
C H A P T E R  III

M U L T I P L E  D E S C R I P T I O N  C O D IN G  F O R  M U L T IP L E  
C L A S S IF IE R  S Y S T E M S

In this chapter, a new method of combining multiple classifiers is presented with the 
goal of improving the classification accuracy of ECOC and other combining algorithms. This 
approach employs a deterministic redundancy between classifiers through the use of multiple 
description (MD) coding models. In contrast, most of the traditional combining algorithms 
(e.g., Bagging, Adaboost and random subspace method) usually manipulate the statistical 
redundancies between classifiers. In particular, a multiple classifier system is constructed 
using a new and efficient wavelet-based MD pattern analysis algorithm.

Basically, linear transforms and expansions are the fundamental mathematical tools of 
signal processing, yet the properties of linear expansions for preprocessing of data multiple 
classifier systems are not fully understood. In Section 3.2, we describe wavelet based signal 
processing, called local discriminant bases that is suitable for classification problems. In fact, 
this technique has been successfully used as a feature extraction for a single classification 
rule. Section 3.3 is devoted to multiple description coding models with overcomplete wavelet 
representation. The overcomplete wavelet representation is based on frame of the shift- 
variant wavelet discrete wavelet transform. Then in Sections 3.4 and 3.5, we discuss how 
to construct independent and unequal error protected descriptions for multiple classifiers. 
In particular, we propose a pattern recognition system that consists of a set of independent 
classifiers which use overcomplete feature descriptions obtained from a set of collections 
of bases (or equivalently selected from a set of overcomplete libraries of local discriminant 
bases). In this system, the classification procedures is in parallel.

3.1 In troduction
The problems of breaking an image into pieces and then being able to reconstruct it 

from an arbitrary subset of these pieces have been long discussed, i.e., the problem of source 
coding [44] and optical holography [53]. In source coding, the proposition of jointly coding 
of many source descriptions is based on the original questions posed by Gersho, Ozarow, 
witsenhausen, Wolf, Wyner, and ziv at the shannon Theory Workshop in the September 
1979 (see [54] and the references therein). The question was that if  an information source 
is described by two separate descriptions, what are the concurrent limitations on qualities of  
these descriptions taken separately and jointly? This problem would come to be known as 
the multiple description problem.
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Multiple description (MD) coding is a source coding technique, in which the source 
is encoded into multiple descriptions, which are transmitted over different channels to the 
receiver, when the succeeding descriptions are available to the receiver, they can be used 
to refine the information contained in the preceding descriptions.

There are several approaches proposed for constructing multiple description coding, 
and one of the approaches is multiple description transform coding. Multiple description 
coding with frame expansions [44] is one of the successful attempts that employs the frame 
decomposition approach for MD transform coding. In multiple description coding with frame 
expansions, the source vector is expanded using a linear redundant transform. The expanded 
signal has a linear dependent between its components. This clearly corresponds to a frame 
decomposition. After expanding the signal, each redundant coefficient is quantized, and the 
quantized codewords are sent on the channel.

In the conventional communication system based on error correcting codes, each 
component of the source vector is quantized using a quantization codebook. A linear block 
code is then applied to the quantizer output, and the encoding codewords are sent on the 
channel. Due to the fact that a linear block code is a linear transform, the difference between 
the systems is the swapping of transform and quantization operations.

As discussed in [8], each concept belonging to the class information source can be 
represented by a quantized bit stream. Under the theory of covering numbers (Kolmogorov’s 
entropy) [40,41], the quantized bit stream is considered to be quantized using a quantization 
codebook learned from the classification data. Drawing an analogy between classification 
and source—channel models, a linear block code can then be applied to the classification 
quantizer output in ECOC with success. Contrary to ECOC, in our proposed scheme, the 
class information source is expanded using a linear redundant transform. Then, each of 
the expanded class information is conceptually quantized using a quantization codebook 
learned from the classification data. It is in this context that the swapping of transform 
and quantization operations in classification is understudied, especially in the exploitation of 
frame expansions for multiple classifier systems.

Drawing an analogy between classification and source—channel models, classification 
with k classifiers is then equivalent to generalized MD coding with k channels. Therefore, 
assimilating the MD coding with frame expansions to new multiple classifier systems is 
closely related to the assimilation of the error correcting codes to ECOC, but is much more 
efficient.

3.2 A L ibrary  o f O rthonorm al Bases and Local D iscrim inant Basis
Standard discrete wavelet packet transform (DWPT) is a generalization of discrete 

wavelet transform (DWT) that offers a richer range of possibilities for signal and image 
representations. Local discriminant basis (LDB) [55] is a generalization of DWPT that is 
implemented for selecting optimal local basis using class separability criteria.
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There are several advantages in using LDB for feature extractors. For example, LDB is 
more robust to outliers and perturbations than the Karhunen-Loéve transform and the linear 
discriminant analysis. Moreover, LDB can capture local features with less computation and 
possesses structural interpretability. It is also reported that more resistance to overtraining 
is obtained when we use classifier with LDB. However, Coiflets seem to be less resistant to 
overtraining than other wavelet filters, as they are adapted too well to training data [15]. 
Adding redundancy to LDB is an improvement technique proposed in Section 3.4 in order 
to reduce the overtraining problem retained in LDB method, inspiring from the fundamental 
concept used in multiple classifier systems.

Note that in this section, only relevant material to the one—dimensional (ID) wavelet 
transforms and its variants will be presented. An extension to 2D is easily obtained by using 
tensor products of the transforms.

3.2.1 Wavelet Bases, Wavelet Packet Bases and Best Basis Selection
Both DWT and DWPT can be described and computed by a pair of quadrature mirror 

filters (QMF) H  and G. The filter H  is a lowpass filter with a finite impulse response 
denoted by h(n) of length K . The detail of various design criteria for the lowpass filter 
coefficients h (n ) can be found in the literature [56—58]. Once h(n) is derived, we can have 
the highpass filter G  with a finite impulse response defined by g (ท) =  ( - l ) ”/i( l — ท), for 
a finite length h(n). These filters are called QMF, if they satisfy the following orthogonality 
(or perfect reconstruction) conditions:

HG* =  GH* =  0 and H *H  +  G*G  =  I, (3.1)
where H* and G* are adjoint operations of H  and G, and I  is an identity operator, 
respectively.

