REGENERATION OF t-OCTYLPHENOLPOLYETHOXYLATE (TRITON X-114) COACERVATE PHASE BY VACUUM STRIPPING

Mr. Pisit Tanawuttiwat

A Thesis Submitted in Partial Fulfilment of Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2003

ISBN 974-17-2272-9

Thesis Title:	Regeneration of t-Octylphenolpolyethoxylate (Triton X-114)	
	Coacervate Phase by Vacuum Stripping	
By:	Mr. Pisit Tanawuttiwat	
Program:	Petrochemical Technology	
Thesis Advisors:	Dr. Boonyarach Kitiyanan	
	Prof. Somchai Osuwan	
	Prof. John F. Scamehorn	

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

K. Bunyalint.

..... College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

A. Qu

(Prof. Somchai Osuwan)

John Dramehom

(Prof. John F. Scamehorn)

Kifipat Siemanord

(Dr. Kitipat Siemanond)

Boomyarach Kitiyanan

(Dr. Boonyarach Kitiyanan)

Pramorh R.

(Asst. Prof. Pramoch Rangsunvigit)

ABSTRACT

4471002063 : PETROCHEMICAL TECHNOLOGY PROGRAM
Mr. Pisit Tanawuttiwat: Regeneration of t-Octylphenolpolyethoxy late (Triton X-114) Coacervate Phase by Vacuum Stripping. Thesis Advisors: Prof. John F. Scamehorn, Prof. Somchai Osuwan, and Dr. Boonyarach Kitiyanan, 56 pp. ISBN 974-17-2272-9

Keywords : Cloud point extraction/ Coacervate phase/ Vacuum stripping/ Volatile organic compound/ Henry's law constant/ Partition coefficient/ Overall volumetric mass transfer coefficient

In order to make the cloud point extraction (CPE) process economically feasible it is necessary to recover and reuse the surfactant from the effluent stream, which is the coacervate phase solution. This study utilized a bench-scale flash vacuum column to strip out toluene from the t-Octylphenolpolyethoxylate (Triton X-114) coacervate phase. The column used was a differential stripper packed with glass raschig rings and operated under rough vacuum. The Henry's law constant and the partition coefficient of toluene in the surfactant solution were experimentally determined. With a surfactant concentration of 300 mM, the presence of surfactants greatly reduced the Henry's law constant. With co-current flash vacuum stripping at liquid loading rates lower than 0.29 cm³/cm²/min channeling occurred and caused the overall mass transfer coefficient $(K_x a)$ to drop with increasing liquid loading rate. Above this liquid loading rate, channeling was eliminated and the effective contact area increased, leading to higher K_xa values. At pressures greater than 100 torr the effect of pressure on K_xa was insignificant. However, at lower pressures, K_xa values increased significantly. The surfactant concentration in the effluent stream remained relatively constant even with changes in liquid loading rate and pressure.

บทคัดย่อ

พิศิษฐ์ ธนวุฒิวัฒน์ : การแยกทอลูอีนจากสารเตตระออกทิลฟืนอลโพลิอิทอกซีเลต ที่อยู่ในวัฏภาคโคแอคเซอร์เวท โดยใช้การสตริพพิงภายใต้สูญญากาศ (Regeneration of t-Octylphenolpolyethoxylate (Trition X-114) Coacervate Phase by Vacuum Stripping) อ. ที่ ปรึกษา: ศ. คร. สมชาย โอสุวรรณ, คร. บุนยรัชต์ กิติยานันท์ และ ศ. คร. จอห์น สเกมีฮอร์น 56 หน้า ISBN 974-17-2272-9

