

REFERENCES

- Barlow, F.W. (1993). 2nd ed. <u>Rubber Compounding: Principles, Material and</u> <u>Techniques.</u> New York: Marcel Dekker.
- Blow, C.W. and Hepburn, C. (1982). <u>Rubber Technology and Manufacture</u>, 2nd Edition. London: Butterworths, 77-80.
- Chinpan, N. (1996). <u>Comparison of Rubber Reinforcement using Various Surface</u> <u>Modified Silicas</u>. M.S. Thesis in Petrochemical Technology, The Petroleum and Petrochemical College, Chulalongkorn University.
- Chaisirimahamorakot, S. (2001). <u>Modification of Silica Surface for Rubber</u> <u>Reinforcement using A Continuous Admicellar Polymerization System</u>.
 M.S. Thesis in Petrochemical Technology, The Petroleum and Petrochemical College, Chulalongkorn University.
- Fan, A., Somasundaran, P., and Turro, N.J. (1997). Adsorption of alkyltrimethyammonium bromides on negatively charged alumina. <u>Langmuir</u>, 13(3), 506-510.
- Hewitt, N.L. (2000, August). An introduction to silica fillers. Paper presented at <u>the</u> <u>Petroleum and Petrochemical College, Chulalongkorn University</u>, Bangkok, Thailand.
- Iler, R.K. (1979). The Chemistry of Silica. New York: John Wiley & Son.
- Ismail, H., Ishiaku, U.S., Ishak, Z.A.M., and Freakley, P.K. (1997). The effects of a cationic surfactant (fatty diamine) and a commercial silane coupling agent on the properties of a silica filled natural rubber compound. <u>European</u> <u>Polymer Journal</u>, 33(1), 1-6.
- Katz, H.S. and Milewski, J.V. (1987). Synthetic Silica. <u>Handbook of Fillers for</u> <u>Plastics</u>, New York: Van Notrand Reinhold, 165-201.
- Kitiyanan, B., O'haver, J.H., Harwell, J.H., and Osuwan, S. (1996). Adsolubilization of styrene and isoprene in cetyltrimethylammonium bromide admicelle on precipitated silica. <u>Langmuir</u>, 12(9), 2162-2168.
- Kohjiya, S. and Ikeda, Y. (2000). Reinforcement of natural rubber by silica generated in situ. <u>Proceedings of The Japan Academy Series B-Physical</u> <u>and Biological Sciences</u>, 76(3), 29-34.

- Lee, C., Yeskie, M.A., Harwell, J.H., and O'Rear, E.A. (1990). Two site adsolubilization model of incorporatin of alcohols into adsorbed surfactant aggregates. <u>Langmuir</u>, 6(12), 1758-1762.
- LimOchakun, R. (2000). <u>Cure and Mechanical Properties of Filled Natural Rubber</u>
 <u>Vulcanisates</u>. M.S. Thesis in Polymer Science, The Petroleum and Petrochemical College, Chulalongkorn University.
- Mark, J.E., Eramn, B., and Erich, F.R. (1994). 2nd ed. <u>Science and Technology of</u> <u>Rubber</u>. New York: Academic Press.
- Nunn, C.C., Schechter, R.S., and Wade, W.H. (1982). Visual evidence regarding the nature of hemimicelles through surface solubilization of pinacyanol chloride. <u>The Journal of Physical Chemistry</u>, 86(16), 3271-3272.
- O'Haver, J.H., Harwell, J.H., O'Rear, E.A., Snodgrass, L.J., and Waddell, W.H. (1994). In-situ formation of polystyrene in adsorbed surfactant bilayers on silica. <u>Langmuir</u>, 10, 2588-2593.
- O'Haver, J.H., Harwell, J.H., Evans. L.R., and Waddell, W.H. (1996). Polar copolymer-surface-modified precipitated silica. Journal of Applied Polymer Science, 59(9), 1427-1435.
- O' Rear, E.A., Wu, J., and Harwell, J.H. (1987). Two-dimensional reaction solvent: surfactant bilayers in the formation of ultrathin films. <u>Langmuir</u>, 3(4), 531-537.
- Rosen, M.J., (1989). <u>Surfactants and Interfacial Phenomena</u>, 2nd Edition. New York: John Willy and Sons.
- Rubingh, D.N. and Holland, P.M. (1990). Cationic Surfactants Physical Chemistry. Surfactant Science Series, 57. New York: Marcel Dekker.
- Scamehorn, J.F. and Harwell, J.H. (1988). Surfactant-based treatment of process streams. <u>In Surfactant in Chemical/Process Engineering</u>. Wason, D.T., Ginn, M.E., and Shah, D.O., (Editors). New York: Marcel Dekker.
- Thammathadanukul, V., O'Haver, J.H., Osuwan, S., NaRanong, N., and Waddell, W.H. (1996). Comparison of rubber reinforcement using various surfacemodified precipitated silicas. <u>Journal of Applied Polymer Sience</u>, 59(11), 1741-1750.

