PYROLYSIS OF OIL SLUDGE FROM AN API SEPARATOR

Mr. Prame Punnaruttanakun

A Thesis Submitted in Partial Fulfilment of the Requirements For the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University In Academic Partnership with The University of Michigan, The University of Oklahoma, And Case Western Reserve University 2003

ISBN 974-17-2297-4

Thesis Title:	Pyrolysis of Oil Sludge from an API Separator	
By:	Mr. Prame Punnaruttanakun	
Program:	Petrochemical Technology	
Thesis Advisors: Asst. Prof. Pramoch Rangsunvigit		
	Asst. Prof. Vissanu Meeyoo	
	Assoc. Prof. Thirasak Rirksomboon	
	Dr. Boonyarach Kitiyanan	
	Dr. Chatvalee Kalambaheti	

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

K. Bunyahint.

...... College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

Tramoch R

(Asst. Prof. Pramoch Rangsunvigit)

(Assoc. Prof. Thirasak Rirksomboon)

Chatvalee Kalanbaket

(Dr. Chatvalee Kalambaheti)

(Asst. Prof. Vissanu Meeyoo)

Boonyapach Kitiyanan

(Dr. Boonyarach Kitiyanan)

Kitipat Simanord

(Dr. Kitipat Siemanond)

ABSTRACT

4471023063: PETROCHEMICAL TECHNOLOGY PROGRAM
Prame Punnaruttanakun: Pyrolysis of Oil Sludge from an API Separator
Thesis's Advisors: Asst. Prof. Pramoch Rangsunvigit,
Asst. Prof. Vissanu Meeyoo, Assoc. Prof. Thirasak Rirksomboon,
Dr. Boonyarach Kitiyanan, and Dr. Chatvalee Kalambaheti,
79 pp. ISBN 974-17-2297-4
Keywords: Pyrolysis; Oil sludge; API separator sludge

Typically, API separator sludge can be handled via combustion and/or recycling into reusable oils. However, it has been found that such methods cause secondary pollutants. Recently, pyrolysis has been proven to be an alternative for disposal of this sludge. In this study, we investigated the API separator sludge obtained from an oil company in Thailand. Experiments were carried out by means of thermogravimetric analysis at different heating rates of 5, 10 and 20°C • min⁻¹. The weight loss data were then scrutinized for kinetic analysis. Results showed that typical derivative curves of the sludge consist of two major peaks. The first peak was found between 230-270°C while the other was found between 400-415°C. The former was resulted from the volatilization of free light volatile compounds existing in the sludge and the latter was attributed to the volatilization and main pyrolysis. The pyrolyzed products were confirmed by the mass spectroscopy results. Hydrogen and acetylene were found to be the main species in the pyrolysis products. The pseudo bi-component model showed a good fit with the experimental data.

บทคัดย่อ

เปรม ปุณณรัตนกุล: ไพโรไลซีสของกากตะกอนน้ำมันจากบ่อแยก API (Pyrolysis of Oil Sludge from an API Separator) อ. ที่ปรึกษา: ผศ. ปราโมช รังสรรค์วิจิตร ผศ. วิษณุ มีอยู่ รศ. ธีระศักดิ์ ฤกษ์สมบูรณ์ คร. บุนยรัชต์ กิติยานันท์ และ คร. ชัชวลี กะลัมพะเหติ 79 หน้า ISBN 974-17-2297-4

