and HA form

50/(1+0.0794) = 46.3206Thus, HA = 46.3206 A = 3.6794

It was meant that there were 46.3206 and 3.6794 mmol of tris (hydroxymethyl)aminomethane hydrochloride (or tris HCl) and tris(hydroxymethyl) aminomethane (or tris base) in 1000 ml of buffer solution, respectively.

Preparation of tris HCl

Molecular weight tris HCl was 157.6.

Thus, tris HCl used = $46.3206(10^{-3})(157.6)$ = 7.3001 g

• Preparation of tris base

Molecular weight of sodium acetate was 121.1.

Thus, sodium acetate used = $3.6794 (10^{-3})(121.1)$ = 0.4456 g

Therefore, 7.3001 g of tris HCl and 0.4456 g of tris base were mixed together, and then the distilled water was added into the mixture in order to make total volume to 1000 ml.

Trisma buffer with pH 9

Likewise, tris HCl and tris base used were 0.8811 and 5.3780, respectively.

3. Salt solution preparation

Three salt solutions, which were NaCl, KCl, and CaCl₂ were used in the desorption study. The amount of each salt was determined from equation (A4)

$$mol = g/M_w$$
 (A4)

where M_w of NaCl, KCl, and CaCl₂ were 58.5, 74.6, and 111.08, respectively.

Concentration	Amount used (g)					
(mM)	NaCl	KCl	CaCl ₂			
10	0.585	0.746	1.111			
50	2.925	3.730	5.554			
100	5.850	7.460	11.108			
500	29.250	37.300	55.539			
1000	58.500	74.600	111.078			

4. Sample Calculation

4.1 Adsorption Part

From the experiments, C_o (mg/l) and C_e (mg/l) which represented the concentration of ions in blank and in sample solution, respectively were obtained.

Qa =
$$\frac{(C_o - C_e)^* V}{1000 W_c}$$
 (A5)

Where V was the volume of liquid in the system (ml) and W_c was the clinoptilolite sample weight (g).

By using Eq. (A5), the amount of ions adsorbed, Qa (mg/g) can be obtained.

4.2 Desorption Part

Following the adsorption cycle, clinoptilolite samples were subjected to the desertion part. From the experiments, C_o (mg/l) and C_e (mg/l) which represented the concentration of ions in blank and in sample solution, respectively were obtained.

Qd =
$$(C_e - C_o)^* V$$
 (A6)
1000 W_c

Where V was the volume of liquid in the system (ml) and W_c was the clinoptilolite sample weight (g).

By using Eq. (A6), the amount of ions desorbed, Qd (mg/g) can be determined.

APPENDIX B: Experimental data

1. Ammonium Adsorption and Desorption

1.1. Ammonium Adsorption Isotherm

Table B.1 Experimental data of ammonium adsorption isotherm of natural clinoptilolite at pH 3 and initial concentration of 50, 100, 200, 500, 900, 1500, and 3000 mg/l

sample	W _c	C _e (mg/l)	Qa(mg/g)	pH
50(1)	0.3004	3.62	1.67	3.75
50(2)	0.3005	3.64	1.67	3.75
100(1)	0.3001	7.81	3.58	3.72
100(2)	0.3005	7.91	3.57	3.75
200(1)	0.3001	25.00	6.45	3.75
200(2)	0.2998	25.10	6.45	3.75
500(1)	0.3002	144.00	11.34	3.69
500(2)	0.2998	145.00	11.31	3.67
900(1)	0.3000	362.00	16.70	3.68
900(2)	0.2997	374.00	16.12	3.66
1500(1)	0.2999	756.00	16.21	3.59
1500(2)	0.3006	772.00	15.37	3.60
3000(1)	0.3006	1140.00	13.47	3.58
3000(2)	0.2996	1170.00	12.02	3.60

Table B.2	Experimental data	of amm	onium a	adsorptio	on isot	therm	for blan	k condition
at pH 3 and	d initial concentration	n of 50,	100, 20	0, 500,	900, 1	500, a	nd 3000	mg/l

sample	50	100	200	500	900	1500	3000
C _o (mg/l)	37.10	79.40	154.00	371.00	696.00	1080.00	1410.00
pН	3.16	3.15	3.15	3.16	3.15	3.17	3.15

