
CHAPTER III
PROBLEM SOLVING METHOD

3.1 Differential Equation

Differential equations selected to study in this work are in the class of 
“Poisson’s Equation”, which has a general form of

Vu - kVu + f  -  gu = 0, (3.1)

and its related transient form of

V u k V ii + f  = g ^ - .  (3.2)

These kinds of equation cover many problems, especially, in the engineering 
modeling. For example, in chemical engineering field, they will be used to deal with 
the problems of heat conduction, mass diffusion analysis, etc. Here, practical three 
types of boundary condition were supplemented. Those are as follow:

1. Dirichlet Boundary Condition. The surface covering this boundary 
type is represented as SI, with a constant dependent variable on this surface.

น = น(specific). (3.3)

2. Neumann Boundary Condition. The surface covering this boundary 
type is represented as S2. On this surface, flux normal to surface is zero. That is

an = 0. (3.4)

3. Mixed Boundary Condition. This type is known as S3 type 
boundary, which has a general form of
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k  ~ r ~  +  a u  =  (3. ôn (3.5)

3.2 Finite Element Analysis of Poisson’s Equation

3.2.1 Galerkin Residual Equation
From governing equation in 3.1, the corresponding finite element 

equation was developed. Supposed the basis function as

น (3.6)

For linear triangular elements, all basis functions would be zero except those 
corresponding to three vertices p, q and r and would be reduced to

V = YpVp +YqVq +YrVr- (3-7)

In the first step, Galerkin statement was applied to Poisson’s equation, 

Jyi (v - kVu + f -  gu)dv = 0. (3.8)
V

gives,
Then, apply Green’s theorem (Shown in Appendix A) to the first term

• kVudV = -  JkVYj - VudV + j*Yi
V ร

k ^ d S . (3.9)

Back substitution hence,

JkVYi - VudV
V

+  |Y i g u d V =  jY ifd V  + J V i k ^ d S (3.10)
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Incorporating the trial function (Equation 3.6) yields,

JkVYi • J ( vYj)VV + JgYiZ]YjvjdV = jVifdv + JVik ^ ds (3-11)

The surface integral (last term in Equation 3.11) depends on what type 
of boundary that surface cover, and have value of following individually

1. SI - type, since points i = 1, 2, 3, ... , ท have been arranged not 
coincide with SI boundary. So that, Yi = 0 on SI and surface 
integral is therefore zero.

2. S2 - type, since k—  equal to zero, thus, its integral equal to zero.ฮท
3. S3 - type, inserting (3.5) into surface integral term gives

jVi P -a J y jV j d s-

So, a more general form of Equation 3.11 can be written as

JkVYi ■ jr(vyj)vjdV + JgYi^ y jvjdV + JotYi^YjVjdS

-  JVjfdV + JPYjdS, (3.12)
V S3

which is ready to cooperate S3 type boundary condition. Equation 3.12 can be 
represented in a matrix form of Av = b, where each element of coefficient matrix A 
and vector b are defined as

a ij ~ JkVyi • VYjdV + JgYiYjdV + ja y jjd s , (3.13)

bj = JyjfdV + JpYidS-^a.jVj , (3.14)
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3.2.2 Linear Triangular Elements and Basis Functions
Starting with rectangular coordinate; consider triangular element 

shown in Figure 3.1

Inside the triangle element, a dependent variable V is assumed to be a 
linear function of position. Analogy to Equation 3.7, it is a linear combination of 
three nodal values Vi, พ2 and V3 as

v = a + bx + cy = YjV, + Y2V2 + y3v3, (3.15)

w h e r e  b a s i s  f u n c t io n s  Y i, Y2 a n d  Y3 v a r y  l in e a r ly  w i t h  p o s i t i o n  a s ,

Yi = —  (ai + b j X  + Cjy) (3.16)

where A is the area of element given by the determinant:

1 I X1 y,A = - l  x2 y2 
1 *3 y3

Nine coefficients, aj, ๖1, Ci, (i = 1, 2, 3) can be deduced by requiring 
that each basis function Yi is one at node i and zero at other two nodes. After some 
manipulations, the results are:

f t a{ + a2 + a3) (3.17)
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ai = x2y3 -  x3y2 
bi = y2 — y3
Cl = x3 -  x2

a2 = x3y, -Xiy3
b2 = y3 — y 1
C2 =  Xi - x 3

a 3 =  x i y 2 - x 2y i  

b3 = yi - y 2 
C3 =  x 2 - X i

(3.18)

Figure 3.2 Three basis functions with each Yi =1 at node i, declining linearly to zero 
at other two nodes.

