
CHAPTER II

THEORY

2.1 Equilibrium Constants, Protonation Constants and Stability Constants

2.1.1 Concentration Constants and Activity Constants

An equilibrium constant is a quotient involving the concentrations or activities 
of reacting species in solution at equilibrium. Generally it is defined as the ratio of the 
product of the activities a of the reaction products, raised to appropriate power, to the 
products of the activities of the reactants, raised to appropriate power, illustrated by 
equation (2.1) where a, b, c and d are the stoichiometric coefficients of the solution 
species A, B, C and D respectively.

The determination of the activities of complex ionic species at both infinite 
solution and in real solution is a complicated and time-consuming task. However 
concentrations are related to activities by the expression

where ax, [X] and Yx are activity, concentration and activity coefficient of X 
respectively. Activity coefficients of reacting species are in general tedious and difficult 
to measure. They also depend very significantly on the nature and concentrations of 
other species present in solution so that it is not possible to build universal tables of 
activity coefficients. Theoretical attempts at calculating activity coefficients, based on 
the Debye-Huckel approach and its extensions, are at best of only limited accuracy.

aA + bB ^  — cC + dD (2.1)

[X] Yx (2 .2)
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Substituting the activities from equation (2.2) in (2.1), then the equilibrium constant 
can be rewritten as follow.

Le<?
• A M B

[C]c [D]d
\ A V \ B ] 1

Yc Yd 
Y A Yb

(2.3)

where[] indicates molar concentrations. If now it is possible to ensure that the term
c  d  c dy  y  y y

- - —̂ - remains constant then the term — -y - . K  is also a constant. Therefore, the
r  Y A B Y Y A B
equilibrium constant expressed in terms of the reacting species, called equilibrium 
concentration constant, KcCan be written as indicated by equation (2.4).

aA + bB V. N cC + dD = (2.4)
^  14" พ ,

Equilibrium concentration constant, K c is also known as the stoichiometric equilibrium 
constant which determined at constant ionic strength where as K e q  is indicated by 
equation (2.1) which is known as an equilibrium activity constant or thermodynamic 
equilibrium constant.

The term ■ ~ ~ ~  in equation (2.3) may be maintained effectively constant by ,Y° y A B
having a large excess of an inert background electrolyte present and using only low 
concentrations of the reacting ionic species so that any change in their concentrations 
as a result of their reaction together has an insignificant change on the overall ionic 
strength of the medium. It is generally possible to replace about 5% of the ions in the 
inert background electrolyte without appreciably altering the activity coefficients of the 
minor species present. However, in recording a stoichiometric equilibrium constant it is 
essential to record not only the concentration of the inert background electrolyte, but 
also its nature, since the activity coefficients depend on the electrolyte. Consequently, 
of course, in comparing stoichiometric equilibrium constants, only data obtained under
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very similar conditions should be used unless the differences between the equilibrium 
constants are large.

2.1.2 Protonation Constants

The acid-base equilibria of the ligands can be treated by protonation and 
disprotonation constant. Protonation constant is the equilibrium constant for the 
addition the ท',' proton to a charged or uncharged ligand. Protonation constant is 
known as basicity constant. The reciprocal of protonation constant is called 
disprotonation constant and defined as the equilibrium constant for the splitting off ท''h 
proton from a charged or uncharged ligand. Disprotonation constant is also known as 
acidity constant. The following equations define these constants and show their 
interrelation.

L + H N LH K! = [LH] 
[L] [H] (2.5)

LH + H \ l h 2 K2 = [LH,] 
[LH] [H] (2.6)

l h 2 + H \ l h 3 K3 = [LH,] (2.7)ร [LH2] [H]

LHn-1 H \ LHn Kn = [LH.] (2.8)V [LH..,] [H]

Another way of expressing the equilibria relations can be shown as follow:

L + H ร \ LH pi = [LH] 
[L] [H] (2.9)

L + 2H \ l h 2 p2 = [LH,] 
[L] [H]2 (2.10)
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L + 3H ^  LH3 fc -  (2.11)

L + nH ^ = ^  LHn : Pn = j n (2.12)

The Ki's are called the stepwise protonation constants and the Pi's are called the 
overall or cumulative protonation constants.