Table B.3 Experimental data of ammonium adsorption isotherm of natural clinoptilolite at pH 5 and initial concentration of 50, 100, 200, 500, 900, 1500, and 3000 mg/l

sample	W _c	C _e (mg/l)	Qa(mg/g)	pН
50(1)	0.2998	8.88	1.37	5.04
50(2)	0.3002	15.60	1.03	5.03
100(1)	0.3002	19.00	2.95	5.03
100(2)	0.3001	17.70	3.02	5.04
200(1)	0.3002	44.90	5.15	5.05
200(2)	0.3000	41.70	5.32	5.03
500(1)	0.3001	167.00	10.45	5.04
500(2)	0.3004	165.00	10.54	4.99
900(1)	0.3001	406.00	13.10	5.02
900(2)	0.3000	406.00	13.10	4.85
1500(1)	0.3002	788.00	17.59	5.02
1500(1)	0.2999	794.00	17.31	5.00
3000(1)	0.2998	1090.00	17.46	4.98
3000(2)	0.3001	1110.00	16.44	4.97

Table B.4 Experimental data of ammonium adsorption isotherm for blank conditionat pH 5 and initial concentration of 50, 100, 200, 500, 900, 1500, and 3000 mg/l

3

sample	50	100	200	500	900	1500	3000
C _o (mg/l)	36.20	78.10	148.00	376.00	668.00	1140.00	1439.00
рН	4.43	4.44	4.44	4.44	4.45	4.45	4.44

Table B.5 Experimental data of ammonium adsorption isotherm of naturalclinoptilolite at pH 7 and initial concentration of 50, 100, 200, 500, 900, 1500, and3000 mg/l

sample	Wc	$C_e(mg/l)$	Qa(mg/g)	pН
50(1)	0.2994	3.88	1.97	7.44
50(2)	0.3004	3.85	1.96	7.42
100(1)	0.3000	8.91	4.20	7.45
100(2)	0.3002	8.45	4.22	7.43
200(1)	0.3003	28.80	7.20	7.42
200(2)	0.2998	27.80	7.26	7.45
500(1)	0.2994	155.00	11.52	7.41
500(2)	0.2995	160.00	11.27	7.41
900(1)	0.2999	411.00	14.15	7.42
900(2)	0.3003	410.00	14.19	7.37
1500(1)	0.3003	841.00	17.93	7.36
1500(1)	0.3005	855.00	17.22	7.39
3000(1)	0.2996	1210.00	18.52	7.35
3000(2)	0.2998	1210.00	18.51	7.38

Table B.6 Experimental data of ammonium adsorption isotherm for blank conditionat pH 7 and initial concentration of 50, 100, 200, 500, 900, 1500, and 3000 mg/l

sample	50	100	200	500	900	1500	3000
C _o (mg/l)	43.20	92.90	173.00	385.00	694.00	1200.00	1580.00
рН	7.12	7.12	7.10	7.09	7.07	7.03	7.03

Table B.7 Experimental data of ammonium adsorption isotherm of naturalclinoptilolite at pH 9 and initial concentration of 50, 100, 200, 500, 900, 1500, and3000 mg/l

sample	Wc	C _e (mg/l)	Qa(mg/g)	pН
50(1)	0.3006	2.76	1.67	3.75
50(2)	0.3003	2.55	1.68	3.75
100(1)	0.3000	5.16	3.65	3.72
100(2)	0.3002	5.24	3.64	3.75
200(1)	0.3007	16.00	6.58	3.75
200(2)	0.3001	15.80	6.61	3.75
500(1)	0.3001	107.00	13.45	3.69
500(2)	0.3002	100.00	13.79	3.67
900(2)	0.2998	283.00	19.26	3.66
1500(1)	0.3007	631.00	56.87	3.59
1500(2)	0.3006	569.00	56.89	3.60
2000(1)	0.3001	855.00	29.19	3.58
2000(2)	0.3006	870.00	28.39	3.60

Table B.8 Experimental data of ammonium adsorption isotherm for blank conditionat pH 9 and initial concentration of 50, 100, 200, 500, 900, 1500, and 3000 mg/l

sample	50	100	200	500	900	1500	3000
C _o (mg/l)	36.20	78.10	148.00	376.00	668.00	1140.00	1439.00
pН	9.17	9.19	9.11	8.96	8.73	8.72	8.64