Table 3.1 shows integration formulas involving linear basis functions. 
The results for integration over a triangular element are derived from the general 
formula:

_[yi y ) y 3cIA = q! r! ร!
(q -  r + ร + 2)! 2A (3.19)

To solve the equation regional integrals, summation of the 
contributions from the individual elements must be obtained.

[gYiYjdV = geY'YjdAe , (3.20)
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where ท = number of element and superscript e denote values associated with 
element e. After coefficient matrix A and vector b was built, simultaneous linear 
equation will be solved. The surface flux next will be determined.

Table 3.1 Integration formulas involving linear basis functions, for triangular 
elements and line boundary segments.

Area Integrals Line Integrals
Integral Value Integral Value

JyfdA I a3 JYidL I I2
JyfdA I a JrfdL I I

JViYjdA I a12 JyjjdL I I6
JyfdA — A JyfdL I I10 J 4

JyfyjdA —  A 30 JyfyjdL — L 12
jYiYjYkdA A a60

3.2.3 Solution of Poisson’s Equation in Cylindrical Coordinates
For axisymmetric cylindrical coordinates, dv and ds are equal to 2tt 

rdrdz, and 27trdL respectively. The elements of coefficient matrix and vector b 
change to,

d r  d r d z  d z

\
rdrdz + JgyiYjrdrdz + Jcxyj1 rdL ,

/  V ร3

bj = |y ifrdrdz+ Jpy.rdL -  j ^ a ljVj .
V ร3 J -l

(3.21)

(3.22)

To evaluate new integrals, consider r as a combination of three vertex 
values ( r j ,  rp and rq)
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r = Yiri+Ypip+Yqrq (3-23)

Consider a representative term in ajj

1 =  {  gY iYjrdrdz =  £  gY iY jfr ih  + Y prp +  Yqrq )dAe (3.24)

Suppose i * j = p, The Integration in Equation 3.24 will be

I = geAe 30 r' + 30 fj + 60 rq
1 1 3— r; + — q + — r5 5 J 5 (3.25)

in which r = (fj + rp +rq)/3 is the radius of the element centroid. If i = j, Equation
3.24 becomes

I= i 8' A‘ f: + —r = i g’A' - q  +-T: +Ar 5 5 J 5 1 (3.26)

Table 3.2 shows multiplying factors for obtaining element 
contributions in r/z coordinates from those in x/y coordinates.

Table 3.2 Multiplying factors for obtaining element contributions in r/z coordinates 
from those in x/y coordinates.

Integral Factor
!  k Vy 1 -Vyjrdrdz r

1[1 gyjjrdrdz i ( r 1+rj+ 3f)
{3 YiYjfdL 1 = + r)

i ^ j : r
^ y 1 frdrdz i ( r i + 3f)
1 PYifdL }fc+ 2r)
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3.2.4 Initial Value Problem
In the previous section, the Poisson’s equation was treated whose 

finite element formulation was,

Av = (k  + G)v = ๖. (3.27)

Matrix K includes the contributions from the conductive (VkVu) and 
the mixed (ร3) type boundary conditions. Matrix G contains the variable part (- gu) 
of the source term. Vector b incorporates terms derived from both the constant part
(f) of the source term and a surface integral arising from application of Green 
formula.