2.1.3 Stability Constants

The thermodynamic stability o f complex equilibria can be characterized 
by stability constant and instability constant. Stability constant is a ท equilibrium 
constant for the interaction o f metal with ligand. Sometime stability constant is called 
as formation constant. In older literature, the inverse o f stability constant is used and 
this is known as instability constant.

If the solution containing metal ions, M and ligand, L the system at equilibrium 
may be described by the following equations and equilibrium constants.

M + L \ M L K , = [ML] 
[M] [L] (2 .13)

M L + L ร \ ML2 K 2 = [m l ,]
[ML] [L] (2 .14)

m l 2 L \ m l 3 K s =
[m l ,] (2 .15)4- \ [M L 2] [L]

M U , L V N Min K n = [M L .] (2 .16)T
[m l ,.,] [L]
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There will be ท such equilibria, where ท represents the maximum coordination 
number of the metal ion M for the ligand L. Another way of expressing the equilibria 
relations can be shown as follow:

M + L \ N ML A  =
[ML] 

[M] [L] (2.17)

M + 2L \ ML2 A  =
[m l ,]

[M] [L]2 (2.18)

M + 3L V \ m l 3 A  =
[m l ,]

[M] [L]3 (2.19)

M + nL \ MLn A  = [M L.l
[M] [L]n (2.20)

Since there can be only ท independent equilibria in such a system, it is clear that 
the Ki's and Pi's must be related. The relationship is indeed rather obvious. Consider, 
for example, the expression for Pi let US multiply both numerator and denominator by 
[ML] [ML2] and then rearrange slightly :

[ML,] [m l ] [m l ,]
Pl [M] [L]3 [ML] [m l ,] ( ’

[ML] [m l ,] [m l  ]
[M] [L] [ML] [L] [M L,][L] '

K j . K 2 . K 3 (2.23)

It is not difficult to see that this kind of relationship is perfectly general, namely.

K , . K 2. K3... Kk
i = k

A (2.24)
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The Kj 'ร are called the stepwise formation constants and the Pi's are called the overall 
or cumulative formation constants (or stepwise stability constant and overall stability 
constants).

2.2 Analysis of Data

2.2.1 Definitions of the Basic Components and Basic Equations

The first step in the description of equilibrium systems is the definition of the 
components. In the chemistry of complex equilibria, it is obvious to choose the free 
ligand(s) and species such as proton and metal ion(s) that they are not capable of 
further dissociation as the basic components. The components of some w-component 
equilibrium system are denoted by kl, k2, ... k„, and their total concentrations by 
Ti, T2, ... Tm. The number of species namely metal ions(s), ligand(s), proton, proton 
complexes, mono-nuclear and polynuclear complexes, is ท, and they are symbolized by 
Ai, A2, ... An. In a species A.1, the number of component i is given by the stoichiometric 
coefficients a jj.  The series A], A2, ... An is chosen so that its first m members are the 
same as the components kl, k2, ... k„, i.e. A, = k, if i < m. The stoichiometric 
coefficients for the components are therefore 1 ifj = i, and 0 if j ร* i. To illustrate the 
notations, let US consider a system containing a metal ion M, a ligand L, and OH 
ions, ligand protonated species LH and LH2, parent complexes ML and MI/2 , a 
protonated complex MLH, and a mixed hydroxo complex ML(OH). The 
compositions of the species Ai, A2, ..., Aio in this three components system are given 
by the a  j j  value tabulated in Table 2.1.
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Table 2.1 a  j i  values for an equilibrium system containing components 
(M, L and H) and species.