Table B.9 Experimental data of kinetics of ammonium adsorption of naturalclinoptilolite at pH 3 and initial concentration of 900 mg/l

t	$C_t (mg/l)$
0	639
1	611
2	593
3	579
4	565
5	558
6	547
7	537
8	535
9	533
10	527
11	524
12	522
13	516
14	514
15	512
16	509
17	507
18	505
19	503
20	501

t	$C_t (mg/l)$
21	499
22	497
23	497
24	495
25	493
26	493
27	491
28	491
29	489
30	489
32	485
34	483
36	483
38	483
40	481
42	479
44	479
46	477
48	477
50	475
52	475

t	$C_t (mg/l)$
54	475
56	475
58	475
60	473
65	473
70	473
75	471
80	471
85	473
100	469
110	469
120	470
140	471
160	472
180	473
250	474
300	475
350	476
400	477
500	478

t	$C_t (mg/l)$
0	660
1	584
2	572
3	558
4	544
5	535
6	529
7	520
8	516
9	512
10	509
11	505
12	501
13	499
14	497
15	495
16	493
17	491
18	489
19	489

t	$C_t (mg/l)$
20	487
21	485
22	483
23	481
24	481
25	479
26	477
27	477
28	475
29	473
30	473
32	471
34	469
36	467
38	464
40	464
42	462
44	460
48	456
50	456
L	d

t	C _t (mg/l)
55	452
60	450
65	447
70	445
75	443
80	443
90	439
100	436
110	434
120	432
140	436
160	436
180	436
200	437
250	438
300	439
400	440
500	441
600	442

Table B.10 Experimental data of kinetics of ammonium adsorption of naturalclinoptilolite at pH 5 and initial concentration of 900 mg/l

t	$C_t (mg/l)$
0	688
1	581
2	512
3	505
4	507
5	512
6	507
7	509
9	509
10	507
11	505
12	503
13	499
14	499
15	495
16	493
17	491

t	C_1 (mg/l)
18	489
19	487
20	485
22	483
25	481
30	479
32	479
34	477
36	477
38	477
40	477
45	475
50	475
55	475
60	473
70	473
80	475

t	$C_t (mg/l)$
90	475
100	475
120	456
140	422
190	435
204	434
257	425
295	430
301	434
316	439
328	443
344	447
374	439
379	450
388	447
411	441

Table B.11 Experimental data of kinetics of ammonium adsorption of natural clinoptilolite at pH 7 and initial concentration of 900 mg/l

t	$C_t (mg/l)$
0	544
1	427
2	396
3	382
4	367
5	356
7	350
9	348
10	345
11	341
12	338
13	335
14	332
15	328
16	324

Ta	ble B.12 Experimental	data	of	kinetics	of	ammonium	adsorption	of	natural
cli	noptilolite at pH 9 and	initial	con	centration	n of	900 mg/l			

t	$C_t (mg/l)$					
17	321					
18	319					
19	318					
20	315					
22	311					
24	306					
26	302					
28	300					
30	296					
32	294					
34	291					
36	290					
38	288					
40	287					
45	283					

t	$C_t (mg/l)$
50	281
55	277
60	275
70	274
80	270
90	268
100	268
110	267
228	277
283	272
346	277
411	285
419	304

1.3. Ammonium Desorption Isotherm

Table B.13 Experimental data of ammonium desorption isotherm of natural clinoptilolite at pH 9 and initial concentration of 50, 100, 200, 500, and 900 mg/l with NaCl 10 mM

sample	ad	sorption p	desorption part		
	Wc	Ce	Qa	Ce	Qd
50(b)	-	36.2	-	-	-
50	0.3006	2.76	1.669	1.21	0.060
100(b)	-	78.1	-	-	-
100	0.3000	5.16	3.647	2.10	0.105
200(b)	-	148	-		-
200	0.3007	16.00	6.585	2.83	0.141
500(b)	-	376	-	-	-
500	0.3001	107.00	13.446	9.57	0.478
900(b)	-	668	-	-	-
900	0.3009	283.00	19.192	15.00	0.748
1500(b)	-	1140	-	-	-
1500	0.3007	631.00	25.391	18.57	0.926

