COMPARISON OF SINGLE–WALL CARBON NANOTUBES PREPARED BY CATALYTIC DECOMPOSITION OF METHANE AND DISPROPORTIONATION OF CARBON MONOXIDE OVER DIFFERENT CATALYSTS

Mr. Teerakun Boonphyoong

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2003

ISBN 974-17-2308-3

Thesis Title: Comparison of Single-Wall Carbon Nanotubes Prep	
	Catalytic Decomposition of Methane and Disproportionation
	of Carbon monoxide over Different Catalysts
By:	Mr. Teerakun Boonphyoong
Program:	Petrochemical Technology
Thesis Advisors:	Dr. Boonyarach Kitiyanan
	Assoc. Prof. Sumaeth Chavadej
	Prof. Daniel E. Resasco

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

K. Bunyahint. .

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

Boonyarach Kitiyaman

(Dr. Boonyarach Kitiyanan)

Sumaith Clandy

(Assoc. Prof. Sumaeth Chavadej)

eraso

(Prof. Daniel E. Resasco)

Prawoch R.

(Asst. Prof. Pramoch Rangsunvigit)

Kitipat Siemanand

(Dr. Kitipat Siemanond)

ABSTRACT

PETROCHEMICAL TECHNOLOGY PROGRAM Teerakun Boonphyoong: Comparison of Single-Wall Carbon Nanotubes Prepared by Catalytic Decomposition of Methane and Disproportionation of Carbon Monoxide over Different Catalysts Thesis Advisors: Dr. Boonyarach Kitiyanan, Assoc. Prof. Sumaeth Chavadej, and Prof. Daniel E. Resasco, 95 pp. ISBN 974-17-2308-3

Keywords : Single-Wall Carbon Nanotubes/ Catalytic Decomposition of methane/ Disproportionation of Carbon Monoxide

Single-wall carbon nanotubes (SWNT) exhibit outstanding mechanical and electrical properties, which can be utilized for various potential applications. Currently, the catalytic decomposition of carbon-containing gases is the most promising pathway for the large-scale production of SWNT. Consequently, in order to produce high quality and quantity of SWNT, carbon-containing gases, catalyst formulations, as well as synthesis conditions have been studied. In this work, methane, carbon monoxide, and their mixtures were systematically tested over a series of Ni-Mo, Co-Mo, and Fe-Mo catalysts supported on silica gel, magnesium oxide and alumina. Raman spectroscopy, temperature programmed oxidation and transmission electron microscopy were used to characterize the deposited carbon on the catalysts. The results showed that CO yielded high quality of SWNT on all supports except on MgO, while methane gave high amounts of deposited carbon but low selectivity towards SWNT. Characterization results also suggested that CO and CH₄ react independently when used in combination.

บทคัดย่อ

ธีระกุล บุญพยุง: การเปรียบเทียบคาร์บอนนาโนทิวบ์ประเภทผนังชั้นเคียวที่เตรียมโดย การสลายตัวของก๊าซมีเทนและก๊าซคาร์บอนมอนอกไซด์บนตัวเร่งปฏิกิริยาชนิคต่างๆ (Comparison of Single-Wall Carbon Nanotubes Prepared by Catalytic Decomposition of Methane and Disproportionation of Carbon Monoxide over Different Catalysts) อ. ที่ปรึกษา: คร. บุนยรัชต์ กิติยานันท์, รศ. คร. สุเมธ ชวเดช และ ศ. คร. แคเนียล อีรีซาสโก (Professor Daniel E. Resasco) 95 หน้า ISBN 974-17-2308-3