Species

Components

stoichiometric coefficient, otji

ki k2 k3
M L H

ki A, = M 1 0 0
k2 II r 0 1 0
k3 A3 = H 0 0 1

At = LH 0 1 1
As = l h 2 0 1 2
A<; = ML 1 1 0
a 7 = m 2l 2 1 0
A8 = MLH 1 1 1
A9 = MLH .1 or ML(OH) 1 1 -1
Aio = H -1 or OH' 0 0 -1

The arrangement of the a  j i  data in Table 2.1 is termed the composition matrix o f the 
equilibrium system. The first m rows of the composition matrix contain the /w-order 
unit matrix relating to the components, while the other rows refer to the other species 
in the system, in an arbitrary arrangement. With the exception of the first m rows and 
the final row relating to OH', each row of the composition matrix corresponds to a
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chemical reaction. The stoichiometric numbers give the numbers of the various 
components in the composition of the given species. Thus, the equilibrium reaction 
describing the formation of the species may be written in the form

t t j i  k i +  « J 2  k 2 +  +  « j m  k m X  —  A J ( 2 ' 2 5 )

On application of the law mass action to the individual formation processes, the 
formation constant of some species A j is defined by

p . (2.26)

The notations used so far provide a simple possibility for expressing the total 
concentrations of the components ki, ..., km. Since the number of component / in some 
optional species A j  is a  j f ,  A j  contributes to the total concentration of component i with 
CL j i  times of its own concentration, i.e.

(2.27)

Expressing the concentration of A j  from eq. (2.26) substituting into eq. (2.27) and 
considering every component, we obtain the following system of equations

T,= Ÿ.CC .1,/3s [ k ] a "  [k2]

r,=  M “ ' !

K Y (2.28)

[ น ” '- (2.29)

. ผ " ' ■ (2.30)

These equations are the most important in describing complex equilibrium systems. 
They are essentially the mass balance expressed in terms of the concentrations of the
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components, the formation constants of the species, and the stoichiometric numbers. 
For the descriptions of special equilibrium systems, use is frequently made of the 
charge balance too, which reflects the principle of electroneutrality. However, the 
charge balance is always applied instead of the mass balance for some component. The 
left-hand side of eq. (2.30) features the total concentrations; these are usually termed 
the analytical concentrations. However, the total and analytical concentrations relating 
to the proton are not identical concepts, though they are often confused. In the 
subsequent discussion, the analytical concentration of the proton refers to the proton 
concentration added to the system, and the total concentration is the quantity defined 
by. Therefore, the total proton concentration may be negative as a result of the 
negative stoichiometric numbers.

2.2.2 Secondary Concentration Variables

In order to evaluate the stability constant (K) for a simple system, in theory, it 
is only necessary to prepare a single solution containing a known total amount o f metal 
ion [M]r and ligand [L]t and measure one of the three remaining unknown 
concentrations. These are the free metal ion concentration [M], the free ligand 
concentration [L] and the metal -ligand complex concentration [ML],

In order to evaluate these stability constants, it is necessary to find a 
relationship between them and the experimentally determined variables ([M], [L], [H] 
etc.). This relationship is often established via the definition of secondary concentration 
variables. It is from these variables that the stability constants are calculated.

2.2.2.1 The protonation formation function (p)

Protonation equilibria of a ligand L interacting in a solution of constant ionic 
strength can be written as follow :
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L +

LH +

LHn-1 +

LH K, = [LH] (2.31)\ [L] [H]

\ l h 2 K2 = [l h J (2.32)'ร [LH] [L]

\ LHn Kn = [LH.] (2.33)[LH J  [H]

When ท is a number of the proton bind to the ligand L. The mass balance equations for 
the total concentration of the ligand and proton can be written below.

[L]t =  [L] + [LH] + [LH2] + ... +  [LHn]

[H]x = [H] + [LH] + 2 [LH2] + ... + n  [LHJ

A function p  defined as the average number of proton H bind to the ligand L

_ total bound proton [H+]x - [H+]+  [OH ]
^  ~ total ligand ~~ [L]T

when [H+] is concentration of the free proton obtained from the measurement. 
[OH'] is the concentration due to the titrant which can be converted to [H+] via the 
relation of the autoprotolysis constant of methanol. The relationship between the p 
and the increasing of proton, as log [H ], should illustrate the curve as shown in 
Figure 2.1

(2.34)

(2.35)

(2.36)
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Figure 2.1 Plot of the protonation formation function ( p ) 5against the logarithm
of the free proton concentration (log [H ]) for tetraacid.