โดยหลักการทั่วไปกากตะกอนน้ำมันจากถังแยก API สามารถถูกกำจัดได้โดยผ่าน กระบวนการเผาใหม้ และ/หรือ การเปลี่ยนสภาพเป็นผลิตภัณฑ์น้ำมันที่สามารถนำกลับมาใช้ ประโยชน์ได้อีก อย่างไรก็ตามวิธีการดังที่กล่าวมา สามารถก่อให้เกิดสารที่เป็นมลพิษขั้นทุติยภูมิ ้ได้ เมื่อไม่นานมานี้ กระบวนการไพโรไลซีสได้ถูกพิสูจน์แล้วว่าเป็นอีกกระบวนการหนึ่งที่ดี สำหรับการกำจัดกากตะกอนน้ำมันชนิดนี้ งานวิจัยฉบับนี้ได้ทำการศึกษาปฏิกิริยาไพโรไลซีสกับ กากตะกอนน้ำมันจากบ่อแยก API ของบริษัทน้ำมันปีโตรเลียมแห่งหนึ่งในประเทศไทย การ ทดลองนี้ทำการศึกษาโดยใช้วิธีการวิเคราะห์เชิงความร้อน (Thermogravimetric Analysis, TGA) ที่อัตราการความร้อน 5 10 และ 20 องศาเซลเซียสต่อนาที ข้อมูลน้ำหนักที่สูญเสียไปของ กากตะกอนน้ำมันจากบ่อแยก API ถูกนำมาวิเคราะห์ทางจลนศาสตร์ จากผลการทคลองพบว่า ้เส้น โค้งอัตราการการเปลี่ยนแปลงน้ำหนักของกากตะกอนน้ำมันเทียบกับอุณหภูมิมีค่าสูงสุดสอง ้ ค่า ซึ่งค่าสูงสุดค่าแรกอยู่ระหว่างอุณหภูมิ 230 ถึง 270 องศาเซลเซียส ในขณะที่อีกค่าหนึ่งอยู่ ระหว่างอุณหภูมิ 400 ถึง 415 องศาเซลเซียส ส่วนแรกจะเป็นผลจาก กระบวนการระเหยของสาร ้องค์ประกอบระเหยง่ายอิสระที่อยู่ในกากตะกอนน้ำมัน สำหรับส่วนหลังสืบเนื่องมาจากกระบวน การระเหย และถือว่าเป็นปฏิกิริยาไพโรไลซีสหลัก ผลิตภัณฑ์ที่ได้จากปฏิกิริยาไพโรไลซีสถูกยืน ยันโดยผลจากการวิเคราะห์แยกเชิงมวล (Mass Spectroscopy) จากการตรวจสอบพบว่า ก๊าซ ้ไฮโครเงน และก๊าซอะเซทิลีน เป็นผลิตภัณฑ์หลักที่ได้งากปฏิกิริยาไพโรไลซีสหลัก สำหรับการ ศึกษาพฤติกรรมทางจลนพลศาสตร์ของปฏิกริยาไพโรไลซีสของกากตะกอนน้ำมันจากบ่อแยก API ทำได้โดยใช้แบบจำลองทางคณิตศาสตร์ ชนิดองค์ประกอบเทียมสององค์ประกอบ ผลการ ทคสอบพบว่า ค่าการคำนวณที่ได้จากแบบจำลองทางคณิตศาสตร์เทียบเท่ากับข้อมูลที่ได้จากการ ทดลอง

ACKNOWLEDGEMENTS

This thesis could not have successfully been possible and complete without the invaluable helps of the following individuals and organizations.

First of all I would like to express my sincere gratitude to Asst. Prof. Pramoch Rangsunvigit, Asst. Prof. Vissanu Meeyoo, Assoc. Prof. Thirasak Rirksomboon, Dr. Boonyarach Kitiyanan, and Dr. Chatvalee Kalambaheti for their invaluable guidance, understanding, and constant encouragement throughout the course of this research. Their positive attitude significantly contributed to inspiring and maintaining my enthusiasm in the field.

I am grateful for the partial scholarship and partial funding of the thesis work provided by Postgraduate Education and Research Programs in Petroleum and Petrochemical Technology (PPT Consortium). I wish to thank all the staffs at the PTT Public Co, Ltd. for all necessarily contributed knowledge, financial support throughout the study, and their kind assistance and cooperation. I would like to take this important opportunity to thank all of my friends for their unforgettable friendship. Further more, I would also specially like to thank Mr. Sitthiphong Pengpanich, Mr. Puchong Thipkhuntod, Mr. Pree Enkvetchakul, and Mr. Manoch Limsukhon who helped, contributed, and gave me the knowledge for developing computer program and mathematical modeling.