Here, related form of time-dependent problem will be considered. The 
equation will be in the form of,

V -k V u  + f  = g p . (3.28)

By analogy to Equation 3.27, the finite element solution of Equation
3.28 should be in the form of,

Kv + G ^ p b  (3.29)

where K, G and b are as already formulated, and V is now a time-dependent vector of 
nodal solution. Now, the finite difference method is cooperated to solve such 
equation. Here, superscript ท denotes values at time t and ท + 1 mean values at time 
t + At, and Crank-Nicolson method is applied,

Kk p j + 0 k A ^ ) = i ( b. +b ..,) (3.30)
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Define new terms,

R =~7-G + —K , ร = - - G - - K .  (3.31)At 2 At 2

System of linear equations can be obtained as,

Rvn+1 =Svn +^(bn + bn+1), (3.32)

and new solution at time t + At is,

vn+1 =R-'Svn + ^R -'(bn +bn+1) (3.33)

3.3 Programming Strategy

3.3.1 Program Description
Corresponding to the finite element equation created in 3.2, a new 

application program named “FEM” was built via Visual Basic 6.0 (based upon the 
program by Wilkes, 1995). The developed program consists of six work forms, and 
two more separated modules, and 46 subprograms (or event procedures). All forms, 
modules, and subprograms are shown in Table 3.3. However, details of interface and 
source code for each form or module are shown in appendix B through c.
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Table 3.3 All forms, modules, and subprograms in “FEM”
Form or Module Subprogram or procedure

FrmAbout Event Procedure
• Form_Load()
• CmdOKClickO

FrmFemwork Subprogram
• DatalnputO
• DataShow()
• Draw_mesh() 

Event Procedure
• CmdBack_Click()
• CmdForm_Load()
• CmdSolve_Click()

Frmlnput Event Procedure
• CmdBrowse_Click()
• OptCreate_click()
• OptImport_click()
• CmdOK_Click()

FrmMain Subprogram
• LoadNewWork() 

Event Procedure
• MDIForm_Load()
• MDIForm_Unload()
• MnuEditCopy_Click()
• MnuEditCutClickO
• MnuEditPaste_Click()
• MnuFileExit_Click()
• MnuFileNew_Click()
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Form or Module Subprogram or procedure
• MnuAboutAbout_Click()
• TbT oolBar_ButtonClick()

FrmResult Subprogram
• DrawBoundaryO
• DrawContUO
• DrawMeshO
• PrepareData()
• ReportDataO
• ShowSolQ

Event Procedure
• CmdClear_Click()
• CmdContUClickO
• CmdMeshClickO
• CmdSetPara_Click()
• CmdS imul_Click()
• Form_Load()
• TmeClocl_Tmier()

FrmSetPara Event Procedure
• CmdDefault_Click()
• CmdOKClickQ

Calculation Subprogram
(Module) • Asembl()

• Fluxes()
• Gelb()
• Geom()
• MainProgO
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Form or Module Subprogram or procedure
• MatrixO
• NewVal()
• PrtSolO

Complementation Subprogram
(Module) • MainQ

3.3.2 Calculation Procedure
The calculation procedure consists of four steps as shown below,
3.3.2.1 Input Data

This step is to read all required data for a particular problem, 
consisting of general system data, element, nodal, and boundary conditions 
information, from specific data file. This step is in the subprogram “InputData” in 
form “frmlnput”. Next step, the subprogram “MainProg” in module “Calculation” is 
called. The calculation starts here.

3.3.2.2 Form Element and System Equation
This step is to create finite element matrix for each element in 

the subprogram “Geom” and “Matrix”. Then, they are assembled together to form 
the system matrix and supplemented ร3 boundary condition simultaneously by the 
subprogram “Asembl”.

3.3.2.3 Solution
Consequently, the system equation is solved in the 

subprogram “NewVal” by using Gauss Elimination Method with column pivoting in 
the subprogram “Gelb”.

3.3.2.4 Result Exhibition
In this step, the numerical result obtained from 3.3.2.3 is 

exhibited in a table in the form “frmResult”. Graphical result is also exhibited by the 
choice of user, including showing meshing, constant lines of dependent variable, or 
simulation (case of transient problem).

Coarse flow diagram showing all calculation steps is shown
in Figure 3.3.