In DWT analysis, the signal is split into approximation and detail subbands defined by 
two subsequences H x  and G x of lengths N /2 , where X is the signal vector of length N. 
The approximation subband is then itself split into second-level approximation and detail 
subbands, and the process is recursively repeated.

In DWPT analysis, the detail subbands as well as the approximation subbands can also be 
split. For example, the first level decomposition generates H x  and G x just likes in the DWT. 
The second level decomposition generates four subbands, H 2X, G H x , H G x, G2X. And so 
on, the L level decomposition generates 2L subbands. Because of the perfect reconstruction 
condition on H  and G, each decomposition step is considered as a decomposition of the 
vector space into mutually orthogonal subspaces, with the application of the projection 
operators H  and G to the parent subspaces at each decomposition level, wavelet packet 
transform naturally generates subspaces of R w of a binary tree, where the nodes of the tree 
represent subspaces with different time—frequency localization characteristics. This leads 
to an indication that each representation subspace is spanned by a set of basis vectors, so 
called wavelet packets. In the general case of L level decomposition, we have 2L and AL
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possible ways to represent signal and image by using a redundant set of wavelet packets in 
the binary (quad) tree, respectively, clearly, an extremely large amount of freedom exists for 
the construction of orthogonal bases from the wavelet packet library. This greater flexibility 
is exploited to increase the efficiency of the representation.

Because the collection of wavelet packets is overcomplete, Coifman and wickerhaus- 
er [59] suggested to use a fast dynamic programming algorithm to search wavelet packets 
for that best basis which is optimal according to a given cost function A4. The algorithm 
suggested by Coifman is called the best basis algorithm.

3.2.2 Local Discriminant Basis
Coifman and Saito [55,60] extended the “best basis" method to select an orthonormal 

basis suitable for signal/image classification problems. In particular, they suggested to use 
a variety of cost functions that measure the class separability among classes of signal/image 
patterns. More precisely, let z =  { Z j } ^ 1 be a sequence, e.g., decomposition vector. And, 
let p =  Lq1 and q — {Çijilô1 be two nonnegative sequences with YhVi — YsVi =  1- 
For this purpose, the selection criterion (cost function) is in general an entropy criterion A4 
suitable for signal/image compression like the non-normalized shannon entropy,

M ( z )  =  -  พ 2/ Hz H2 i ° g M 2/ l l z ll2> (3-2)

has to be replaced by a discriminant information function £>(p,q) [55,60],
In the two—class case, the discriminant information function V (p, q) measures how 

differently p and q are distributed. One possibility of the measure V  is the relative entropy 
of two sequences defined by

พ (p> q) (แ)2- (3-3)

In this work, only the V  =  พ  (see other discriminant information functions in [55]) is used. 
In the general case of c  classes, the discriminant measure of c  sequences is defined as

» ( { p (c)f . l )  =  E E  ®<P(i).q M). (3.4)
i= 1 j= i+1

Note that the discriminant measure should be additive in order to ensure a fast computational 
algorithm.

Given an additive discriminant measure, we are capable of evaluating the power of 
discrimination of each basis vector in the wavelet packet library. We are now ready to 
describe the local discriminant basis algorithm. First, we decompose training signal data 
from different classes using a collection of wavelet packets, and form them into a binary 
tree. Then, we compute the time—frequency energy map for each class by accumulating
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the energy of expansion coefficients of the signal at each position in the tree followed by 
the normalization by the total energy of the signals belonging to class c G c .  Next, we 
compute the discriminant measure at each position in the tree by letting p and q in (3.3) and 
(3.4) be the time—frequency energy map sequences between different classes, similar to the 
best—basis algorithm, we search for the optimal basis according to the criterion defined by 
the derived discriminant measures in order that no other basis in the library will discriminate 
more between classes. Initially, local discriminant basis (LDB) is set to be the basis vectors 
of the children nodes at the bottom of the binary tree. Then, the discriminant measure 
functions of each two children nodes are compared to their parent’s. If the sum of the 
discriminant measure functions of two children nodes is higher than their parent, we keep 
the basis vectors of the children nodes. Otherwise, the basis vectors of the parent node is 
chosen as LDB. We repeat the comparisons until we reach at the top of the tree. After this 
step, we have a complete orthonormal basis LDB.

Instead of using a complete orthonormal basis LDB as features, we consider the case 
that only a few good  features are extracted from LDB and used to train classifiers, since the 
dimensionality of the problem is reduced, it is more likely that both the accuracy and speed 
of the trained classifiers can be improved. Once the LDB is selected, we evaluate the power 
of discriminant of each individual basis function in the LDB by computing the discriminant 
measure in (3.4) using the time—frequency energy maps of expansion coefficients of signals 
obtained from a single basis function in the LDB belonging to class c e  c ,  instead of a set 
of basis vectors at that position in the tree. Then, we sort the basis vectors of the LDB in 
the order of their discriminant power. Next, we retain the first M  basis vectors as the most 
discriminant basis (MDB) functions. Throughout the rest of this paper, the MDB functions 
will be referred to as the M  most important LDB vectors, and these two terms can be used 
interchangeably whenever it is appropriated.

3.3 Multiple Description Coding Models
In this section, we first describe the frame. Frame and overcomplete representation are 

two key element for adapting shift-variant wavelet transform for multiple description coding 
models. In fact, they can be interchangeable whenever they are appropriated. We then 
describe several biological plausible evidences that support for the uses of frame in wavelet 
representations. In Subsection 3.3.3, the main ideas of shift-variance wavelet transforms are 
described. We then modify the existing overcomplete wavelet representations using periodic 
boundary handling. These representations may not produce enough redundancy when the 
signal is decomposed into octave subbands. However, we show in the next section that 
these representations are very useful when the signal is decomposed by using full wavelet 
decomposing scheme.
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3.3.1 Frame
Many problems in signal processing, communications, and information theory deal 

with linear signal expansions, also known as subspace approaches. The corresponding basis 
functions usually constitute a nonredundant set. It is well known that the use of redundancy 
in engineering systems improves robustness and numerical stability. The use of redundant 
linear signal expansions has found widespread use in many different engineering disciplines. 
Recent examples include sampling theory, A/D conversion, oversampled filter banks, multiple 
description source coding, error correcting codes, wavelet— and frame— based denoising, 
quantum detection and estimation, and space—time coding for wireless communications. 
Frame is generalizations of bases that leads to redundant signal expansions [56]. A tight 
frame is a special case of a frame for which the reconstruction formula is particular simple, 
and is reminiscent of an orthogonal basis expansion, even though the frame vectors in the 
expansion are linearly dependent. Specifically, a frame is associated with “oversampling”, 
“overcomplete”, or “ redundancy.” Hence, the use of frames and tight frames rather than 
bases and orthogonal bases means a certain amount of redundancy exists. In this paper, the 
concept of frame plays a major role on applying SMs to our coverage optimization method.