Last, my deepest appreciation and whole-hearted gratitude are everlastingly dedicated to my beloved family whose endless love, support, and understanding play the greatest role in my success.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	ix
List of Figures	xi
List of Symbols	xv

CHAPTER

Ι	INTRODUCTION	1
II	BACKGROUND AND LITERATURE SURVEY	3
	2.1 Pyrolysis	3
	2.1.1 Slow Pyrolysis	5
	2.1.2 Fast Pyrolysis	6
	2.2 Fast Pyrolysis	6
	2.2.1 Fluid Bed Pyrolysis Reactor	7
	2.2.2 Ablative Pyrolysis Reactor	8
	2.2.3 Vacuum Pyrolysis Reactor	9
	2.2.4 Rotating Cone Pyrolysis Reactor	10
	2.3 Pyrolysis Products from Fast Pyrolysis	11
	2.3.1 Bio Oil	11
	2.3.2 Properties of Bio Oil	12
	2.3.2.1 Distillation	12
	2.3.2.2 Density	13
	2.3.2.3 Energy Content	13

ш

IV

V

PAGE

vii

2.3.2.4 Kinematics Viscosity	13
2.3.3 Application of Bio-Oil	16
2.4 Pyrolysis Factor	16
2.4.1 Solid Material Composition	16
2.4.2 Pyrolysis Temperature	17
2.4.3 Heating Rate	18
2.4.4 Solid Particle Size	18
2.4.5 Pressure	18
2.5 Definition of Thermal Analysis (TA)	18
2.6 Kinetic Studying	20
2.6.1 Basic Theory of Kinetic Rate Equation	20
2.6.2 Kinetic Model for Pyrolysis System	21
2.6.2.1 Coat and Redfern Method	22
2.6.2.2 Distributed Activation Energy Model	
(DAE)	24
2.7 Application and Related Works	26
2.8 Currently Analysis Method for Pyrolysis Products	28
	20
	29
3.1 Materials	29
3.2 Equipment	30
3.3 Experimental	30
RESULTS AND DISCUSSION	33
4.1 General Characteristics of API separator sludge	33
4.2 Thermal Conversion Behaviors	34
4.3 Mathematical Modeling	41
CONCLUCIONS AND DECOMMENDATIONS	57
CUNCLUSIONS AND RECOMMENDATIONS	57
5.1 Conclusion	5/

.....

CHAPTER			PAGE
	5.2 Recommen	dations	57
	REFERENCES	5	59
	APPENDICES	ц. С.	63
	Appendix A	Computer Program for Mass and Energy	
		Balance of Pyrolyzer	63
	Appendix B	Feasibility of Using Surfactant for Recovery	
		Valuable Components from API Separator	
		Sludge	72
	CURRICULU	M VITAE	79

•

.

+

÷.

LIST OF TABLES

TABLE		PAGE
2.1	Typical properties and characteristics of wood derived	
	pyrolysis oil	14
2.2	The properties and composition of bio-oil produced from	
	Bio Therm [™] pilot plant, derived from three different	
	biomass feedstocks	15
2.3	Similarities between grade-2 diesel fuel and some	
	bio-oil/diesel fuel	17
2.4	TA methods related to properties of a substance	19
4.1	Proximate analysis of sewage sludge, oil sludge, and	
	API separator sludge	33
4.2	Heating values of coal, dry sewage sludge, wet sewage	
	sludge, oil sludge and API separator sludge	34
4.3	TGA analysis data of sewage sludge, oil sludge, and	
	API separator sludge	36
4.4	The possibility identification for mass spectra of light	
	hydrocarbon gases from API separator sludge pyrolysis	37
4.5	Commonly used functional forms of $f(x)$	44
4.6	Kinetic parameters of the pseudo bi-component model	
	and mean relative error for the API separator sludge	
	pyrolysis at 5, 10, and $20^{\circ}C \cdot min^{-1}$	50
4.7	The relationship between pre-exponential factor (A) and	
	temperature [=] kelvin of 5, 10, and $20^{\circ}C \cdot min^{-1}$	
	heating rates	51
B1	The maximum peak temperature of first and second	
	pyrolysis reaction of non-ionic surfactant/API separator	
	sludge system compared with API separator sludge	
	(no surfactant) at heating rate of 5, 10, and $20^{\circ}C \cdot min^{-1}$	76