2.2.2.2 The complex formation function (ทิ)

Let us consider a metal ion M and a ligand L interacting in a solution of 
constant ionic strength. The equilibria present are:

M 'ริr ML K, [ML] 
[M] [L] (2.37)

M L + L 2 ^ ML? K, = [m l  ]
[M L] [L] (2.38)

MLn-1 + L 2 ^ MLn K„ = [M L  ]
[m l .,1 [L] (2.39)

The maximum value of ท, written N, will be a function of both the maximum 
coordination number of the metal ion and the multidentate nature of the ligand . We
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can now write mass balance equations for both the total metal ion and total ligand 
concentrations

[M ]t = [M] + [ML] + [ML2] + .... + [MLJ (2.40)

[L]t = [L] + [ML] + 2 [MLJ + .. . + ท [MLJ (2.41)

A function n defined as the average number of ligands L attached to the metal M may 
be written

_  total bound ligand _ [L]T -  [L] 
total metal [M] 1

Substituting equations (2.40) and (2.41) in (2.42) yields

(2.42)

[ML] + 2 [M L J + ... + ท [MLJ  
[M] + [ML] + [ML,] + ... + [M L J (2.43)

In summation terms equation (2.43) becomes

Z n [M L n]
ท = n"  -” N--------  (2.44)

[M] + Z [M L j

where N is the maximum coordination number for the metal if L is a monodentate 
ligand. However K„ and are defined by

[M L ]
K j L i

(m l .
[M] [L]"

(2.45)

(2,46)
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In addition , pr, = K l K 2 K 3 .... K n

and on substituting equation (2.45) into (2.43) gives

£ 1 [M][L] + 2 K , K 2 [M][L] 2 + ... + n K ,K 2. . .K n [M][L]n 
[M] + AT,[M][L] + k ]k 2[M][L]2 + ... + K , K 2. . .K„ [M][L]n

and after dividing through by [M] and remembering equation (2.47)

p  1 [L] + 2/?2 [L]2 + ... + np 11 [L]n 
1 + p  1 [L] + p 2 [L] 2 + ••- + Pn [L]n

which may be more conveniently written in summation terms

Z n / U L ] "  Z n y 9 n [L]" 

1 + Z / Ü L ] -  s  Z / J L ] "

(2.47)

(2.48)

(2.49)

(2.50)

Figure 2.2 Plot of the formation function ท , against the logarithm of the free ligand 
concentration (log [L]) for mononuclear complex and binuclear complex.
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2.2.2.3 The degree of formation (a c )

For any individual component of the system 5 a variable a  c can be defined such that

«C = ^ ^ -  for c = 0, 1,2, ...N (2.51)

This variable « c is partial mole fraction of the component MLC . The degree of 
formation o f the system as a whole may be considered, and another variable a  7  can be 
defined

a  7 = ร ุ«  c (2.52)

where a T is the fraction of total metal bound to ligand in the form of a complex. By 
an analogous procedure to that used to derive equation (2.50) , we can write « C  in 
summation terms

[น* Sail]-
= 1 + zV[L]- s I/ULF

One interesting solution to equation (2.51) is when c =0 and hence

« 0 = [M]
[M]t

(2.53)

(2.54)

This function, a  0 gives the species distribution for the free metal ion in the solution. 
When no complex formation takes place then « 0 is unity because [M ]t =  [M ], Hence 
it is possible to plot a series of the component distribution curves of «C versus [M ]t or 
[L] I. The «C function is used to show at a glance the relative proportions of each of the 
species present in solution.
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2.2.2.4 The degree of complex formation ( <j) )

A third secondary concentration variable^ is defined as :

4> =
[M]t
[M] = 1+ Z / U U " (2.55)

At this stage it is valuable to summarize the definitions of three secondary 
concentration variables that we have met so far. This, together with experimental data 
that must be available to use each of them, is given in Table 2.2 .