3.3.2 Biological Plausible Motivations
Our motivation on the use of frame expansions in multiple classifier approaches is 

to ensure that model used in our classification system should resemble models that are 
evidently found in some biological organizations, i.e. biological vision organizations and 
auditory models.

As argued in biological vision [61] that both retina and cortical data indicate extensive 
oversampling (manifested by overlap of adjacent receptive fields), especially in the position 
dependence Gabor representation scheme. Furthermore, results from vision research indicate 
that an image is represented in logarithmic scale along the frequency axis, so called “Gaborian 
Pyramid”, which is also a basic type of wavelet representations. In auditory systems, it is 
argued that several models of the early processing in the mammalian auditory organizations 
are developed under wavelet representations [62, 63], In particular, a redundant wavelet 
framework, called irregular sampling [63], was addressed for modeling one of the auditory 
systems.

At the best of our knowledge, we only found one analogy idea of using redundant 
representations in machine learning [64]. In particular, it was pursued in the context of rule 
based classification systems. Thus, exploiting redundant multiresolution representations may 
leads us to new, efficient and biological plausible machine learning algorithms.
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3.3.3 Multiple Description Coding with Shift-variant Discrete Wavelet Transforms
Redundant discrete wavelet transform (RDWT) exploits the shift variance property of 

discrete wavelet packet transform to add desired amounts of redundancy to the original 
signal or image. This idea has been explored before for image compression application 
using multiple description coding with redundant discrete wavelet transform [65], We are 
now going to summarize the idea and our modifications. The basic concept underlying 
the construction of a redundant discrete wavelet transform is to expand the number of 
coefficients in a discrete wavelet transform. There are many possible ways of building 
a redundant discrete wavelet transform. It can be built by either concatenating several 
critically subsampled discrete wavelet transforms with different wavelet filters or using an 
oversampled transform with a fixed set of wavelet filters. It can also be constructed by 
computing in parallel several critically subsampled transforms, each for a different shift of 
the input signal. In this work, we use the third approach to construct a redundant discrete 
wavelet transform and an RDWPT.

In discrete wavelet transform, it is known that the convolution—subsampling operation 
used for perfect reconstruction is considered to be the filtering operation performed on 
every sample of an input signal at different time shifts. This way, in the traditional discrete 
wavelet transform, the convolution-subsampling operation with a lowpass filter corresponds 
to the lowpass filtering at every odd sample (1st, 3rd, 5th, . . . ) of the input signal, while 
the convolution-subsampling operation with a highpass filter corresponds to the highpass 
filtering at every even sample (2nd, 4th, 6th, . . . ). Alternatively, we can implement a 
new discrete wavelet transform by lowpass filtering at every even sample (2nd, 4th, 6th,
. . . ) and highpass filtering at every odd sample (1st, 3rd, 5th, . . . ), and we will refer to 
this transform as the first alternate wavelet transform. Indeed, it is easy to verify that a 
redundant representation of the input signal with a redundancy ratio of two can be obtained 
by combining the wavelet coefficients from these two transforms.

Also, by just swapping the delays of the first alternate wavelet transform, we can 
construct another discrete wavelet transform, in which we can refer to it as the second 
alternate wavelet transform. Equivalently, the first alternate wavelet transform corresponds 
to one level decomposition of the traditional discrete wavelet transform on an input shifted 
left by one sample, if we additionally shifted the output (decomposition coefficients) of the 
highpass filtered signal right by one sample (see [65, pages 33—36] for further detail). On the 
other hand, the second alternate wavelet transform corresponds to one level decomposition 
of the traditional discrete wavelet transform on an input shifted left by one sample, if 
we additionally shifted the output of the lowpass filtered signal right by one sample. In 
other words, in the second alternate transform, we keep the even samples (iVth, 2nd, 4th, 
6th, . . . ) from the lowpass, and odd samples (3rd, 5th, . . . , (N  -  l)th, 1st) from the 
highpass filtered signal. Apparently, in the case of one level decomposition, the lowpass 
filtered signals obtained from both the first and second alternate transforms contain all of
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the filtered coefficients (2nd, 4th, 6th, . . . , TVth), only these coefficients are not organized 
sequentially. This occurs to the highpass filtered signal as well, o f  course, combining all the 
wavelet coefficients of the first and second alternate transforms creates a representation with 
a redundancy ratio of one (or no redundancy at all). However, except for the position at the 
first decomposition level, there are distinct coefficients at same position in the trees generated 
by all the above transforms (the traditional and the first two alternate transforms). As in an 
example of the second level decomposition, we keep the samples (1st, 5th, 9th, . . . ) from 
the lowpass of the lowpass filtered signal for the traditional transform, the samples (4th, 8th, 
12th, . . . ) for the first alternate transform, and ((TV — 2)th, 2nd, 6th, . . . ) for the second 
alternate transform, respectively. There are distinct coefficients at other subbands as well. 
Thus, a redundant representation of the input signal with a redundancy ratio of three can be 
obtained by combining the wavelet coefficients from the above transforms with more than 
one decomposition level. The above procedure can be extended to two dimensions as well. 
The only shifts of the 2D signal that are of interest are (column, row) = (0,0),(0,1),(1,0), and
( น ) .

Originally, Figure 3.1 (a) to (c) are the traditional and the first two alternate discrete 
wavelet transforms. These three redundant transforms are first studied in [65], Despite 
the transforms given above, we modify the traditional DWT by employing another periodic 
boundary handling method to build a redundant set of wavelet coefficients by circularly 
left-shifting the signal by one sample and then performing the traditional discrete wavelet 
transform. We refer to this transform as the third alternate wavelet transform. It is easy to 
verify that a redundant representation of the input signal with a redundancy ratio of 1.5 can 
be obtained, if we combine the wavelet coefficients from the third alternate transform with 
any one of the other alternate transforms (the first and second alternate transforms). We 
obtain the redundant transform with a redundancy ratio of two, if we combine the wavelet 
coefficients from the third alternate transform with the traditional transform. In this paper, 
the third alternate wavelet transform (Figure 3.1 (d)) together with the traditional and the 
first two alternate discrete wavelet transforms will be recursively used up to three level 
decomposition in order to evaluate the performance of our proposed method. If we organize 
all wavelet coefficients created from R  different transforms, we can obtain a redundant 
discrete wavelet transform with a redundancy ratio up to R.