TABLE

PAGE

B2	Observation of upper surface after using several chemicals	
	for removing oil from oily sludge model	77
B3	Experimental condition and percentage of removal oil from	
	oily sludge model (the ratio of sand to oil was 50 g to 10 mL)	
	by Emplilan NP6 amd Emplilan KB7 at various concentration	78

.

.

.

LIST OF FIGURES

FIGURE

PAGE

2.1	Schematic of the pyrolysis process.	4
2.2	The simplest pyrolysis process.	5
2.3	Diagram of fluidized bed pyrolysis process.	7
2.4	Simple schematic of ablative pyrolysis reactor.	8
2.5	The Pyrocycling TM vacuum pyrolysis process.	9
2.6	Rotating cone pyrolysis reactor.	10
2.7	Schematic diagrams of single stage and multiple stage	
	of TGA curve.	20
2.8	TGA (weigh loss) and DTG (differential thermal	
	gravimetric) curve.	25
3.1	Schematic diagram of the simplest API separator	
	system.	29
3.2	The thermogravimetric analyzer (TGA) system.	31
3.3	TPDRO and Mass spectroscopy system.	32
4.1	Thermogravimetric analysis (TGA) curves of the	
	API separator sludge at various heating rate.	35
4.2	Differential thermogravimetric analysis (DTG) curves	
	of the API separator sludge at various heating rate.	35
4.3.1	Mass spectra of products, $m/z = 2$ and 26, from the pyrolysis	
	of API separator sludge with 10° C \cdot min ⁻¹ heating rate.	38
4.3.2	Mass spectra of products, $m/z = 42$ and 56, from.	
	the pyrolysis of API separator sludge with $10^{\circ}C \cdot min^{-1}$	
	heating rate.	38
4.3.3	Mass spectra of products, $m/z = 16$, 44, and 50, from	
	the pyrolysis of API separator sludge with $10^{\circ}C \cdot min^{-1}$	
	heating rate.	39

4

4.3.4	Mass spectra of products, $m/z = 18$ and 60, from	
	the pyrolysis of API separator sludge with $10^{\circ}C \cdot min^{-1}$	
	heating rate.	39
4.4	DTG and temperature profile to prove the volatilization	
	of the thermal conversion of API separator sludge.	40
4.5.1	Relationship between $\ln\left(\frac{F(x)}{T^2}\right)$ and $\frac{1}{T}$ with equation	
	and R^2 value, n = 1.5, of the first reaction zone	
	(30 to 360°C) for $5^{\circ}C \cdot \min^{-1}$ heating rate.	46
4.5.2	Relationship between $\ln\left(\frac{F(x)}{T^2}\right)$ and $\frac{1}{T}$ with equation	
	and R^2 value, n = 3.0, of second reaction zone	
	(360 to 700°C) for $5^{\circ}C \cdot \min^{-1}$ heating rate.	46
4.5.3	Relationship between $\ln\left(\frac{F(x)}{T^2}\right)$ and $\frac{1}{T}$ with equation	
	and R^2 value, n = 1.5, of first reaction zone	
	(30 to 370°C) for 10° C · min ⁻¹ heating rate.	47
4.5.4	Relationship between $\ln\left(\frac{F(x)}{T^2}\right)$ and $\frac{1}{T}$ with equation	
	and R^2 value, n = 2.8, of second reaction zone	
	(370 to 700°C) for 10° C · min ⁻¹ heating rate.	47
4.5.5	Relationship between $\ln \left(\frac{F(x)}{T^2}\right)$ and $\frac{1}{T}$ with equation	
	and R^2 value, n = 1.3, of first reaction zone	
	(30 to 385°C) for 20° C · min ⁻¹ heating rate.	48
4.5.6	Relationship between $\ln\left(\frac{F(x)}{T^2}\right)$ and $\frac{1}{T}$ with equation	
	and R^2 value, n = 3.1, of second reaction zone	