Figure 3.3 Coarse flow diagram of program “FEM”
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3.3.3 Data Input File Format
The data file for supplement into the program is in a simple text file 

format, which can easily be created by any text editors such as “notepad” or 
“wordpad”. The data file requires four parts including general system data, element, 
nodal and boundary condition information respectively. These are details of each 
part.

Part I  General System Data
This part contains problem name, coordinate system, error tolerance, 

variation of K, F, and G, steady or unsteady state parameter, variation of SI and S3 
type boundary condition parameters, element type, number of elements, nodes, and 
boundary segments. All these data are in a line series starting from first column for 
each line. The example is represented here. Data in line number 12-14 is optional for 
transient problems. The value of individual parameter is found through Appendix c .
Example 
Line data
1 TRANSIENT HEAT CONDUCTION IN SLAB
2 ALL PARAMETERS ะ
3 1 2
4 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
5
6 COORDS = 1
7 EPS = 0 .10 0 0 0 0 0 0 0 1
8 KVAR = 0
9 FVAR = 0
10 GVAR = 0
11 SSTATE = 1
(12) DT = to ๐

( 13 ) PRNTFR = 20
(14) TMAX = 1 0 0 . 0
15 S I  VAR = 0
16 S3VAR = 0
17 ELEMS = 1
18 NELEMS = 24
19 NNODES = 21
20 NBSEGS = 16

Part II Element Information
Continuously, next four lines are ignored. For each line of element 

information contains element number, element type, number of node in element, 
material number of element, values of k, f, and g for element, counter clockwise 
node numbers for the element, respectively.
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Example
ELEMENT INFORMATION:

1 2 3 4 5
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

1 D D จ
1 1 3 1 2 5 . 0 0 . 0 0 . 0 1 7 2
2 1 3 1 2 5 . 0 0 . 0 0 . 0 2 7 8
3 1 3 1 2 5 . 0 0 . 0 0 . 0 2 8 3
4 1 3 1 2 5 . 0 0 . 0 0 . 0 3 8 9
5 1 3 1 2 5 . 0 0 . 0 0 . 0 3 9 4

Part III Nodal Information
Here again, the first four lines are ignored, each line next contains 

node data, including nodal number, X and y (or r and z) nodal coordinates, and initial 
value Uo at the node (option for unsteady state problem).
Example
NODAL INFORMATION:

1 2  3
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5  

I D I D I D ' I
1 0 . 0 0 0 0 . 0 0 3 0 . 0 0 0 0
2 0 . 0 0 1 0 . 0 0 3 0 . 0 0 0 0
3 0 . 0 0 2 0 . 0 0 3 0 . 0 0 0 0
4 0 . 0 0 3 0 . 0 0 3 0 . 0 0 0 0
5 0 . 0 0 4 0 . 0 0 3 0 . 0 0 0 0

Part IV Node Information
The same as the nodal information, the first four lines are ignored, 

next line contains boundary segment number, segment type, a number of node in 
segment, material number of the segment, boundary type (1,2, and 3 are type SI, S2, 
or S3), A, B, element number of which segment is part, and node numbers for the 
segment. Here, “A” means น1 for SI type boundary segment, but, for S3 type 
boundary segment, A and B are values of a  and p, respectively.
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Example
BOUNDARY INFORMATION:

1 2 3 4 5 6
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

1 1 2 1 2 0 . 0 0 0 . 0 0 1 1 7
2 1 2 1 2 0 . 0 0 0 . 0 0 11 7 13
3 1 2 1 2 0 . 0 0 0 . 0 0 21 13 19
4 1 2 1 2 0 . 0 0 0 . 0 0 22 19 20
5 1 2 1 2 0 . 0 0 0 . 0 0 24 20 21

3.3.4 User Instruction
The Program was designed for user with friendly interface of Visual 

Basic environment. So the user can just create a data file corresponding to a specific 
problem and follows the direction guide shown with the program interfaces in 
Appendix B. The result will be exhibited properly. For implementation of the 
program, the user may create program to build an appropriate data file by selection of 
his/her own alternative.
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