CHAPTER V

CONCLUSION

Basicity study 25,27-{2,2'-[2,2'-((2,5,8-triaza)nonyl)diphenoxy]diethyl}-*p-tert*butylcalix[4]arene (**L**) and stability of its complexes with transition metal ions (M^{2+}) (Co²⁺, Ni²⁺, Cu²⁺ and Zn²⁺) were investigated by potentiometric titration method at 25°C. Protonation constants of the ligand **L** were determined in the methanolic solution of 5.0 x 10⁻² M Et₄NClO₄ and 5.0 x 10⁻² M Bu₄NCF₃SO₃. Three protonation constants expressed in terms of logarithm of its values were found in each electrolyte solution. Order of magnitude of the first, second and third protonation constants of the ligand **L** in both two electrolytes are in the same sequence. The magnitude of three protonation constants of the ligand **L** in the methanolic solution of 5.0 x 10⁻² M Et₄NClO₄ were bigger than those in the methanolic solution of 5.0 x 10⁻² M Bu₄NCF₃SO₃. However the Bu₄NCF₃SO₃ can be used as a new inert background electrolyte in the methanolic solution in order to avoid the use of explosive substance such as perchlorate salts.

Stability constants of the 25,27-{2,2'-[2,2'-((2,5,8-triaza)nonyl)diphenoxy] diethyl}-*p-tert*-butylcalix[4]arene complexes with divalent transition metal ions (Co²⁺, Ni²⁺, Cu²⁺ and Zn²⁺) were determined in the methanolic solution of 5.0 x 10⁻² M Bu₄NCF₃SO₃. The ligand L was found to form ML²⁺ complex species in which the selectivity for metal ions varied as Cu²⁺ > Ni²⁺ > Co²⁺ > Zn²⁺. Order magnitude of these stability constants correspond the expected Irving-Williams order. Furthermore Cu²⁺ and Zn²⁺ could form CuL(OCH₃)⁺ and Zn₂L²⁺ complex species with this ligand L respectively.

Suggestion For Further Work

Further work can be focused on;

1. Complexation study of this ligand L with Co^{2+} , Ni^{2+} , Cu^{2+} and Zn^{2+} by means of ultraviolet visible spectroscopic titrations.

2. Evaluation of the thermodynamic functions (ΔG , ΔH and ΔS) corresponding to complex formation of this ligand L with Co²⁺, Ni²⁺, Cu²⁺ and Zn²⁺.

3. Complexation study of this ligand L with the other divalent transition metal ions such as Mn^{2+} , Fe^{2+} , Pb^{2+} and with trivalent lanthanide metal ions such as Eu^{3+} , Yb^{3+} , Pr^{3+} in order to obtain information for selectivity property and their further applications.