Table B.14Experimental data of ammonium desorption isotherm of natural clinoptilolite at pH 9 and initial concentration of 50, 100, 200, 500, and 900 mg/l with NaCl 50 mM

sample	ad	sorption p	desorption part		
	Wc	Ce	Qa	Ce	Qd
50(b)	-	36.20	-		-
50	0.3003	2.55	1.681	5.02	0.251
100(b)	-	78.10	-	-	-
100	0.3002	5.24	3.641	10.00	0.500
200(b)	-	148.00	-	-	-
200	0.3001	15.80	6.608	15.00	0.750
500(b)	-	376.00	-	-	-
500	0.3002	100.00	13.791	35.00	1.749
900(b)	-	668.00	-	-	-
900	0.2998	283.00	19.263	55.00	2.752
1500(b)	-	1140.00	-	-	-
1500	0.3006	569.00	28.493	20.00	0.998
				L	

Table B.15Experimental data of ammonium desorption isotherm of natural clinoptilolite at pH 9 and initial concentration of 50, 100, 200, 500, and 900 mg/l with NaCl 100 mM

	ad	sorption p	desorption part		
sample	Wc	Wc Ce		Ce	Qd
50(b)	-	36.20	-	-	-
50	0.2998	8.88	1.367	7.94	0.397
100(b)	-	78.10	-	-	-
100	0.3002	19.00	2.953	13.70	0.685
200(b)	-	148.00	-	-	-
200	0.3002	44.90	5.152	27.70	1.384
500(b)	-	376.00	-	-	-
500	0.3001	167.00	10.447	63.90	3.194
900(b)	-	668.00	-	-	-
900	0.3001	406.00	13.096	113.00	5.648
1500(b)	-	1140.00	-	-	-
1500	0.3002	788.00	17.588	221.00	11.043

Table B.16Experimental data of ammonium desorption isotherm of naturalclinoptilolite at pH 9 and initial concentration of 50, 100, 200, 500, 900, and 1500mg/l with KCl 100 mM

1	ad	sorption p	desorption part			
sample	Wc Ce		Qa	Ce	Qd	
900 (b)	-	794	-	-	-	
900 (1)	0.3001	700	4.698	1620.00	12.99	
900 (2)	0.2998	694	5.003	1660.00	15.00	
1500 (b)	-	1570	-	-	-	
1500 (1)	0.2999	1439	6.552	1800.00	21.81	
1500 (2)	0.3002	1370	9.993	2000.00	29.60	

Table B.17 Experimental data of ammonium desorption isotherm of naturalclinoptilolite at pH 9 and initial concentration of 50, 100, 200, 500, 900, and 1500mg/l with NaCl 100 mM

	ad	sorption p	art	desorpt	desorption part		
sample	Wc	Ce	Qa	Ce	Qd		
50 (b)	-	36.2	-	-	-		
50	0.2998	8.88	1.367	7.94	0.306		
100 (b)	-	78.1	-	-	-		
100	0.3002	19.00	2.953	13.70	0.594		
200 (b)	-	148	-	-	-		
200	0.3002	44.90	5.152	27.70	1.293		
500 (b)	-	376	-	-	-		
500	0.3001	167.00	10.447	63.90	3.103		
900 (b)	-	668	-	-	-		
900	0.3002	406.00	13.096	113.00	5.557		
1500 (b)	-	1140	-	-	-		
1500	0.2998	788.00	17.588	221.00	10.952		

Table B.18 Experimental data of ammonium desorption isotherm of naturalclinoptilolite at pH 9 and initial concentration of 50, 100, 200, 500, 900, and 1500mg/l with CaCl₂ 100 mM

comple	ad	sorption p	desorption part		
sample	Wc	Ce	Qa	Ce	Qd
50 (b)	-	36.20	-	-	-
50	0.3002	15.60	1.029	17.90	0.82
100 (b)	-	78.10	-	-	-
100	0.3001	17.70	3.019	24.80	1.16
200 (b)	-	148.00	-	-	-
200	0.3000	41.70	5.315	45.00	2.17
500 (b)	-	376.00	-	-	-
500	0.3004	165.00	10.536	101.00	4.97
900 (b)	-	668.00	-	-	-
900	0.3000	406.00	13.100	172.00	8.52
1500 (b)	-	1140.00	-		-
1500	0.2999	794.00	17.306	288.00	14.33