Table 2.2 Summary of the secondary concentration variables

Variable Title Definition Experimental 
observable required

ท ิ complex formation function ([L]t - [L]) / [m ]t [M]t,[L]t , [L]

«C degree of formation [M LJ / [M]x [M]t,[L]t , [L]

<t> degree of the complex 
formation

[M]t /[M]

2.2.3 Linear Method, Errors and Statistics

Stability constants are not directly measurable but must be calculated from an observed 
response function of a fixed, but experimentally adjustable, variable. Since the response 
data are subject to random error and indeed may be subject to systematic errors if we 
have not controlled the experiment well, the stability constants will be calculated with 
limited precision. However, it is important to have an estimate of the precision of any 
calculated constants, as it will indicate the reliability of the value obtained and in turn
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the efficiency of the experiment. In addition we need to have an idea about 
mathematical model is in describing the data.

2.2.3.1 Model Building

Experiments attempts to find some functional form for the way quantities in 
nature are related. We try to build up a mathematical model. It may be an assumed 
one, in which case we need to measure of how good the model is in describing our 
data, or it may be derived from first principles and then tested experimentally. The 
model may be approximate, which may still be acceptable, especially initially, and may 
then be refined or modified in the further experimental observations. The typical 
experiment consists of fixing one group of variables called independent variables, at 
known values and then making observations of another dependent variables. In stability 
constant work the independent variables might be temperature, ionic strength, or the 
concentration of one or more components and dependent variables the e.m.f. or pH or 
absorbency of the solution. We then calculate or estimate the parameters o f interest 
from the assumed functional from relating the dependent to the independent variables.

The parameters for our model are calculated by fitting them to the experimental 
data. This may be done either graphically or by a mathematical procedure, such as 
least-squares. The latter calculates the values of the parameters which the sum of the 
squares of the residuals is defined as the difference between the observed and 
calculated data points at each fixed value of the independent variable is a minimum. In 
addition the method of least-squares allows US to obtain estimates of the errors in the 
parameters of interest and to estimate the ‘goodness of fit’ of the assumed model, that 
is, it allows US to test alternative hypothesis.

2.2.3.2 Random Errors

Random or observational errors are assumed to follow a Gaussian or normal 
distribution , expressed mathematically as
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/  ( O  =
1 —2 / -) 2 ——1------  c ~r* ' ^

V2<tx
(2.56)

where rx is the residual of X  or observed value - true value , c r  x is the variance of X  and 
crx is the standard deviation.

The probability of observing the i th residual, P i  in the region r X j  to rxi  +d/*xi is:

dp -rf. / 2 ai
yfïc dr. (2.57)

Now the probability of obtaining a given set of ท observations, p  is the product of the 
probabilities of each of i th measurements.

dP  = f t  1àp. (2.58)

Based on the statistical principle of maximum likelihood this probability becomes a 
maximum when the sum of the squares residuals is a minimum.

ท
^ r x2: = minimum (2.59)i = 1

Hence the origin of the term ‘least squares ‘ is apparent.

The discussion so far has assumed that the measurements of X  have all come 
from the same population distribution, that is, the variance of the residuals are equal. If 
this is not so, equation (2.57) should be rewritten as :

d P  = ~i= —  1 2 dr (2.60)

and the equation (2.58) becomes
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dP = rfcfc=

and the least-squares principle gives:

(2.61)

1 = ท r r 2 ^
IiVOxi

-  minimum (2.62)

A quantity inversely proportional to the variance is termed the weight of an 
observation. Hence:

น'., (2.63)

where Og2 is known as the variance of an observation of unit weight. In practice (T02 
will often have the value of unity. The quantity now to be minimized is the sum of the 
weighted squares of the residuals.