3.4 Local Discriminant Frame Expansions
In this section, we first describe the redundant discrete wavelet packet transform 

(RDWPT) in Subsection 3.4.1. It is used in our adaptation of the local discriminant basis 
(LDB) algorithm to the local discriminant frame expansions (LDFE). In Subsection 3.4.2, the 
main ideas of our proposed approaches to improve the robustness of LDB are discussed and 
the local discriminant frame expansion algorithm is described.
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3.4.1 Redundant Discrete Wavelet Packet Transform
By generalizing discrete wavelet transform to discrete wavelet packet transform, an 

extension of the redundant discrete wavelet transform to the RDWPT is just straightforward. 
Note that the discrete wavelet packet transform computed on the input signal without a shift 
is referred to as the first transform. The discrete wavelet packet transform with different 
circular shifts will be considered as the other transforms (the redundant data). As for the 
extension to local discriminant basis (LDB), we apply the local discriminant basis selection 
algorithm [ 5 5 ]  to each transform of the RDWPT. For the purpose of illustration, we simply 
demonstrate a one—dimensional RDWPT and its simulated local discriminant bases for four 
decomposition levels in Figure 3 . 2 .  Let U S  assume that Transform 1 to 4  is subsequently given 
by the traditional and three alternate transforms, respectively. It can be verified by simple 
programming that the redundant transform of Figure 3 . 2  can be obtained with a redundancy 
ratio of 3 . 7 5 ,  if we combine the wavelet coefficients from all the above transforms. Thus, 
the design of shifting of input data presented for the transforms in Figure 3.1 together with 
the exploitation of the overcomplete property of wavelet packet transform provides U S  an 
efficient method to produce the redundant transform and its multiple descriptions.

3.4.2 Adapting LDB to Local Discriminant Frame Expansions
In our proposed scheme, data is built into several descriptions which are then trained 

or classified separately. The essential idea underlying the use of the interleaving approach 
to improve the robustness of multiple classification with a set of local discriminant basis 
(LDB) coefficients is that the classifiers constructed from the generated descriptions should 
have an equal and independent probability of classification error, when the classifiers are 
equally important and independent, the classifier outputs can be combined using majority 
(unweighted) voting to obtain the final classification output. Previous work [66] showed that 
the unweighted voting scheme is generally more resilient to overtraining than the weighted 
method, since overtraining can also be caused from the optimizing process used in the 
weighted combining scheme. Practically, there is a possibility that our chosen classification 
algorithm may be too sensitive to features that are derived from one transform more than 
the other transforms, leading to the need of optimizing the combining weights of the 
classifier outputs. This problem can be alleviated by dividing a single feature set in any one 
description into multiple feature subsets which were each derived from a different transform. 
In particular, each feature subset corresponds to a different part in the signal. Thus, it 
seems to be necessary to use many transforms (to derive multiple feature subsets) in one 
description, instead of using only one transform. As discussed in [44], making descriptions 
individually good and yet independent of each other is the key idea of the multiple description 
method. In this paper, we build equally good classifiers from a set of powerful distance based 
classifiers using highly informative (equally important) descriptions as input feature sets. In
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(a) (b)

(c) (d)

Figure 3.1: Four methods of filtering and subsampling for one level decomposition discrete 
biorthogonal wavelet transform, a) Traditional wavelet transform, b) First alternate wavelet 
transform, c) Second alternate wavelet transform, d) Third alternate (left-shifting) wavelet 
transform. Co is a set of wavelet coefficients obtained from the previous level, c 1 and (1\ 
are the lowpass and highpass filtered signals subsampled by a factor of two. 2 and 2_1 are 
the left and right circular shifting operators, respectively.

Transform 1 Transform 2 Transform 3 Transform 4

Figure 3.2: Results of four decomposition levels of a redundant wavelet packet transform 
and its simulated LDB functions.
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order to build independent classifiers from the descriptions of roughly equal importance (by 
the use of many transforms), the dependency (correlation) between descriptions has to be 
eliminated by interleaving the subset of LDB (MDB) coefficients obtained from different 
transforms. It is widely accepted in channel coding that interleaving redundancy data is one 
of the successful methods to combat channel error, e.g., turbo coding. To apply this to 
image analysis, spatially dispersed 2D LDB coefficients from different transforms are grouped 
together, selected the most discriminant basis functions, and used as one description.

In particular, we try to invent descriptions suitable for building classifiers such that 
good diversities among classifiers occur as much as possible. In this work, we first group 
transforms so that a set of descriptions can be built from such transforms. More precisely, 
the transforms used at each spatial region of all the descriptions must be different, one 
transform is at a discriminant level higher than the rest of the transforms in the subset, and 
the transforms should have different discriminant levels. After building the first description 
in the subset, we build other descriptions by permuting the transforms of the spatial regions 
used in the preceding descriptions. We may continue to build more descriptions using 
a different subset of transforms. As shown in Figure 3.3, four discrete wavelet packet 
transforms and their discriminant levels are presented.

As illustrated in Figure 3.4, based on the information presented in Figure 3.3, the 
first description is constructed by grouping four different transforms, the transforms in any 
descriptions have different discriminant levels, and the first transform has its maximum 
classification strength specialized at the spatial region I. For the next descriptions, we assign 
the first transform to be specialized at other spatial regions, and the process is repeated for 
other transforms with lower classification strength as well, when all the transforms within 
the transform subset are applied, the set of descriptions is obtained, as shown in Figure 3.4. 
Here, discriminant level 1 means the highest discriminant power, and we consider the original 
transform (the first transform) having the highest discriminant power. In this work we expect 
that the power of discriminant is specified by the number of the MDB functions. Thus, we 
allocate the highest number of the MDB functions for the spatial regions with discriminant 
level 1, the next highest number of the MDB functions to the next discriminant level, and so 
on.