ในงานวิจัยนี้ได้ทำการศึกษาการสตริพพิงทอลูอื่นจากวัฏภาคโคแอคเซอร์เวท ซึ่ง ประกอบด้วยสารเตตระออกทิลฟีนอลโพลิอิทอกซีเลตเข้มข้นและทอลูอีนภายใต้สูญญากาศ ใน ้คอลัมน์ที่บรรงด้วยท่อแก้วกลวงขนาดเล็ก นอกงากนั้น งานวิงัยนี้ยังได้ทำการทดลองหาค่าคงที่ ของเฮนรี และค่าคงที่สมคุลย์ระหว่างไอกับของเหลวของทอลูอีน ในวัฏภาคโคแอคเซอร์เวทที่มี สารลดแรงตึงผิวเข้มข้น 300 มิลลิโมลาร์ พบว่า สารลดแรงตึงผิวในวัฏภาคโคแอกเซอร์เวท มีผล ต่อการลดลงของค่าคงที่ของเฮนรีอย่างมาก สำหรับกระบวนการสตริพพิงเพื่อแยกทอลอื่นออกจาก ้วัฏภาคโคแอคเซอร์เวท ภายใต้สูญญากาศแบบต่อเนื่องและใหลทางเคียวกัน พบว่า ที่อัตราการ ใหลของสารป้อนต่ำกว่า 0.29 ซม./นาที การสัมผัสกันของของเหลวและก๊าซยังไม่มีประสิทธิภาพ ทำให้มีพื้นที่การสัมผัสที่ใช้งานจริงน้อย ส่งผลให้สัมประสิทธิ์รวมการถ่ายโอนมวลของระบบลด ้ลง เมื่ออัตราการ ใหลของสารป้อนเพิ่มขึ้น แต่ที่อัตราการ ใหลของสารป้อนสูงกว่าค่าคังกล่าว การ สัมผัสกันของของเหลวและก๊าซเกิดคีขึ้น ทำให้พื้นที่การสัมผัสที่ใช้งานจริงเพิ่มขึ้น ส่งผลให้ สัมประสิทธิ์รวมการถ่ายโอนมวลของระบบเพิ่มขึ้น และจากการศึกษาผลของความคันในคอลัมน์ พบว่าที่ความคันมากกว่า 100 ทอร์ ผลกระทบของความคันต่อสัมประสิทธิ์รวมการถ่ายโอนมวลยัง ไม่เด่นชัด แต่เมื่อความคันต่ำกว่าค่าดังกล่าว สัมประสิทธิ์รวมการถ่ายโอนมวลจะเพิ่มขึ้นอย่างเห็น ได้ชัดเจน สำหรับความเข้มข้นของสารถดแรงตึงผิวในผลิตภัณฑ์ที่ได้จากการสตริพ พบว่า ความ เข้มข้นของสารถดแรงตึงผิวมีค่าค่อนข้างคงที่ ไม่เปลี่ยนแปลงไปตามอัตราการไหลของสารป้อน และความคันในคอลัมน์

ACKNOWLEDGEMENTS

This work could not be completed without invaluable supports of the following individuals and organizations.

I would like to appreciate my advisors, Prof. John F. Scamehorn, Prof. Somchai Osuwan, and Dr. Boonyarach Kitiyanan for their helps, advice and encouragement on this work.

I would like to give my thank to Asst. Prof. Pramoch Rangsunvigit and Dr. Kitipat Siemanond for being my thesis committee, PPC faculties for their guidance and support; PPC staff for their contributions. Gratitude is also passed to my senior students especially Mr. Siriphong Roatluechai, Ms. Punjaporn Trakulthamupatam, and Ms. Korada Supat for their help, advice, suggestion and encouragement. Their sincere guidance is definitely essential for my work.

I would like to acknowledge Mr. Chaturong Tiamsiri for his countless assistance on my vacuum stripper and other machines. He is a really good and kind technician. He taught me a lot of hardware skills. I am sure that the vacuum stripper would not be successfully fabricated without his help.

My friends especially Ms. Kanokwan Saktrakul and Ms. Nitida Nakapreecha, also deserve this praise for being with me during the hard times. All of them are very important for me in finishing this work.

This thesis work is partially funded by Postgraduate Education and Research Programs in Petroleum and Petrochemical Technology (PPT Consortium)

Last but not least, I would like to express my deep gratitude to my parents, brother and sister. Without their love and understanding, I would not be able to achieve my goal. I would like to thank them for supporting me in every way.