- Waddell, W.H., O'Haver, J.H., Evans, A.R., and Harwell, J.H., (1995). Organic polymer-surface modified precipitated silica. <u>Journal of Applied Polymer</u> <u>Science</u>. 55(12), 1627-1641.
- Wagner, M.P. (1976). Reinforcing silicas and silicates. <u>Rubber Chemistry and</u> <u>Technology</u>, 49(3), 703-774.
- Wu, J., Harwell, J.H., and O'Rear, E.A. (1987). Two-dimensional solvents: kinetics of sytrene polymerization in admicelles at or near saturation. <u>The Journal of</u> <u>Physical Chemistry</u>, 91(3), 623-634.
- Yeskie, M.A. and Harwell, J.H. (1988). On the structure of aggregates of adsorbed surfactants: the surface charge density at the hemimicelle / admicelle transition. <u>The Journal of Physical Chemistry</u>, 92(8), 2346-2352.

APPENDICES

Appendix A Continuous Stirred Tank Reactor

Co-monomer Loading Calculation

 Table A1
 Calculation of the amount of co-monomer loading for the surface modification

Monomer		Styrene	Isoprene			
Mole ratio		1	3			
Molecular we	eight	104.15	68.12			
Density		0.906	0.681			
Mole factor	Weig	ght (g)	Total weight	Volume (ml)		
	Styrene	Isoprene	(g)	Styrene	Isoprene	
0.01621 1.688		3.3120	5	0.0147	0.0331	
0.06483	6.7518	13.2482	20	0.0587	0.1324	
0.09724	10.1277	19.8723	30	0.0881	0.1987	

Pump Flow Rate Determination

Table A2 Calculation of pump flow rate for various retention times of the surface modification

Reactor size		1 1	(V)		
Total run volume	12	.5 1			
(τ)	(v = V	//τ)		$(t = \tau / v)$	
Mean resident time	Flow	rate	Т	otal run tir	ne
(min)	ml / sec	ml / min	min	hr	hr : min
30	0.556	33.33	375	6.25	6:15
45	0.370	22.22	562.5	9.375	9:22
60	0.278	16.67	750	12.5	12:30

Calculation is based on a ratio of 80 grams silica per liter of CTAB solution, and for one-kilogram silica modification per a run.

Product Consistency Consideration

 Table A3
 Carbon content from TOC at different time after startup

Time (h:min)	Time (min)	C content (ppm)
0:00	0	2011
0:15	15	2219
0:30	30	2401
0:45	45	2228
1:00	60	2316
1:30	90	2353
2:00	120	2012
2:30	150	2116
3:00	180	2380
3:30	210	2085
4:00	240	2085

Modification condition is 20 g styrene-isoprene charged per kg silica at 30 min retention time. Polymerization was carried on at 70°C.

The carbon content at various startup time of product from the reactor was determined by a TOC. The carbon content value represents the amount of CTAB and monomers dissolving in the liquid filtered from product.

Appendix B Adsorption Isotherm

Surfactant Adsorption Isotherms Calculation

CTAB adsorption isotherm was constructed by plotting the amount of CTAB adsorbed per gram silica versus equilibrium concentration of CTAB.

Conditions : Silica 0.5 g, Solution 20 ml, MW of CTAB

1. Finding CTAB adsorbed concentration (ppm).

[Adsorbed CTAB] = [Initial CTAB]-[Equilibrium CTAB]

[Initial CTAB] = 149.70 ppm.

[Equilibrium CTAB] = 32.00 ppm.

[Adsorbed CTAB] = 149.70-32.00 = 117.70 ppm.

2. To convert unit of ppm to micromolar by parameter from calibration curve.

Micromolar = ppm/0.3137

Adsorbed concentration (μ M) = Adsorbed concentration (ppm)/0.3137

Adsorbed concentration (μ M) = 117.70/0.3137 = 477.21

Equilibrium concentration (μ M) = Equilibrium concentration (ppm)/0.3137

Equilibrium concentration (μ M) =32.00/0.3137 = 102.01

3. To convert adsorption concentration to moles of adsorption.

Mole = (concentration × volume)

1000

Adsorbed (μ moles) = (Adsorbed (μ M) × volume of solution)

1000

Adsorbed (μ moles) = (477.21 × 20)/1000 = 9.54

4. Finding CTAB adsorbed per gram silica.

CTAB adsorbed (μ moles/g silica) = Adsorbed (μ moles)

CTAB adsorbed (μ moles/g silica) = 9.54/0.5 = 19.09

Adsorption Isotherm

*

Table B1Adsorption isotherm of CTAB at pH 5 and 8

Adsorbed CTAB (µmol/g silica)	Eq conc.(µM)
1.45	26.72
10.23	36.35
13.74	46.74
18.21	41.19
22.16	38.86
28.76	71.63
33.04	60.91
120.66	47.84
383.66	179.44
435.79	160.65
633.10	595.74
697.30	791.97
688.15	1101.25
718.03	2487.62
730.23	1776.83
747.27	3353.39
674.37	30622.98
618.46	38282.76
716.59	44738.54

Appendix C Surface Characterization

BET Raw Data

 Table C1
 BET surface area raw data with various retention times and styrene-isoprene loading.