คาร์บอนนาโนทิวบ์ประเภทผนังเดียว (Single-wall carbon nanotubes) แสดงสมบัติที่ โดคเด่นทั้งทางเชิงกลและไฟฟ้า ซึ่งมีความเป็นไปได้ในการนำไปใช้งานที่หลากหลาย การสลาย ดัวโดยใช้ดัวเร่งปฏิกิริยาของก๊าซที่มีคาร์บอนเป็นวิธีที่มีประสิทธิภาพที่สุดในขณะนี้ในการผลิด การ์บอนนาโนทิวบ์ประเภทผนังเดียว (SWNT) ในปริมาณสูง ด้วยเหตุนี้เพื่อที่จะผลิด SWNT ให้ ได้ทั้งคุณภาพและปริมาณที่สูง ก๊าซที่มีคาร์บอนเป็นองค์ประกอบ, องค์ประกอบของคาทาลิสด์ และ สภาวะของการสังเคราะห์ได้ถูกนำมาศึกษา ในงานวิจัยนี้ก๊าซคาร์บอนมอนนอกไซด์ ก๊าซ มีเทน และก๊าซผสมระหว่างก๊าซการ์บอนมอนนอกไซด์และมีเทน ได้ถูกนำมาทคสอบบนกลุ่มของ กาทาลิสต์ นิกเกิล-โมลิบดีนัม, โคบอลต์-โมลิบดีนัม และเหล็ก-โมลิบดีนัม บนตัวรองรับซิลิกา แมกนีเซียมออกไซด์ และอลูมินา การวิเคราะห์การ์บอนที่สะสมบนคาทาลิสต์นั้นใช้เครื่องมือ รามานเสปกโทรสโคปี, temperature programmed oxidation และ กล้องจุลทรรศน์อิเล็คตรอนแบบ ส่องผ่าน ผลการทดลองนั้นแสดงว่า การใช้ก๊าซการ์บอนมอนอกไซด์ สามารถให้ SWNT คุณภาพ สูงบนทุกตัวรองรับยกเว้นบนตัวรองรับแมกนีเซียมออกไซด์ ในขณะที่ก๊าซมีเทนให้ปริมาณ การ์บอนที่สะสมในปริมาณสูงแต่ให้ผลเลือกที่เป็น SWNT ด่ำ ผลของการวิเคราะห์ซึ่ว่าเมื่อป้อน ก๊าซการ์บอนมอนนอกไซด์และมีเทนพร้อมกัน ก๊าซทั้งสองทำปฏิกิริยากับคาทาลิสต์โดยอิสระจาก กัน

ACKNOWLEDGEMENTS

First of all, I would like to express my gratefully thanks to all of my advisors Dr. Boonyarach Kitiyanan, Assoc. Prof. Sumaeth Chavadej and Prof. Daniel E. Resasco for their advising, recommendations, problem solving skills, and encouragement throughout this thesis work.

I also sincerely thank Asst. Prof. Pramoch Rangsunvigit and Dr. Kitipat Siemanond for serving in my thesis committee.

It is my pleasure to acknowledge to all professors who taught me, and also the Petroleum and Petrochemical College's faculty and staffs for all kind assistance, cooperation and providing me an opportunity to pursue MS degree study.

I would like to acknowledge the Postgraduate Education and Research Programs in Petroleum, Petrochemical and Polymer, the Petroleum and Petrochemical Consortium for providing partially financial support for this research work.

I wish to gratefully give special thanks to Dr. Apinya Woonbamrung at MTEC for her assistance in TEM work.

Especially, I also deeply appreciate Mr. Pisan Chungchamroenkit, Jose Efrarin Herrera for the characterization by using Raman spectroscopy and TPO techniques at the University of Oklahoma. Moreover, I would like to thank Miss Supapak Xuto who is the previous student in this thesis for providing many useful informations.

I would like to thank all my PPC friends for their friendship, love, and encouragement.

Finally, my deepest gratitude and appreciation to my parents for their love, understanding, and measureless support, without them I would not be able to achieve my goal.

TABLE OF CONTENTS

PAGE

13

	Title Page	i
	Acceptance Page	ii
	Abstract (in English)	iii
	Abstract (in Thai)	iv
	Acknowledgements	v
	Table of Contents	vi
	List of Tables	ix
	List of Figures	x
СНАРТЕ	R	
Ι	INTRODUCTION	1
IJ	LITERATURE REVIEW	2
	2.1 Introduction to Carbon Nanotubes	2
	2.2 Properties and Applications of Carbon Nanotubes	3
	2.3 Productions of Carbon Nanotubes	3
	2.3.1 Arc Discharge of Carbon Electrodes Technique	3
	2.3.2 Laser Evaporation of Carbon Graphite Technique	4
	2.3.3 Catalytic Reaction of Hydrocarbon Compounds	
	Technique	6
	2.4 Characterizations of Carbon Nanotubes	11
	2.4.1 Raman Spectroscopy	11
	2.4.2 Transmission Electron Microscopy	12
	2.4.2 Temperature Programmed Oxidation	12
III	EXPERIMENTAL	13
	3.1 Materials	13
	3.1.1 Chemicals	13