TABLE OF CONTENTS

PAGE

	Title Page			i	
	Abs	stract (in	n English)	iii	
	Abs	stract (in	n Thai)	iv	
	Ack	cnowled	lgements	v	
	Tab	le of C	ontents	vi	
	List	t of Tab	les	ix	
	List	List of Figures			
СНАРТЕ	R				
I	INT	rodu	JCTION	1	
II	BACKGROUND AND LITERATURE SURVEY			3	
	2.1	Princip	ple of Cloud Point Extraction	3	
	2.2 Surfactant Regeneration Processes		tant Regeneration Processes	3	
		2.2.1	Air Stripping in Packed Column	4	
		2.2.2	Steam Stripping in Packed Column	4	
		2.2.3	Spraying	4	
		2.2.4	Pervaporation	4	
		2.2.5	Flash Vacuum Stripping in Packed Column	5	
	2.3	2.3 Surfactant and Solubilization		6	
		2.3.1	Micelle Formation	6	
		2.3.2	Solubilization	7	
	2.4 Mass Transfer in Surfactant Solutions2.5 Equilibrium Data		Fransfer in Surfactant Solutions	8	
			brium Data	9	
		2.5.1	Measurement of Henry's Law Constant Using		
			a Headspace Autosampler	10	
	2.6	Therm	odynamics of Flash Vacuum Stripping	10	
		2.6.1	The Henry's and Modified Henry's Constant	10	
		2.6.2	The Vapor-liquid Equilibrium Partition Coefficient (K)	12	

2.7 Flash Calculations				14	
	2.8 Rate of Mass Transfer in Flash Vacuum Stripping				15
III	EXPERIMENTAL			17	
	3.1	Mater	ials		17
	3.2	Exper	imental A	Apparatus	17
	3.2.1 Design and Experimental Setup of Co-current			and Experimental Setup of Co-current	
			Vacuun	n Stripping	17
		3.2.2	Design	and Experimental Setup for Equilibrium	
			Data De	etermination	21
	3.3	Metho	odology		21
		3.3.1	Experin	nental Procedures	21
			3.3.1.1	Determination of Equilibrium Time for	
				Toluene in Aqueous and Coacervate Phase	
				Solution	21
			3.3.1.2	Determination the Correlation of Toluene	
				Partial Pressure and Linear Responses of	
				the GC Detector at Equilibrium Condition	22
			3.3.1.3	Determination the Apparent Henry's Law	
				Constant for Toluene in Coacervate Phase	
				Solution	22
			3.3.1.4	Procedure for Co-current Vacuum Stripping	
				Operation	22
		3.3.2	Data Ca	lculation and Analysis	23
IV	RE	SULTS	S AND D	DISCUSSION	25
	4.1	Equili	brium Ti	me Analysis for Toluene-Water Solution	
		and C	oacervate	Phase Solution System	25
	4.2	The C	orrelation	n of Toluene Partial Pressure and Linear	
		Respo	onses of th	ne GC Detector at Equilibrium Condition	26
	4.3	Appar	ent Henr	y's Law Constant for Toluene in	
		Coace	ervate Pha	ase Solution	27

vii

4.4 The Solubilization Constant of Toluene in Coacervate	
Phase Solution	28
4.5 The Vapor-Liquid Equilibrium Partition Coefficient (K)	
for Toluene and Water in Coacervate Phase Solution	29
4.6 The Co-Current Flash Vacuum Stripping Operation	30
4.7 Effect of Liquid Flow Rate on Overall Volumetric	
Mass Transfer Coefficient (K _x a), Number of Transfer Unit	
(NTU), and Height of Transfer Unit (HTU)	31
4.8 Effect of Liquid Flow Rate on Surfactant Concentration	
in Product Stream	33
4.9 Effect of Pressure on Overall Volumetric Mass Transfer	
Coefficient (K_xa), Number of Transfer Unit (NTU), and	
Height of Transfer Unit (HTU)	33
4.10Effect of Pressure on Surfactant Concentration in	
Product Stream	34
CONCLUSIONS AND RECOMMENDATIONS	36
REFERENCES	39
APPENDICES	42
Appendix A Principle of stripping in co-current operation	42
Appendix B Toluene properties	47
Appendix C Experimental data	49
CURRICULUM VITAE	56