(385 to 700°C) for 20° C · min⁻¹ heating rate.

- 3

PAGE

48

FIGURE

4.6.1	Comparison of TGA curves between experimental and	
	calculated results from the pseudo bi-component model	
	at the heating rate of $5^{\circ}C \cdot \min^{-1}$.	52
4.6.2	Comparison of DTG curves between experimental and	
	calculated results from the pseudo bi-component model	
	at the heating rate of $5^{\circ}C \cdot \min^{-1}$.	52
4.6.3	Comparison of TGA curves between experimental and	
	calculated results from the pseudo bi-component model	
	at the heating rate of 10° C · min ⁻¹ .	53
4.6.4	Comparison of DTG curves between experimental and	
	calculated results from the pseudo bi-component model	
	at the heating rate of 10° C · min ⁻¹ .	53
4.6.5	Comparison of TGA curves between experimental and	
	calculated results from the pseudo bi-component model	
	at the heating rate of 20° C · min ⁻¹ .	54
4.6.6	Comparison of DTG curves between experimental and	
	calculated results from the pseudo bi-component model	
	at the heating rate of 20° C · min ⁻¹ .	54
4.6.7	Comparison of weight fraction between experimental and	
	calculated results from the pseudo bi-component model	
	at the heating rate of 5° C · min ⁻¹ .	55
4.6.8	Comparison of weight fraction between experimental and	
	calculated results from the pseudo bi-component model	
	at heating rate of 10° C · min ⁻¹ .	55
4.6.9	Comparison of weight fraction between experimental and	
	calculated results from the pseudo bi-component model	
	at heating rate of 20° C · min ⁻¹ .	56

PAGE

PAGE

A3	Utility Heat Interface.	65
A4	Uncondensed Gases Interface.	66
A5	Liquid Oil Interface.	67
A6	Calculated Results Interface.	68
A7	Results Print Preview Interface.	69
A8	Cost Estimated Calculation Interface.	70
A9	Pries Estimated Report Interface (First Mode).	70
A10	Energy Estimation Report Interface (Second Mode).	71
B1	Thermogravimetric analysis (TGA) curves of API	
	separator sludge after removing light components by	
	non-ionic surfactants at heating rate of $5^{\circ}C \cdot min^{-1}$.	73
B2	Thermogravimetric analysis (TGA) curves of API	
	separator sludge after removing light components by	
	non-ionic surfactants at heating rate of $10^{\circ}C \cdot min^{-1}$.	73
B3	Thermogravimetric analysis (TGA) curves of API	
	separator sludge after removing light components by	
	non-ionic surfactants at heating rate of $20^{\circ}C \cdot min^{-1}$.	74

.

*

.

LIST OF SYMBOLS

A _i	Arrhenius's constant of reaction I
β	Heating rate
E _{ai}	Activation energy of reaction i
f _i	Mass fraction of component i
k	Rate coefficient
n	Reaction order
R	Gas constant
r _A	Reaction rate of component A
Т	Absolute temperature (K)
T _H	Characteristic heating time
T _R	Characteristic reaction time
T _{ref}	Absolute referenced temperature
t	Time
We	Final mass percentage of material
Wi	Mass percentage of sample at any time
Wo	Initial mass percentage of material
Φ	Heating rate