3.1.2 Gases

CHAPTER

IV

PAGE

3.2	Experimental Apparatus	13
	3.2.1 Gas Controlling System	13
	3.2.2 Catalytic Reactor	14
3.3	Experimental Methods	14
	3.3.1 Catalyst Preparation and Pretreatment	14
	3.3.2 Catalytic Synthesis Studies	15
3.4	Carbon Product Characterizations	17
	3.4.1 Raman Spectroscopy	17
	3.4.2 Transmission Electron Microscopy	17
	3.4.3 Temperature Programmed Oxidation	17
RE	SULTS AND DISCUSSION	19
4.1	The Carbon Nanotubes Formation on Silica Support	21
	4.1.1 Effects of CH_4 , CO, and Mixture of CH_4 and	
	CO on the Carbon Nanotubes Formation	24
	4.1.2 Effects of Catalyst Formulations on the Carbon	
	Nanotubes Formation	32
4.2	The Carbon Nanotubes Formation on Magnesium	
	Oxide Support	47
	4.2.1 Effects of CH_4 , CO, and Mixture of CH_4 and	
	CO on the Carbon Nanotubes Formation	49
	4.2.2 Effects of Catalyst Formulations on the Carbon	
	Nanotubes Formation	53
4.3	The Carbon Nanotubes Formation on Alumina Support	60
	4.3.1 Effects of CH_4 , CO, and Mixture of CH_4 and	
	CO on the Carbon Nanotubes Formation	62
	4.3.2 Effects of Catalyst Formulations on the Carbon	
	Nanotubes Formation	72
4.4	Effects of Silica, Magnesium Oxide, and Alumina	
	Supports on the Carbon Nanotubes Formation	88

CHAPTER		PAGE	
	\mathbf{V}	CONCLUSIONS	91
		5.1 Conclusions	91
		REFERENCES	92
		CURRICULUM VITAE	95

LIST OF TABLES

TABLE		PAGE
3.1	Surface area of catalyst supports	13
4.1	Summary of carbon nanotubes production by using	
	different gases and catalyst formulations on silica support	22
4.2	Summary the Raman spectroscopy results on silica gel	
	support	33
4.3	Summary of SWNT formation on silica gel sorted by	
	quality parameter	46
4.4	Summary of carbon nanotubes production by using	
	different gases and catalyst formulations on magnesium	
	oxide support	47
4.5	Summary the Raman spectroscopy results on magnesium	
	oxide support	54
4.6	Summary the Raman spectroscopy results of mono-metallic	
	catalysts on magnesium oxide support	54
4.7	Summary of SWNT formation on magnesium oxide sorted	
	by quality parameter	59
4.8	Summary of carbon nanotubes production by using different	
	gases and catalyst formulations on alumina support	60
4.9	Summary the Raman spectroscopy results on alumina	
	support	73
4.10	Summary of SWNT formation on alumina sorted by	
	quality parameter	87

LIST OF FIGURES

FIGUR	IGURE	
2.1	Carbon nanostructures (a) a spherical molecule, Fullerene	
	(b) a hollow cylindrical tube, carbon nanotubes	
	(Tang, 2001).	2
2.2	A carbon arc discharge apparatus (Harris, 1999).	5
2.3	Laser vaporization apparatus (Yakobson and Smalley,	
	1997).	5
2.4	Reactor set up for catalytically growing carbon nanotubes.	6
3.1	Schematic of the experimental apparatus.	16
4.1	TPO of all the carbonaceous species present in the	
	Co-Mo1:2/SiO ₂ catalyst compared to similar TPOs of	
	graphite reference, blank solution, and commercial SWNT	
	obtained from Tubes@Rice (Kitiyanan, 2000).	20
4.2	Raman spectra of carbon produced by NiMo 2:1 over silica	
	support with CH ₄ , CO, and mixture at 750 °C.	26
4.3	TPO profiles of carbon produced by NiMo 2:1 over silica	
	support with CH ₄ , CO, and mixture at 750 °C.	26
4.4	Raman spectra of carbon produced by CoMo 1:1 over silica	
	support with CH ₄ , CO, and mixture at 750 °C.	27
4.5	TPO profiles of carbon produced by CoMo 1:1 over silica	
	support with CH ₄ , CO, and mixture at 750 °C.	27
4.6	Raman spectra of carbon produced by CoMo 1:2 over silica	
	support with CH ₄ , CO, and mixture at 750 °C.	28
4.7	TPO profiles of carbon produced by CoMo 1:2 over silica	
	support with CH ₄ , CO, and mixture at 750 °C.	28
4.8	Raman spectra of carbon produced by CoMo 2:1 over silica	
	support with CH ₄ , CO, and mixture at 750 °C.	29