 \mathbf{V}

LIST OF TABLES

TABLE				
3.1	Label of number equipment	19		
3.2	Design parameters of the flash vacuum stripping column	19		
Cl	Apparent henry's law constant data: initial $[OP(EO)_7] = 300 \text{ mM}$,			
	initial [toluene] = $150-1000$ ppm, temperature $30^{\circ}C$	55		
C2	Solubilized and unsolubilized toluene concentration in liquid phase			
	at equilibrium condition: initial $[OP(EO)_7] = 300 \text{ mM}$, initial			
	[toluene] = 150-1000 ppm, temperature 30°C	56		
C3	Solubility constant (Ks): initial $[OP(EO)_7] = 300 \text{ mM}$, initial			
	$[toluene] = 150-1000 \text{ ppm}, \text{ temperature } 30^{\circ}\text{C}$	57		
C4	Partition coefficient of toluene: initial $[OP(EO)_7] = 300 \text{ mM}$,			
	initial [toluene] = 150-1000 ppm, temperature 30°C	58		
C5	Partition coefficient of water: initial $[OP(EO)_7] = 300 \text{ mM}$,			
	initial [toluene] = 150-1000 ppm, temperature 30°C	59		
C6	Effect of liquid flow rate on overall liquid phase mass transfer			
	coefficient of toluene in surfactant solution: initial [OP(EO)7]			
	= 300 mM, initial [toluene] = 300 ppm, temperature 30°C	60		
C7	Effect of pressure on overall liquid phase mass transfer coefficient			
	of toluene in surfactant solution: initial $[OP(EO)7] = 300 \text{ mM}$,			
	initial [toluene] = 300 ppm, temperature 30°C	61		

LIST OF FIGURES

FIGURE

2.1	Plot of solution properties versus the bulk phase concentration	
	for an aqueous solution of a surfactant.	7
3.1	Profile of continuous co-current vacuum stripper.	18
3.2	A continuous co-current vacuum stripper.	20
4.1	Relation between GC peak area of toluene concentration in	
	vapor phase and toluene concentration in liquid phase in toluene-	
	water system at equilibrium condition.	26
4.2	Relation between toluene partial pressure and total toluene concen-	
	tration in coacervate phase solution (300 mM OP(EO)7, 30°C)	
	at equilibrium condition.	27
4.3	Solubilization constant for toluene in 300 mM OP(EO)7 solution	
	as a function of toluene concentration at 30°C.	28
4.4	The vapor-liquid equilibrium partition coefficient for toluene in	
	coacervate phase solution (300 mM OP(EO) ₇) at 30°C.	29
4.5	The vapor-liquid equilibrium partition coefficient for water in	
	coacervate phase solution (300 mM OP(EO) ₇) at 30°C.	30
4.6	Overall volumetric mass transfer coefficient (K_xa) as a function	
	of liquid flow rate (initial system: 300 ppm toluene, 300 mM	
	surfactant solution, 55 torr column pressure, and 30°C).	32
4.7	Number of transfer unit (NTU) and height of transfer unit (HTU)	
	as a function of liquid flow rate (initial system: 300 ppm toluene,	
	300 mM surfactant solution, 55 torr column pressure, and 30°C).	32
4.8	Surfactant concentration in product stream as a function of liquid	
	flow rate (initial system: 300 ppm toluene, 300 mM surfactant	
	solution, 55 torr column pressure, and 30°C).	33

PAGE

4.9	Overall volumetric mass transfer coefficient $(K_x a)$ as a function	
	of pressure (initial system: 300 ppm toluene, 300 mM surfactant	
	solution, 8.2 ml/min liquid flow rate, and 30°C).	34
4.10	Number of transfer unit (NTU) and height of transfer unit (HTU)	
	as a function of pressure (initial system: 300 ppm toluene, 300	
	mM surfactant solution, 8.2 ml/min liquid flow rate, and 30°C).	35
4.11	Surfactant concentration in product stream as a function of pressure	
	(initial system: 300 ppm toluene, 300 mM surfactant solution, 8.2	
	ml/min liquid flow rate, and 30°C).	35