^  น'xi To = minimum (2.64)i = 1

In practice we cannot know the true value of X  , but the principle of least- 
squares attempts to adjust the estimate of X  according to equation (2.64). Generally 
the experimental data are function of the parameter X  so that rXj in equation (2.64) is 
defined as:

To =  [ / (* 1) - / ( * ) ] (2.65)

and 3c is the least-squares estimator of the true value of the parameter.
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2.2.3.3 Systematic Errors

Systematic errors are caused by the limitations o f the apparatus, or 
experimenter, and introduce bias into the data resulting in inaccurate parameters. Thus 
it is possible to obtain high precision with poor accuracy, as indicated diagrammatically 
in Figure 2.3.

Figure 2.3 Diagrammatic representation of types of experimental error : (a) 
high precision, high accuracy ; (b) low precision, high accuracy (due to large 
random errors); (c) high precision, poor accuracy (due to systematic errors).

2.2.4 Non-Linear Parameter Estimation

2.2.4.1 Least -squares-extension case

To extend least-squares theory to the non-linear case, that is the situation 
where the dependent variables are non-linear functions of the independent variables, 
we take equation and express the dependent variables (observables) as a function of 
the unknowns by a Taylor series expansion. Thus if the initial estimates of the

frequency of
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parameter values are (x,° x° ■■■x m ) then the observables are expressed about this point 
in parameter space by:

y
xi. (* 1-*1°) + ....+ fi f ^  

<0 x„ ( 2 .66)

that is

+ fi - W â x j J
Ax. (2.67)

where terms higher than first order have been neglected. Therefore the change in the 
observables Ao,on making the corrections Axy are given by

A o, = ° i  -/ , (*?■•■*«) = z  ■
djj_
Ô X ,

Ax. ( 2 .68)

2.2.4.2 Hypothesis testing

Another quantity which has been used in non-linear estimation situations is the 
Halmilton 7?-factor. In this procedure the 7?-factor defined by :

1
วิ.

(2.69)

is compared with R lim calculated from :
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(2.70)

where e, is the residual in the / th equation calculated form estimates of the errors in all 
the experimental quantities using error propagation rules, 0 ,calc and 0 ,obsare the 
calculated and the observed values of the response variable respectively, พ, are the 
appropriate weighting factors. A satisfactory fit is assumed if R  <  R \ i m.

2.3 Computation of Equilibrium Constants by SUPERQUAD Programme

The computer programme, รบPERQUAD(26) has been widely used to calculate 
stability constants of species in solution equilibria from data obtained by potentiometric 
method. The formation constants are determined by minimization of an error-square 
sum based on measure electrode potentials. The programme also permits refinement of 
any reactant concentration or standard electrode potential. The refinement is 
incorporated in to new procedure which can be used for model selection. The 
assumptions for computation of formation constants by SUPERQUAD could be 
described as follows.

Assumptions : There are number of assumptions underlying the whole 
treatment, and each needs to be considered explicitly.

1 .  For each chemical species A a B b . . .  in the solution equilibria, there is a 
chemical constant, the formation constant, which is expressed as a concentration 
quotient in equation (2.71).

(2.71)[A]a[B]b...

A, B... are the reactants (SUPERQUAD allows up to four of them) and [A], [B] are 
the concentrations of free reactant; electrical charges may be attached to any species,
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but they are omitted for sake of simplicity in this discussion. Since the thermodynamic 
definition of a formation constant is as an activity quotient, it is to be assumed that the 
quotient of the activity coefficients is constant, an assumption usually justified by 
performing the experiments with a medium of high ionic strength .

2. Each electrode present exhibits a pseudo-Nernstian behavior, equation
(2.72), where [A] is the concentration of the electro-active ion,

E = E๐ + รL log [A] (2.72)

E is the measured potential, and E°is the standard electrode potential. The ideal value 
o f the slope S l is of course RT/nF, but we assume only that it is a constant for a given 
electrode. The value of E° and SL are usually obtained in a separate calibration 
experiment. Further there is a modified Nernst equation.