4.9	TPO profiles of carbon produced by CoMo 2:1 over silica	
	support with CH ₄ , CO, and mixture at 750 °C.	29
4.10	Raman spectra of carbon produced by FeMo 1:2 over silica	
	support with CH ₄ , CO, and mixture at 750 °C.	30
4.11	TPO profiles of carbon produced by FeMo 1:2 over silica	
	support with CH ₄ , CO, and mixture at 750 °C.	30
4.12	Raman spectra of carbon produced by FeMo 2:1 over silica	
	support with CH ₄ , CO, and mixture at 750 °C.	31
4.13	TPO profiles of carbon produced by FeMo 2:1 over silica	
	support with CH ₄ , CO, and mixture at 750 °C.	31
4.14	Raman spectra of carbon produced by NiMo at 1:1, 1:2,	
	and 2:1 mole ratios over silica support with CO at 750 °C.	34
4.15	TPO profiles of carbon produced by NiMo at 1:1, 1:2,	
	and 2:1 mole ratios over silica support with CO at 750 °C.	34
4.16	Raman spectra of carbon produced by CoMo at 1:1, 1:2,	
	and 2:1 mole ratios over silica support with CH_4 at 750 °C.	35
4.17	TPO profiles of carbon produced by CoMo at 1:1, 1:2,	
	and 2:1 mole ratios over silica support with CH_4 at 750 °C.	35
4.18	Raman spectra of carbon produced by CoMo at 1:1, 1:2,	
	and 2:1 mole ratios over silica support with CO at 750 °C.	36
4.19	TPO profiles of carbon produced by CoMo at 1:1, 1:2,	
	and 2:1 mole ratios over silica support with CO at 750 °C.	36
4.20	Raman spectra of carbon produced by CoMo at 1:1, 1:2,	
	and 2:1 mole ratios over silica support with mixture of	
	CH_4 and CO at 750 °C.	37
4.21	TPO profiles of carbon produced by CoMo at 1:1, 1:2,	
	and 2:1 mole ratios over silica support with mixture of	
	CH ₄ and CO at 750 °C.	37

4.22	Raman spectra of carbon produced by FeMo at 1:1, 1:2,	
	and 2:1 mole ratios over silica support with CO at 750 °C.	38
4.23	TPO profiles of carbon produced by FeMo at 1:1, 1:2,	
	and 2:1 mole ratios over silica support with CO at 750 °C.	38
4.24	Raman spectra of carbon produced by FeMo at 1:1, 1:2,	
	and 2:1 mole ratios over silica support with mixture of	
	CH₄ and CO at 750 °C.	39
4.25	TPO profiles of carbon produced by FeMo at 1:1, 1:2,	
	and 2:1 mole ratios over silica support with mixture of	
	CH₄ and CO at 750 °C.	39
4.26.	Raman spectra of carbon produced by NiMo, CoMo,	
	and FeMo catalysts at 2:1 mole ratio over silica support	
	with CO at 750 °C.	40
4.27	TPO profiles of carbon produced by NiMo, CoMo,	
	and FeMo catalysts at 2:1 mole ratio over silica support	
	with CO at 750 °C.	40
4.28	Raman spectra of carbon produced by NiMo, CoMo,	
	and FeMo catalysts at 2:1 mole ratio over silica support	
	with mixture of CH ₄ and CO at 750 °C.	41
4.29	TPO profiles of carbon produced by NiMo, CoMo,	
	and FeMo catalysts at 2:1 mole ratio over silica support	
	with mixture of CH ₄ and CO at 750 °C.	41
4.30	the quality parameters of carbon produced by different	
	catalyst formulations over silica support with CH4, CO,	
	and mixture at 750 °C.	44
4.31	the total yields of carbon produced by different catalyst	
	formulations over silica support with CH4, CO, and mixture	
	at 750 °C.	44