The reason underlying the assignment of the discriminant level is that the more important 
information about each spatial region should be contained in a larger number of descriptions 
than the less important information. In other words, we should add unequal amounts of 
redundancy (protection) to different elements of the input features (or equivalently the MDB 
functions). By assigning the discriminant level, the more important LDB coefficients are 
protected with a stronger redundancy transform, and the less important LDB coefficients are 
protected with a weaker redundant transform. As in the example above, the most important 
data of spatial region 1 is likely to be protected by the redundant transform consisted of 
the three transforms. The next important data is likely to be protected by the redundant 
transforms consisting Transform 1 and 2. with no protection, the less important information
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Spatial Spatial Spatial Spatial
Region 1 Region 2 Region 3 Region 4

I  Transform 1 
n  Transform 2 
ร  Transform 3 
E3 Transform 4

Figure 3.3: Example of four transforms and their spatial discriminant levels. The gray 
area indicates the size of the most discriminant basis functions (or equivalently its power of 
discriminant).
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Spatial Spatial Spatial Spatial
Region 1 Region 2 Region 3 Region 4

I  Transform  1: Discrim inant Level 1 

I  Transform  2: Discrim inant Level 2 

■  Transform  3: Discrim inant Level 4 

E  Transform  4: Discrim inant Level 3

Figure 3.4: Example of three spatially dispersed descriptions extracted by
discriminant frame expansions of four transforms.

ing local
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is represented by the set of less important LDB coefficients obtained from Transform 1. 
The least important information or the useless part of the data (the least important LDB 
coefficients) is usually discarded beforehand by the LDB algorithm. Interleaving each 
description to have its maximum classification strength specialized at the different spatial 
region, we can independently build a set of diverse classifiers using descriptions as input 
feature sets. This way, features are protected in an unequal loss protection manner, and 
this also applies to the concept representations of the class information as well. Through 
the discriminant level setting, in this work the total number of the MDB functions of all 
descriptions is intentionally set to be equal. Keeping the total number of the interleaving 
MDB functions to be equal, independent descriptions of roughly equal discriminant are likely 
to be obtained. Thus, the discriminant level assignment becomes necessary, if we want to 
further reduce the dimensionality of the problem.

3.5 Multiple Description Coding for Multiple classifier Systems with Local 
Discriminant Frame Expansions

So far, we have explained how RDWPT can be used in our adaptation of LDB algorithm 
to local discriminant frame expansion (LDFE) algorithm. We now summarize the algorithm 
in Figure 3.5. It should be noted that Step 0 to 4 are concerned with the training process, 
and Step 5 is the recognition process.

Related to the communication model for classification, our class information is less 
distorted to the errors caused by input features because LDB itself selects the optimal 
coordinates suitable for using as input features, and this property is extended to LDFE as 
well. It should be noted that, in LDFE algorithm, each classifier has invariant classification 
for points that are different from the training points only in the unselected dimensions due 
to the shift-variant property of wavelet transforms. This way, each classifier generalizes its 
classification in a different way. This is similar to the random subspace method (see [25] 
for details). As a result, the interesting properties on equally important and independent 
projectability, minimum enrichment (according to the MDB functions selection method and 
the Mahalanobis classification), and guaranteed uniformity make LDFE a good candidate 
method to use for constructing efficient multiple classifier systems.

3.6 Experim ental Results
In this section, the performance of our proposed scheme and other classifier systems 

on the MSTAR public release data set are compared. The MSTAR public release data 
set contains high resolution synthetic aperture radar data collected by the DARPA/Wright 
laboratory Moving and Stationary Target Acquisition and Recognition (MSTAR) program. 
The data set contains SAR images of three different types of military vehicles — BMP2 
armored personal carriers (APCs), BTR70 APCs, and T72 tanks. The samples of SAR images
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at different orientations are shown in Figure 3.6. The size of the images is originally at 
128x128.

Tables 3.1 and 3.2 detail the training and testing sets, where the depression angle 
means the look angle pointed at the target by the antenna beam at the side of the aircraft. 
Based on the different depression angles SAR images acquired at different times, the testing 
set can be used as a representative sample set of the SAR images of the targets for testing 
the recognition performance.

The problem of automatic target recognition (ATR) is a difficult one. Research and 
development in the past decade have proposed several solutions to ATR. For example, the 
feature extraction method based on modified differential box-counting (MDBC) [67] was 
proposed for estimating the fractal dimension of the original images. These MDBC features 
were then used to train and test feed-forward neural networks (NN). Additionally, Bayesian 
classification algorithm based upon a family of conditionally Gaussian signal models (CGSM) 
for SAR imagery [68] were used to jointly estimate both target type and target pose. Two 
modified hidden Markov model (HMM) methods [69] were also proposed for solving this 
problem. Their best percent recognition accuracy is 96.76 (see other proposed methods 
and their performance comparisons in [69]). Moreover, perceptron, optimal hyperplane, 
and support vector machines (SVM) were the three strategies of learning methods and 
representations proposed for SAR ATR [70], Their classification performances were reported 
for 80 X 80 target window with percent recognition accuracy 88.06, 90.55, and 90.99, 
respectively. In their classifier system, the SVM with Gaussian kernel was trained by 
the Adatron learning algorithm and constructed as one class in one network. For the 
purpose of evaluation completeness, these available recognition accuracy were summarized 
from References [67—70] in order to be used for comparisons with our next empirical 
experiments.

Empirically, we studied the performance of ECOC using the original data and the 
most important LDB coefficients extracted from the original data. The codes used in this 
experiment setting were constructed using the exhaustive technique [4], The base classifier 
used to learn each bit of the codeword was the support vector machine. These SVM for ECOC 
(ECOC—SVM) experiments were implemented by the software developed by Schwaighofer 
and available from [71], software Note that the SVM with linear kernel was used in this 
evaluation.

We also studied the performance of Adaboost with stochastic weighting [35, 72, 73] 
using both the original data and the most important LDB coefficients. In our Adaboost 
experiments, the number of weak models implemented in our experiments was 30. The weak 
model was one hidden-layer backpropagation network, each was trained for 500 iterations 
using various numbers of hidden nodes (5, 6, and 7 hidden nodes). We ran each Adaboost 
experiment for six times and then averaged for the recognition accuracy results.