E = E° + รLlog [H +] + r [FT] + 5 [H ๆ -, (2.73)

This equation was first suggested as means of taking into account junction potentials in 
strongly acidic and strongly basic condition.

3. Systematic errors must be minimized by careful experimental work. 
Sources of systematic error include electrode calibration, sample weighings and 
dilutions, standardization of reagents (use of carbonate-free alkali in particular), 
temperature variation and water quality. The last-named factor is more significant 
today than it was in the past, as water may be contaminated by titrable species which 
can pass through distillation columns by surface action. All statistical tests are based on 
the assumption that systematic errors are absent from the data.

4. The independent variable is not subject to error. Errors in the dependent 
variable are assumed to have a normal distribution. If these assumptions are true use of 
the principle of least squares will yield a maximum likelihood result, and computed 
residuals should not show systematic trends.

I ใ 1* 7 ๆ ? น 1 1
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5. There exits a model of the equilibrium system, which adequately accounts 
for the experimental observations. The model is specified by a set of coefficients 
a, b , one for each species formed. All least-squares refinements are performed in 
terms of an assumed model. Examination of a sequence of models should yield a best 
model which is not significantly different from the true model. Choice o f the best 
model is known as species selection.

2.4 Inert Background Electrolyte

The study acid-base characteristics of ligand and their complexation properties 
toward metal, ionic strength will be controlled by inert background electrolyte present 
at a concentration far in excess that of the reacting ionic species under investigation. 
Inert background electrolyte is sometime called inert background solution or 
supporting electrolyte which is defined as eletrolyte which does not react with any of 
reacting species such as metal ion, ligand or metal-ligand species in the equilibrium 
being studied. The main function of the inert background electrolyte to keep the 
overall ionic strength and activity coefficient constant. Properties of the chosen inert 
background electrolyte must meet the following requirements 
( 1 ) a strong and non reacting (inert) electrolyte,
(2) no part of electrolyte involved in equilibrium under investigation,
(3) its cation must not associate with the ligand and with the complex species,
(4) its anion must not associate with the central metal ion and with the complex 
species,
(5) redox reaction must not occur between the constituents of the inert electrolyte and 
the central ion or ligand,
(6) its solubility has to be large enough,
(7) its contribution to the measured physical or chemical property must be negligible.

Inert background electrolytes that are commonly used in aqueous solvent are 
sodium salts such as the perchlorate or nitrate e.g. sodium perchlorate (NaC104), 
sodium nitrate (NaN03), perchlorate is usually more suitable than any other ions.
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Sodium chloride (NaCl) has been used as a inert background electrolyte, but its use is 
less common that perchlorate or nitrate because chloride ions often form complexes 
with metal ions under study. Potassium salts such as potassium nitrate (KNO3) and 
potassium chloride (KC1) have also been used occasionally, but potassium perchlorate 
(KCIO4) is unsuitable due to its low solubility in water.

Common background electrolytes used in the methanolic solution are 
tetraethylammonium perchlorate (Et4NC104), and tétraméthylammonium chloride 
(Me4NCl). The Me4NCl is not suitable for investigating the complex formation in the 
methanolic solution because chloride ions can form complexes with many transition 
metal ions. The background electrolytes for basicity study of the ligands and their 
complexation in the ethanolic solution is the tétraméthylammonium nitrate 
(Me4N N 03). For the study chemical equilibria of the ligands and their complexation, 
the suitable background electrolytes in acetonitrile are tétraméthylammonium 
perchlorate (Me4NC104) and tetrabutylammonium perchlorate (Bu4NC104).

The tetrabutylammonium trifluoromethanesulfonate (Bu4NCF3 S0 3 ) was 
recently introduced to be used as the inert background electrolyte in methanol<27). The 
Bu4NCF3S 0 3 was examined for being used as the inert background in methanolic 
solution in order to avoid the use of explosive substance such as perchlorate salts.
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