4.32	TEM image showing a mixture of SWNT and amorphous	
	carbon produced by CO disproportionation on	
	NiMo 1:2/SiO ₂ catalyst.	45
4.33	Raman spectra of carbon produced by CoMo 2:1 over	
	magnesium oxide support with CH4, CO, and mixture at	
	750 °C.	50
4.34	TPO profiles of carbon produced by CoMo 2:1 over	
	magnesium oxide support with CH4, CO, and mixture at	
	750 °C.	50
4.35	Raman spectra of carbon produced by FeMo 2:1 over	
	magnesium oxide support with CH4, CO, and mixture at	
	750 °C.	51
4.36	TPO profiles of carbon produced by FeMo 2:1 over	
	magnesium oxide support with CH4, CO, and mixture at	
	750 °C.	51
4.37	Raman spectra of carbon produced by Co catalyst over	
	magnesium oxide support with CH4, CO, and mixture at	
	750 °C.	52
4.38	TPO profiles of carbon produced by Co catalyst over	
	magnesium oxide support with CH4, CO, and mixture at	
	750 °C.	52
4.39	Raman spectra of carbon produced by FeMo at 1:1, 1:2,	
	and 2:1 mole ratios over magnesium oxide support with	
	CH ₄ at 750 °C.	55
4.40	TPO profiles of carbon produced by FeMo at 1:1, 1:2,	
	and 2:1 mole ratios over magnesium oxide support with	
	CH ₄ at 750 °C.	55

4.41	Raman spectra at RBM range of carbon produced by Ni, Co	
	Fe, and Mo catalysts over magnesium oxide support with	
	CH ₄ at 750 °C.	56
4.42	TPO profiles of carbon produced by Ni, Co, Fe, and Mo	
	catalysts over magnesium oxide support with CH ₄ at 750 °C.	56
4.43	the quality parameters of carbon produced by different	
	catalyst formulations over magnesium oxide support with	
	CH ₄ , CO, and mixture at 750 °C.	58
4.44	the total yields of carbon produced by different catalyst	
	formulations over magnesium oxide support with CH ₄ , CO,	
	and mixture at 750 °C.	58
4.45	Raman spectra of carbon produced by NiMo 1:1 over	
	alumina support with CH ₄ , CO, and mixture at 750 °C.	63
4.46	TPO profiles of carbon produced by NiMo 1:1 over	
	alumina support with CH ₄ , CO, and mixture at 750 °C.	63
4.47	Raman spectra of carbon produced by NiMo 1:2 over	
	alumina support with CH ₄ , CO, and mixture at 750 °C.	64
4.48	TPO profiles of carbon produced by NiMo 1:2 over	
	alumina support with CH ₄ , CO, and mixture at 750 $^{\circ}$ C.	64
4.49	Raman spectra of carbon produced by NiMo 2:1 over	
	alumina support with CH ₄ , CO, and mixture at 750 °C.	65
4.50	TPO profiles of carbon produced by NiMo 2:1 over	
	alumina support with CH ₄ , CO, and mixture at 750 °C.	65
4.51	Raman spectra of carbon produced by CoMo 1:1 over	
	alumina support with CH ₄ , CO, and mixture at 750 °C.	66
4.52	TPO profiles of carbon produced by CoMo 1:1 over	
	alumina support with CH ₄ , CO, and mixture at 750 °C.	66
4.53	Raman spectra of carbon produced by CoMo 1:2 over	
	alumina support with CH ₄ , CO, and mixture at 750 °C.	67

4.54	TPO profiles of carbon produced by CoMo 1:2 over	
	alumina support with CH ₄ , CO, and mixture at 750 °C.	67
4.55	Raman spectra of carbon produced by CoMo 2:1 over	
	alumina support with CH ₄ , CO, and mixture at 750 °C.	68
4.56	TPO profiles of carbon produced by CoMo 2:1 over	
	alumina support with CH ₄ , CO, and mixture at 750 °C.	68
4.57	Raman spectra of carbon produced by FeMo 1:1 over	
	alumina support with CH ₄ , CO, and mixture at 750 $^{\circ}$ C.	69
4.58	TPO profiles of carbon produced by FeMo 1:1 over	
	alumina support with CH ₄ , CO, and mixture at 750 $^{\circ}$ C.	69
4.59	Raman spectra of carbon produced by FeMo 1:2 over	
	alumina support with CH ₄ , CO, and mixture at 750 °C.	70
4.60	TPO profiles of carbon produced by FeMo 1:2 over	
	alumina support with CH ₄ , CO, C and mixture at 750 °C.	70
4.61	Raman spectra of carbon produced by FeMo 2:1 over	
	alumina support with CH ₄ , CO, and mixture at 750 °C.	71
4.62	TPO profiles of carbon produced by FeMo 2:1 over	
	alumina support with CH ₄ , CO, and mixture at 750 °C.	71
4.63	Raman spectra of carbon produced by NiMo at 1:1, 1:2,	
	and 2:1 mole ratios over alumina support with CO at	
	750 °C.	74
4.64	TPO profiles of carbon produced by NiMo at 1:1, 1:2,	
	and 2:1 mole ratios over alumina support with CO at	
	750 °C.	74
4.65	Raman spectra of carbon produced by NiMo at 1:1, 1:2,	
	and 2:1 mole ratios over alumina support with mixture of	
	CH_4 and CO at 750 °C.	75