Table B.19 Experimental data of kinetics of ammonium desorption of naturalclinoptilolite at pH 9 and Qa = 28.06 mg/l

t	$C_t (mg/l)$
0	7
1	415
2	471
3	505
4	533
5	553
6	572
7	588
8	606
9	618
10	634
11	641
12	652
14	677

t	$C_t(mg/l)$
15	671
16	685
18	699
19	705
20	711
22	720
24	732
26	738
28	744
30	753
36	769
40	781
45	794
50	811
the second se	

tC1 (mg/l)5782460835708528086290860100866171821217814263818326811390821		
5782460835708528086290860100866171821217814263818326811390821	t	$C_t (mg/l)$
60835708528086290860100866171821217814263818326811390821	57	824
708528086290860100866171821217814263818326811390821	60	835
80 862 90 860 100 866 171 821 217 814 263 818 326 811 390 821	70	852
90860100866171821217814263818326811390821	80	862
100866171821217814263818326811390821	90	860
171821217814263818326811390821	100	866
217 814 263 818 326 811 390 821	171	821
263 818 326 811 390 821	217	814
326 811 390 821	263	818
390 821	326	811
	390	821

2. Potassium Adsorption and Desorption

2.1. Potassium Adsorption Isotherm

Table B.20 Experimental data of potassium adsorption isotherm of naturalclinoptilolite at pH 3 and initial concentration of 50, 100, 200, 500, 900, 1500, 2000,2500, and 3000 mg/l

sample	W _c	C _e (mg/l)	Q _a (mg/g)	pН
50(1)	0.2993	26.70	0.80	3.72
50(2)	0.3007	27.30	0.77	3.65
100(1)	0.3007	32.00	2.89	3.64
100(2)	0.3001	33.10	2.84	3.66
200(1)	0.3005	48.10	7.13	3.66
200(2)	0.3000	48.10	7.15	3.69
500(1)	0.2993	131.00	16.59	3.61
500(2)	0.3002	131.00	16.54	3.64
900(1)	0.2997	336.00	25.28	3.66
900(2)	0.2998	332.00	25.47	3.66
1500(1)	0.3005	791.00	25.41	3.69
1500(2)	0.2997	785.00	25.78	3.61
2000(1)	0.2994	1200	32.57	3.64
2500(2)	0.3003	1580	36.46	3.66
3000(1)	0.2996	2100.00	33.04	3.61
3000(2)	0.3005	2080.00	33.94	3.64

Table B.21 Experimental data of potassium adsorption isotherm for blank condition at pH 3 and initial concentration of 50, 100, 200, 500, 900, 1500, 2000, 2500, and 3000 mg/l

sample	50	100	200	500	900	1500	2000	2500	3000
C _o (mg/l)	42.7	89.9	191.0	462	841	1300	1850	2310	2760
pН	3.16	3.15	3.14	3.14	3.14	3.16	3.14	3.15	3.16

Table B.22 Experimental data of potassium adsorption isotherm of naturalclinoptilolite at pH 5 and initial concentration of 50, 100, 200, 500, 900, 1500, and3000 mg/l

sample	Wc	C _e (mg/l)	$Q_a(mg/g)$	pН
50(1)	0.3007	13.7	1.79	5.02
50(2)	0.3006	8.1	2.06	5.05
100(1)	0.3007	17.5	3.69	5.01
100(2)	0.3009	10.2	4.05	5.01
200(1)	0.3004	18.7	8.80	5.01
200(2)	0.3006	19.3	8.77	5.02
500(1)	0.3000	95.6	19.37	5.02
500(2)	0.3007	81.1	20.05	5.01
900(1)	0.2997	296.0	28.33	5.01
900(2)	0.3008	283.0	28.87	5.02
1500(1)	0.3005	744.0	33.24	5.02
1500(2)	0.3007	747.0	33.07	5.02
3000(1)	0.3002	2090.0	43.97	5.02
3000(2)	0.3008	2070.0	44.88	5.02