Sample		BET su	irface area	Pore	Pore Volume		Pore Diameter	
Monomer Loading (g/kg silica) Retention Time*		m ² / g	% Changed	(cc/g)	% Changed	(A°)	% Changed	
	L	119.0	-30.21	1.144	-23.83	365.6	15.66	
5	М	141.0	-17.30	1.582	5.33	428.4	35.53	
	Н	124.0	-27.27	1.176	-21.70	377.7	19.49	
	L	129.2	-24.22	0.896	-40.35	260.9	-17.46	
20	М	143.0	-16.13	1.216	-19.04	348.0	10.09	
	Н	135.0	-20.82	1.205	-19.77	354.7	12.21	
	L	139.0	-18.48	1.210	-19.44	348.3	10.19	
30	М	157.0	-7.92	1.579	5.13	399.8	26.48	
	Н	153.0	-10.26	1.136	-24.37	314.3	-0.57	
Silica Hi-Sil [®] 255		170.5	-	1.502	-	316.1	-	
	Average		-18.78		-17.56		12.40	

*L = 30 min, M = 45 min, H = 60 min

Silica Hi-Sil[®]255 was outgased at 200°C in N_2 environment. All modified silicas were outgased at 150°C for at least three hours, then analyzed with program of 10 points adsorption and 10 points desorption. The calculation is based on silica Hi-Sil[®]255.

Particle Size Raw Data

Table C2 Particle size raw data with various retention times and styrene-isoprene loading.

Samp	Particle size (μm)						
Monomer Loading (g/kg silica)	Monomer Loading (g/kg silica) Retention time*		2 nd	3 rd	Average	% Changed	
	L	93.15	92.36	-	92.76	82.409	
5	M	98.11	98.53	-	98.32	93.353	
	Н	100.69	104.66	-	102.68	101.917	
	L	73.97	79.14	83.70	78.94	55.2343	
20	М	90.54	71.79	-	81.17	59.6165	
	Н	69.97	72.26	66.93	69.72	37.1091	
	L	84.84	85.45	-	85.15	67.4435	
30	M	80.99	79.47	-	80.23	57.7778	
	Н	69.59	70.91	-	70.25	38.1514	
Silica Hi-Sil [®] 255		52.44	49.25	-	50.85	-	
	Average	9			65.8902		

 $*L = 30 \min$

 $M = 45 \min$

 $H = 60 \min$

Calculation of Amount of Polymer from TGA

		TGA (%wt. loss)								
Sample		Before THF extraction			A					
		1 st step* losing	2 nd step** losing	Calculated % carbon of polymer	l st step* losing	2 nd step** losing	Calculated % carbon of polymer	% Extracted polymer		
	L	2.250	1.600	1.101	3.698	1.043	0.223	87.810		
5	М	2.977	1.567	0.907	3.715	1.140	0.316	59.078		
	Н	2.314	1.540	1.027	3.338	1.055	0.315	71.217		
	L	2.294	1.413	0.904	3.395	1.060	0.307	59.724		
20	М	2.227	1.251	0.757	3.856	1.025	0.170	58.731		
	Н	2.306	1.356	0.845	3.482	0.956	0.184	66.087		
	L	2.574	1.477	0.906	3.696	1.081	0.262	64.491		
30	M	2.248	1.350	0.852	3.424	0.980	0.221	63.087		
	Н	1.764	1.284	0.893	3.511	0.990	0.212	68.146		
Silica_CTAB [#]		9.404	2.488							
		11.86	2.227							

Table C3 Calculation of the amount of polymer from TGA data of the modified silica.

2.357

* Disappear at 180°C ** Disappear at 327°C

Average

10.632

[#] (Chaisirimahamorakot, 2001)

%wt of calculated polymer = the % wt lose at the second lose of modified silica – (the %wt loss at the first lose of modified silica / 10.632 x 2.3575)

%wt of extracted polymer = (% wt of calculated polymer at before THF extraction - % wt of calculated polymer at after THF extraction) x 100

CURRICULUM VITAE

Name: Ms. Paranee Nontasorn

Date of Birth: November 13, 1979

Nationality Thai

University Education:

1996-1999 Bachelor Degree of Science in Industrial Chemistry, Faculty of Applied Science, King Mongkut's Institute of Technology North Bangkok, Bangkok, Thailand