4.66	TPO profiles of carbon produced by NiMo at 1:1, 1:2,	
	and 2:1 mole ratios over alumina support with mixture of	
	CH_4 and CO at 750 °C.	75
4.67	Raman spectra of carbon produced by CoMo at 1:1, 1:2,	
	and 2:1 mole ratios over alumina support with CH ₄ at	
	750 °C.	76
4.68	TPO profiles of carbon produced by CoMo at 1:1, 1:2,	
	and 2:1 mole ratios over alumina support with CH ₄ at	
	750 °C.	76
4.69	Raman spectra of carbon produced by CoMo at 1:1, 1:2,	
	and 2:1 mole ratios over alumina support with CO at	
	750 °C.	77
4.70	TPO profiles of carbon produced by CoMo at 1:1, 1:2,	
	and 2:1 mole ratios over alumina support with CO at	
	750 °C.	77
4.71	Raman spectra of carbon produced by CoMo at 1:1, 1:2,	
	and 2:1 mole ratios over alumina support with mixture of	
	CH_4 and CO at 750 °C.	78
4.72	TPO profiles of carbon produced by CoMo at 1:1, 1:2,	
	and 2:1 mole ratios over alumina support with mixture of	
	CH_4 and CO at 750 °C.	78
4.73	Raman spectra of carbon produced by FeMo at 1:1, 1:2,	
	and 2:1 mole ratios over alumina support with CH_4 at	
	750 °C.	79
4.74	TPO profiles of carbon produced by FeMo at 1:1, 1:2,	
	and 2:1 mole ratios over alumina support with CH_4 at	
	750 °C.	79

PAGE

4.75	Raman spectra of carbon produced by FeMo at 1:1, 1:2,	
	and 2:1 mole ratios over alumina support with CO at	
	750 °C.	80
4.76	TPO profiles of carbon produced by FeMo at 1:1, 1:2,	
	and 2:1 mole ratios over alumina support with CO at	
	750 °C.	80
4.77	Raman spectra of carbon produced by FeMo at 1:1, 1:2,	
	and 2:1 mole ratios over alumina support with mixture of	
	CH ₄ and CO at 750 °C.	81
4.78	TPO profiles of carbon produced by FeMo at 1:1, 1:2,	
	and 2:1 mole ratios over alumina support with mixture of	
	CH_4 and CO at 750 °C.	81
4.79	Raman spectra of carbon produced by NiMo, CoMo,	
	and FeMo catalysts at 2:1 mole ratio over alumina support	
	with mixture of CH_4 and CO at 750 °C.	82
4.80	TPO profiles of carbon produced by NiMo, CoMo,	
	and FeMo catalysts at 2:1 mole ratio over alumina support	
	with mixture of CH_4 and CO at 750 °C.	82
4.81	Raman spectra of carbon produced by NiMo, CoMo,	
	and FeMo catalysts at 1:2 mole ratio over alumina support	
	with CO at 750 °C.	83
4.82	TPO profiles of carbon produced by NiMo, CoMo,	
	and FeMo catalysts at 1:2 mole ratio over alumina support	
	with CO at 750 °C.	83
4.83	the quality parameter of carbon produced by different	
	catalyst formulations over alumin support with CH ₄ , CO,	
	and mixture at 750 °C.	85

PAGE

4.84	the total yields of carbon produced by different catalyst	
	formulations over alumina support with CH ₄ , CO, and	
	mixture at 750 °C.	85
4.85	TEM image showing SWNT produced by CO	
	disproportionation on FeMo 2:1 over alumina	
	support.	86
4.86	Raman spectra of carbon produced by CoMo 2:1 over	
	silica, magnesium oxide, and alumina supports with	
	mixture of CH ₄ and CO at 750 °C.	89
4.87	Raman spectra of carbon produced by CoMo 2:1 over	
	silica, magnesium oxide, and alumina supports with CH_4	
	at 750 °C.	89
4.88	Raman spectra of carbon produced by FeMo 1:2 over	
	silica, magnesium oxide, and alumina supports with CO	
	at 750 °C.	90
4.89	Raman spectra of carbon produced by FeMo 2:1 over	
	silica, magnesium oxide, and alumina supports with	
	mixture of CH₄ and CO at 750 °C.	90