Table B.23 Experimental data of potassium adsorption isotherm for blank conditionat pH 5 and initial concentration of 50, 100, 200, 500, 900, 1500, and 3000 mg/l

sample	50	100	200	500	900	1500	3000
C _o (mg/l)	49.5	91.4	195.0	483	862	1410	2970
pН	4.88	4.88	4.88	4.87	4.87	4.87	4.87

Table B.24 Experimental data of potassium adsorption isotherm of naturalclinoptilolite at pH 7 and initial concentration of 50, 100, 200, 500, 900, 1500, 2000,2500, and 3000 mg/l

sample	Wc	C _e (mg/l)	$Q_a(mg/g)$	pН
50(1)	0.3008	6.74	0.51	7.29
50(2)	0.3006	5.91	0.55	7.30
100(1)	0.3000	10.10	4.50	7.35
100(2)	0.3008	9.80	4.50	7.33
200(1)	0.2995	20.10	10.51	7.33
200(2)	0.2997	21.00	10.46	7.35
500(1)	0.2993	83.10	24.25	7.30
500(2)	0.3006	82.80	24.16	7.34
900(1)	0.3001	312.00	35.89	7.32
900(2)	0.2998	291.00	36.97	7.30
1500(1)	0.3007	821.00	43.35	7.28
1500(2)	0.3003	811.00	43.91	7.30
2000(1)	0.3005	1270	52.91	7.29
2500(2)	0.3003	1640	61.89	7.27
3000(1)	0.3003	2180.00	61.94	7.28
3000(2)	0.2995	2220.00	60.10	7.28

Table B.25 Experimental data of potassium adsorption isotherm for blank condition at pH 7 and initial concentration of 50, 100, 200, 500, 900, 1500, 2000, 2500, and 3000 mg/l

sample	50	100	200	500	900	1500	2000	2500	3000
C _o (mg/l)	16.9	100.0	230	567	1030	1690	2330	2879	3420
pН	6.97	6.96	6.98	6.98	6.98	7.02	7.02	7.03	7.03

Table B.26Experimental data of potassium adsorption isotherm of naturalclinoptilolite at pH 9 and initial concentration of 50, 100, 200, 500, 900, 1500, and3000 mg/l

sample	Wc	C _e (mg/l)	Q _a (mg/g)	pН
50(1)	0.2999	4.47	1.59	9.17
50(2)	0.3001	4.43	1.59	9.19
100(1)	0.3009	14.50	2.79	9.16
100(2)	0.2995	5.58	3.25	9.17
200(1)	0.2995	12.00	8.26	9.16
200(2)	0.3004	11.40	8.27	9.16
500(1)	0.3007	56.20	19.10	9.13
500(2)	0.2991	57.20	19.15	9.12
900(1)	0.3006	233.00	27.20	9.10
900(2)	0.3007	234.00	27.14	9.10
1500(1)	0.3000	696.00	25.60	9.10
1500(2)	0.3000	691.00	25.85	9.09
3000(1)	0.3008	2020.00	24.38	9.08
3000(2)	0.3006	2040.00	23.40	9.09

Table B.27 Experimental data of potassium adsorption isotherm for blank conditionat pH 9 and initial concentration of 50, 100, 200, 500, 900, 1500, and 3000 mg/l

sample	50	100	200	500	900	1500	3000
C _o (mg/l)	36.2	70.5	177.0	439	778	1208	2509
pН	9.12	9.10	9.11	9.10	9.13	9.13	9.11

Table B.28 Experimental data of kinetics of potassium adsorption of naturalclinoptilolite at pH 3 and initial concentration of 900 mg/l

t	$C_t (mg/l)$
0	845
1	688
2	652
3	634
4	621
5	608
6	601
7	593
8	586
9	581
10	574
11	569
12	565
13	562
14	558
15	555
16	553
17	551
18	549
19	549

t	$C_t(mg/l)$
20	549
21	546
22	544
24	540
25	537
26	537
28	531
30	527
32	520
34	518
36	514
38	512
40	509
45	505
48	501
50	499
57	493
60	491
65	489
70	489