To demonstrate the capability of the local discriminant basis (LDB) and local discrim
inant frame expansion (LDFE) schemes, we further conducted two series of the experiments
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Algorithm:
Step 0: Partition input pattern to c spatial nonoverlapped regions or subimages Xi, l =  1,.... c. 
Step 1 : Expand X( using basis from the r th transform (redundant discrete wavelet packet 

transform), r =  1,..., R.
Step 2: Compute the most discriminant basis (MDB) functions {v n} lr, ท =  1 , . . . ,  N lr ,

where N lr  is the number of the MDB functions predefined by a discriminant level. 
Step 3: Build spatially dispersed descriptions Y/c from {t>n}(r, k — 1 , . . . ,  K .
Step 4: Use Yfc to construct the kth nearest Mahalanobis distance classifier.
Step 5: Use majority vote to make final decision for K classifiers.

Figure 3.5: Multiple Description Pattern Analysis using Local Discriminant Frame Expansion.

Figure 3.6: Sample SAR images of military vehicles, (a) BMP2 APCs, (b) BTR70 APCs, and 
(c) T72 tanks.
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Table 3.1 MSTAR images comprising training set.
Vehicle No. Serial No. Depression Images

BMP-2 1 9563 17° 233
2 9566 231
3 c21 233

BTR70 1 c 7 1 17อ 233
T-72 1 132 17อ 232

2 812 231
3 s7 228

Table 3.2 MSTAR images comprising testing set.

Vehicle No. Serial No. Depression Images
BMP-2 1 9563 15° 195

2 9566 196
3 c 2 1 196

BTR70 1 c 7 1 15° 196
T-72 1 132 15° 196

2 812 195
3 s7 191
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using classifiers with high discriminant power. In the LDB scheme, we employed Maha- 
lanobis distance to classify input features obtained from selecting the most important LDB 
coefficients. The purpose of including this classifier as the baseline for comparison was 
to investigate the performance of our LDFE scheme over the original LDB scheme. Note 
that throughout the experiments with LDB and LDFE methods, we used the first order 
Coiflet filters (comparable to 6-tab Daubechies filters with respect to the support length) for 
computing 2D discrete wavelet packet transform into three decomposition levels.

In the LDFE scheme, we first created 10 redundant versions of the 2D wavelet packet 
decomposition functions for each of the spatial regions or subimages (in these experiments, 
we set the number of subimages equal to 4). Then, we computed LDB for each transform 
version of each subimage using the discriminant measure (3.3). After the LDB selection, 
each LDB coordinate was sorted in terms of its discriminant power using the relative entropy 
(3.4). Next, spatially dispersed descriptions were built from the 10 versions of the top LDB 
coordinates. In this evaluation, we used the first four transforms (Transform 1 to Transform
4) as the first transform subset, Transform 4 to Transform 7 as the second transform subset, 
and Transform 7 to Transform 10 as the third transform subset. The first three descriptions 
(D1-D3) were constructed from the first transform subset, while the next three descriptions 
(D4-D6) were constructed from the second transform subset, and so on. In particular, 
each transform in each transform subset was sequentially assigned a discriminant level (or 
equivalently the number of the MDB functions). We set the number of the MDB functions 
used by each transform to be slightly different. For example, in the case of the first transform 
subset, Transform 1 had been assigned the highest discriminant level (discriminant level 1), 
the discriminant levels of Transform 2 and Transform 4 were equal and at the discriminant 
level 2, and Transform 3 had the lowest discriminant level. The difference of the number 
of the MDB functions between each discriminant level was set to be equal to two. After all 
of the MDB functions corresponding to their subimage locations were selected according to 
their predefined transforms and discriminant levels, we grouped all of the MDB functions 
into one description. Each description was built by permuting the transforms over all of the 
subimage locations (see Figure 3.3 and Figure 3.4 for the permutations of the transforms 
used in our experiments). This was applied to the second and the third transform subsets 
as well to construct the other descriptions. This way, we could obtain 7 spatially dispersed 
descriptions, and used them as input features for building 7 Mahalanobis distance based 
classifiers. Finally, we used majority vote to combine the output decisions of the classifiers.

Note that filtering and subsampling methods shown in Figure 3.1 were used for 
building our proposed 2D redundant discrete wavelet packet transform. We now summarize 
the detail of our proposed redundant transform illustrated in Figure 3.7. Transform 1 is the 
discrete wavelet transform without a shift. Transform 2 to Transform 4 (Figure 3.7 (a) to 
(c)) perform the left-shifting discrete wavelet decomposition either at the horizontal or the 
vertical direction, similarly, Transform 5 to Transform 7 (Figure 3.7 (d) to (f)) perform the 
second alternate wavelet transform, and Transform 8 to Transform 10 (Figure 3.7 (g) to (i))
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perform the first alternate wavelet transform either at the horizontal or the vertical direction. 
Note that Z] and Z2 are the one unit horizontal and vertical circular left-shifting, respectively.

Four different image sizes from 32x32 to 80x80 had been evaluated in our experiments. 
Image chips of different image sizes were constructed by extracting a small rectangular region 
at the center of the MSTAR images. The reason for windowing target images is that the 
classification should be sensitive to a region corresponding to the vehicle, not to background 
clutter or target shadow. The larger the image chip is used, the more target, shadow, and 
background clutter pixels are included. Inversely, portions of shadow and background are 
eliminated and the target occupies a larger portion of image chip, when a smaller image chip 
is used. Tables 3.3 and 3.4 detail the recognition performance through confusion matrices 
for 80 X  80 images of the CGSM and our proposed scheme, respectively. As presented in 
Table 3.5, our proposed scheme gives the best overall performance among all approaches at 
almost all image sizes. These results are based on the best performance of each classifier 
system evaluated at either the optimal number of hidden nodes (Adaboost) or the optimal 
number of the LDB coefficients. As we expected, the performance of our proposed scheme 
is better than the performance of ECOC—SVM and the SVM classifier system in [70]. As 
addressed in [4], unless the number of classes is at least five, it is too difficult to maximize 
the Hamming distance between codewords and at the same time minimize the dependence 
between the errors of the individual binary classifier units. Here, we presented an extreme 
case for ECOC—SVM, in which any single binary error could lead to an ambiguity in a 
codeword such that ECOC—SVM would not be able to identify the target class. In our 
future work, we will incorporate LDFE with the ECOC—SVM method, and perform a direct 
comparison of ECOC—SVM with our method for a SAR ATR problem with a larger number 
of classes. Moreover, the performance of our proposed method converges faster than 
Adaboost because a very large number of models is needed for Adaboost learning/classifying 
to be converged. From the experimental results, we can see that the LDB method is an 
efficient technique for improving accuracy for both ECOC—SVM and Adaboost methods. 
In particular, the LDB method is an effective feature selection technique that can prevent 
ECOC—SVM from overtraining. Noise is one of the main shortcomings in Adaboost (see [27] 
and the references therein), since LDB method is considered to be one of the noise reduction 
methods, the Adaboost accuracy were improved by employing the LDB method to select 
features. It should be noted that, at the 32x32 image size, the Mahalanobis classifier was 
too sensitive to the MDB functions. This is due to the fact that adding just a few irrelevant 
features could drastically change the outputs of the distance based classifier, and also reduce 
its accuracy (see [13] and the references therein). In case of the 32x32 image size, the 
features we used consisted of too many irrelevant features (the number of the features was 
about one—third of the input dimensions). At the larger image size, the performance of 
our proposed method outperformed other methods, since all the relevant features could be 
obtained from a larger collection of the LDB coefficients. Additionally, the performance
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Figure 3.7: One level decomposition of redundant versions of 2-D discrete wavelet transforms, 
a) to i) Transform 2 to Transform 10. 2i and 22 are the one unit horizontal and vertical 
circular left-shifting, respectively.

Table 3.3: The CGSM method : Recognition test of a three class problem for 80 X 80 
images.

BMP-2 BTR-70 T-72 Percent
BMP-2 580 0 7 98.81
BTR-70 12 183 1 94.90

T-72 0 0 582 100
Avg. - - - - 98.53

Table 3.4: Multiple description pattern analysis using local discriminant frame expansions 
with 7 descriptions: Recognition test of a three class problem for 80 X  80 images.

BMP-2 BTR-70 T-72 Percent
BMP-2 584 2 1 99.49
BTR-70 1 194 1 98.98

T-72 1 1 580 99.66
Avg. - - - - 99.49
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results in term of percent of correct recognition as functions of number of descriptions 
(or equivalently the redundancy ratio) and image size are shown in Figure 3.8. From the 
experimental results, ambiguities occurred less often on every odd number of descriptions.

When using the LDFE method, one important parameter to be determined is how many 
MDB functions should be selected in each description in order to guarantee uniformity. 
In order to verify the effect of different numbers of MDB functions, we ran the LDFE 
experiments by varying the numbers of MDB functions from 300 to 380. As shown in 
Figure 3.9, the results show that the use of too many MDB functions leads to overtraining, 
especially with the small image sizes, e.g., 32 X 32 and 48 X 48. For larger image sizes, e.g., 
64 X 64 and 80 X 80, the biased classification occurs when we select too few MDB functions, 
but the overtraining problems still exist if we select too many MDB functions. Therefore, 
the optimization of the size of the MDB functions for a given classification problem should 
be further studied.

3.7 N u m e ric a l C o m p ariso n

As shown in Figure 3.10, let’s consider some quantities involved with the computational 
evaluation of the MCS methods. For support vector classifiers, the calculation of the Lagrange 
multiplier parameters has the complexity o  (p3) for its computation by direct method and 
o  (p2) by iterative method. Note that this is the training complexity of SVM. The evaluation 
(testing) complexity of SVM consists of a kernel calculation and its comparison of the 
new sample and all support vectors ps for that classifiers. A kernel has complexity 
about 5.5d, leading to the complexity of kernel calculation for all support vectors ps(5.5d). 
Moreover, there is an additional calculation for multi-class comparison with the computational 
complexity c +  2cps', where ps' — 1 P7’ and p* is the number of support vectors for the
classifier describing class j .  For the sake of simplicity, we simply the complexity of SVM 
to o  (dp), since p s' <  p.

For feedforward neural networks, the complexity is dependent of p and number of 
iteration T  while training, but it is independent of p and T  while testing. The computational 
complexity [74] is 2q +  3.5h, where q and h are the connections between units and bias 
terms, respectively. We can simplify the complexity of neural networks to hdpT  and hd 
for training and testing respectively, where q =  hd. For multiple system, e.g., Adaboost, we 
increase the computational complexity of neural network algorithm by K '-fold, where K ' is 
the number of classifiers constructed according to Adaboost algorithm.

Next, we evaluate the computational complexity of Mahalanobis distance based clas
sifier since it is mainly used in our experiments. The complexity of this type of classifiers 
depends on distance evaluation. Flere, the complexity of a distance calculation D ( z , x ) ,  
where Z, X are d-dimensional vector, is approximated 3d (note that most of the complexity 
evaluations here are taken from [13, 74—76]). For k-NN classifiers, the complexity of 
distance calculation to all prototypes is thus 3d, and the complexity of storing the minimum
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Table 3.5: Comparison of difference methods in overall percentage of images correctly 
recognized as a function of image size.

Methods /  Image size 32x32 48x48 64x64 80x80
MDBC+NN [67] 75.88 N/A N/A N/A

CGSM [68] N/A N/A N/A 98.53
ECOC—SVM(original) 84.46 90.16 91.76 92.70

ECOC—SVM(MDB) 85.42 90.81 92.51 92.97
Adaboost(original) 88.24 93.35 93.48 93.68

Adaboost(MDB) 89.66 93.16 94.26 93.97
Mahalanobis Dist.(MDB) 73.78 95.24 97.14 97.29

our proposed scheme 
Mahalanobis Dist.(LDFE) 84.69 98.53 99.34 99.49

Figure 3.8: The performance of multiple description pattern analysis using local discriminant 
frame expansions at various image sizes.
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0 2 4 6 8

-  - 3 0 0  MDB 
-  3 1 6  MDB

------ 3 4 4  MDB
3 5 6  MDB 

------ 3 8 0  MDB

Number o f descriptions used Number o f descriptions usee
(c) (d)

Figure 3.9: T he perform ance o f  m ultiple description pattern analysis using local discriminant 
fram e expan sions at different num bers o f  the m ost discrim inant basis functions, a) 32 X 32 
im age size, b) 48 X 48 im age size, c) 64 X 64 im age size, d) 80 X 80 im age size.

p T he num ber o f  training sam ples in the training set
d The num ber o f  features (d im ensions) in each  sam ple

ท ,  M  T he num ber o f  MSB dim ensions in each  sam ple  
N  T he num ber o f  original d im ensions in each  sam ple  
c The num ber o f  c lasses to b e  distinguished  

K  T he num ber o f  classifiers in our proposed m ethod  
K '  The num ber o f  classifiers for A daboost 
h The num ber o f  hidden nodes o f  neural netw orks 
T  The num ber o f  iterations o f  neural netw ork training

Figure 3 .10  N otation for parameters used in com p lex ity  evaluation o f  MCS m ethods.
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in a sorted list o f  k  nearest prototypes is p lo g 2 k. The total com p lex ity  therefore is p3d 
w hen k =  1. sim ilarly , w e  sim plify  the com plexity  o f  algorithm  by m easuring them  in order 
according to the Landau sym b ol o , e .g ., the com plexity  o f  k-N N  classifiers can be replaced  
by o  (ทp), w hen w e used only ท local discrim inant features w ith ท < d.