t	C_1 (mg/l)
80	487
90	483
94	485
139	493
145	493
162	489
161	489
180	487
204	485
211	483
232	479
240	479
270	477
300	479
330	465
360	473
390	477
394	479

t	$C_t(mg/l)$	t	($C_t(mg/l)$		t	$C_t(mg/l)$
C	921	13		639		32	569
1	769	14		634		34	567
2	735	15		631		39	560
3	711	16		626		45	553
4	699	17	,	623		50	551
5	685	18		621		60	544
5	677	19)	618		70	537
7	668	20)	613		85	533
8	663	22	2	611		144	527
9	655	24		603		268	520
10	652	26	,	598	-	291	520
11	649	28		574		444	529
12	644	30)	574		L	
					J		

Table B.29 Experimental data of kinetics of potassium adsorption of naturalclinoptilolite at pH 5 and initial concentration of 900 mg/l

Table B.30 Experimental data of kinetics of potassium adsorption of naturalclinoptilolite at pH 7 and initial concentration of 900 mg/l

t	$C_1(mg/l)$
0	1070
1	845
2	814
3	798
4	785
5	772
6	762
7	756

t	$C_t(mg/l)$
8	747
9	738
10	729
11	723
12	717
13	711
14	705
15	702

t	C_t (mg/l)
16	696
17	691
18	688
19	685
20	682
21	679
22	677
23	671

t	$C_t(mg/l)$	t	$C_t(mg/l)$	t	$C_t(mg/l)$
24	671	38	628	100	596
25	666	40	626	141	591
26	663	45	618	150	588
27	660	50	613	184	586
28	655	55	611	193	586
29	652	60	608	229	586
30	649	65	606	241	586
32	644	70	603	300	588
34	639	80	601		1
36	634	90	598		

Table B.31 Experimental data of kinetics of potassium adsorption of natural clinoptilolite at pH 9 and initial concentration of 900 mg/l

t	C_t (mg/l)
0	544
1	427
2	396
3	382
4	367
5	356
7	350
9	348
10	345
11	341
12	338
13	335
14	332
15	328
16	324

t	C_t (mg/l)			
17	321			
18	319			
19	318			
20	315			
22	311			
24	306			
26	302			
28	300			
30	296			
32	294			
34	291			
36	290			
38	288			
40	287			
45	283			

t	$C_1(mg/l)$
50	281
55	277
60	275
70	274
80	270
90	268
100	268
110	267
228	277
283	272
346	277
411	285
419	304

2.3. Potassium Desorption Isotherm

Table B.32 Experimental data of potassium desorption isotherm of natural clinoptilolite at pH 9 and initial concentration of 100, 200, 500, 900, and 1500 mg/l with NaCl 100 mM

sample	ad	sorption p	art	desorption part	
sample	W _c	Ce	Qa	Ce	Qd
100 (b)	-	100	-	-	-
100	0.3000	10.1	4.495	57.40	2.870
200 (b)	-	230	-	-	-
200	0.2995	20.1	10.513	88.00	4.407
500 (b)	-	567	-	-	-
500	0.2993	83.1	24.252	182.00	9.121
900 (b)	-	1030	-	-	-
900	0.3001	312	35.888	282.00	14.095
1500 (b)	-	1690	-	-	-
1500	0.3007	821	43.349	495.00	24.692

Table B.33 Experimental data of potassium desorption isotherm of naturalclinoptilolite at pH 9 and initial concentration of 100, 200, 500, 900, and 1500 mg/lwith NaCl 500 mM

sample	ad	sorption p	art	desorption part	
sample	Wc	Ce	Qa	Ce	Qd
100 (b)	-	100	-	-	-
100	0.3008	9.8	4.498	210	1.995
200 (b)	-	230	-	-	-
200	0.2997	21	10.460	262	4.605
500 (b)	-	567	-	-	-
500	0.3006	82.8	24.162	406	11.776
900 (b)	-	1030	-	-	-
900	0.2998	291	36.975	579	20.464
1500 (b)	-	1690	-	-	-
1500	0.3003	811	43.906	775	30.220

Table B.34Experimental data of potassium desorption isotherm of naturalclinoptilolite at pH 9 and initial concentration of 50, 100, 200, 500, 900, and 3000mg/l with NaCl 1000 mM

	ad	sorption p	art	desorption part	
sample	Wc	Ce	Qa	Ce	Qd
50 (b)	-	49.50	-	-	-
50	0.3007	13.70	1.786	23.38	1.166
100 (b)	-	91.40	-	-	-
100	0.3007	17.50	3.686	63.38	3.162
200 (b)	-	195.00	-	-	-
200	0.3004	18.70	8.803	149.38	7.459
500 (b)	_	483.00	-	-	-
500	0.3000	95.60	19.370	360.38	18.019
900 (b)	-	862.00	-	-	-
900	0.2997	296.00	28.328	559.38	27.997
3000(b)	-	2970	-	-	-
3000	0.3002	2090.00	43.971	798.00	39.873

Table B.35Experimental data of potassium desorption isotherm of natural clinoptilolite at pH 9 and initial concentration of 50, 100, 200, 500, 900, and 3000 mg/l with CaCl₂ 1000 mM

sample	ad	sorption p	art	desorption part	
sample	W _c	Ce	Qa	Ce	Qd
50 (b)	-	49.50	-	-	-
50	0.3006	8.14	2.064	20.00	0.998
100 (b)	-	91.40	-	-	-
100	0.3009	10.20	4.048	66.00	3.290
200 (b)	-	195.00	-	-	-
200	0.3006	19.30	8.767	132.00	6.587
500 (b)	-	483.00	-	-	-
500	0.3007	81.10	20.048	402.00	20.053
900 (b)	-	862.00	-	-	-
900	0.3008	283.00	28.873	562.00	28.025
3000(b)	-	2970	-	-	-
3000	0.3008	2070.00	44.880	868.00	43.285

2.4. Kinetics of Potassium Desorption

Table B.36 Experimental data of kinetics of potassium desorption of naturalclinoptilolite at pH 9 and Qa = 46.97 mg/g

t	$C_t (mg/l)$
0	3
1	1000
2	1090
3	1150
4	1180
5	1210

t	$C_t (mg/l)$
6	1230
7	1240
8	1250
9	1260
10	1260
11	1270

t	$C_t (mg/l)$
12	1270
13	1280
14	1289
15	1300
16	1300
17	1310

t	$C_1 (mg/l)$	t	C _t (mg/l)	t	$C_t (mg/l)$
18	1310	38	1410	126	1620
19	1320	40	1420	190	1700
20	1320	45	1439	221	1720
21	1330	50	1460	240	1750
24	1350	55	1480	300	1810
26	1360	60	1480	423	1800
28	1370	70	1520	485	1840
30	1370	80	1550	513	1860
32	1380	90	1570	541	1830
34	1400	100	1580	554	1780
36	1400	110	1600	L	

3. Release of Preloaded-Mixed Ions Clinoptilolite

Table B.37 Experimental data of NH_4^+ loading at pH 7 using ammonium ion selective electrode (ISE)

sample	Wc	Ce	Qa
blank	-	5890	-
1	0.3500	5090.00	39.98
2	0.3503	4670.00	60.92

Table B.38 Experimental data of K^+ loading at pH 7 using Atomic Adsorption Spectrophotometer (AAS) with 5000 times dilution

sample	Abs	Caas	C _{gp}	Ce	Qa
blank	0.215	0.38	0.378	1895	-
1	0.133	0.24	0.239	1195	35.01
2	0.174	0.31	0.308	1545	17.49

Table B.39 Experimental data for calibration of K⁺ loading at pH 7 using AtomicAdsorption Spectrophotometer (AAS)

Ce	Abs
0.2	0.111
0.5	0.286
1	0.579

Figure B.1 Calibration curve of K⁺ loading at pH 7 using Atomic Adsorption Spectrophotometer (AAS)

Table B.40 Experimental data of NH_4^+ and K^+ release at pH 7 using ammonium and potassium ion selective electrode (ISE)

sample	W _c	Qa	Ce	Qd	Qr
1	0.2862	39.98	450.00	23.58	16.39
2	0.2765	60.92	740.00	40.15	20.77

CURRICULUM VITAE

Name: Ms. Nitida Nakapreecha

Date of Birth: November 1, 1980

Nationality: Thai

University Education:

1997 – 2001 Bachelor Degree of Science in Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.