It shou ld  be noted that the above com plexity  d iscussion  is for the tw o-class case. For 
m ulti-class case, w e  increase the com putational com p lex ity  o f  so m e algorithm s by c-fold. 
N ow  w e sum m ary the com putational com plexity  o f  the evaluated  MCS m ethods for training 
and testing procedures in the Tables 3.6 and 3 .7 , respectively.

N ow , w e are ready to evaluate the com putational com p lex ity  o f  the MCS m ethods for 
SAR ATR. In the 3 -c lass SAR ATR problem , p =ะ 1621, ท — 320 , N  = 1024, 2304, 4096, 
and 6400 , K  =  8, K ' =  30 , h  =  7, T  =  800. It is easily  to verify  that o  (p3c) >  o  (N p ). 
In the sam e w ay, w e detail the approxim ate com putational com p lex ities o f  the other m ethods 
in Table 3.8.

Therefore, w e can arrange the algorithm s from  high to low  com putational com plexity  
as follow s:

A daboost (original) > A daboost (MDB) > ECOC-SVM  (M DB) > ECOC-
SVM (original) > M ahalanobis c la ss ifier  (LDFE) > M ahalanobis c la ss if i
er (M DB).

W e finally arrange the degree o f  the com putational com p lex ity  and its recogn ition accuracy  
o f  each MCS m ethod in T able 3.9.

3.8 Conclusions
In this chapter, w e  proposed an alternative m ethod to ECOC. Our proposed schem e was 

inspired from  the fram ew ork o f  transmitting data over heterogeneou s netw orks, especially  
w ireless netw orks. T o our know ledge, w e are the pioneers in applying MD coding to 
pattern recognition. Based upon the experim ental results, our proposed  sch em e gave the 
best perform ance am ong the state-of-the-art m ultiple classifier system s, s in c e  our proposed  
sch em e is determ inistic by nature, its com putation is thus m ore com petitive than stochastic  
based m ultiple c lassifier system s, e .g ., A daboost or random  sub sp ace m ethod.
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T able 3.6  C om parison o f  training com putational com p lex ity .

M ethods /  Im age s iz e Feature
Extraction

Training A pproxim ate
C om plexity

ECOC—SV M (original) - o  (p 3c) o  (p 3c )
ECOC—SVM (M DB) o  (n p c  lo g n ) o  (p 3c ) o  {ทpc lo g  ท +  p 3c)
A daboost(original) — 0  (h N p c K 'T ) o  (.h N p c K 'T )

A daboost(M D B ) 0  (ทpc lo g n ) 0  (h n p c K 'T ) o  (ท'1p c (h K 'T  +  log  ท ))
M ahalanobis D ist.(M DB) 0  (n p c lo g n ) - o  (npc log  ท)

our proposed sch em e  
M ahalanobis D ist.(LDFE) o  (n p cK  lo g  ท) _ (D {ทp c K  lo g  ท)

T able 3.7 C om parison o f  evaluation (testing) com putational com plexity .

M ethods /  Im age s iz e Feature
Extraction

Testing A pproxim ate
C om plexity

ECOC—SVM (original) - O (N p ) O  (iVp)
ECOC—SVM (M DB) o  (ท c log  ท) o  {ทp) O  ( n p ( l  +  c l o g ท ))
A daboost(original) - O  (h N c K ') O ih N c K ')

A daboost(M D B ) o (ท c lo g  ท) O  (h n c K ') O  (ทc [h K ' +  lo g n ) )
M ahalanobis Dist.(M DB) 0  (ท c l o g ท) O  (n p c) O  (n c (p  +  lo g n ) )

our proposed sch em e  
M ahalanobis D ist.(LDFE) o  (n cK  lo g  ท) 0  (npcK ) 0  (ทc K (p  +  lo g n ) )

T able 3.8: C om parison o f  com putational com plexity  for the MCS m ethods im plem ented in 
our experim ent.

M ethods /  Im age s iz e Training Testing A pproxim ate
C om plexity

ECOC—SVM (original) 0  (P3C) 0 { N p ) o  ( p 3 c )
ECOC—SVM (M DB) O  (n p c  log  ท +  p 3c) o  {ทp) æ o  (p3c)
A daboost(original) O  ( h N p c K 1 T ) o  [ h N c K ' ) o  ( h N p c K ' T )

A daboost(M D B ) O  (ทp c ( h K ' T  +  l o g ท )) o  ( h n c K ' ) «  o  ( h n p c K ' T )

M ahalanobis D ist.(M DB) 0  (n p c  lo g  ท) 0  { n p c ) ~  (9 ( n p c  lo g  ท)
our proposed sch em e  

M ahalanobis D ist.(LD FE) 0  (n p c K  lo g  ท) 0  ( n p c K ) ~  0  ( n p c K  lo g  ท)
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Table 3.9: C om parison o f  accuracy (in overall percentage) and com putational com plexity  
for the MCS m ethods im plem ented in our experim ent.

M ethods /  Im age s iz e 32x32 48x48 64x64 80x80 C om plexity
ECOC—SVM (original) 84.46 90 .16 91 .76 92 .70 M edium

ECOC—SVM (M DB) 85.42 90.81 92.51 92 .97 M edium
A daboost(original) 88.24 93.35 93 .48 93 .68 Very High

A daboost(M D B ) 89.66 93.16 94 .26 93 .97 High
M ahalanobis D ist.(M DB) 73.78 95 .24 97 .14 97 .29 Very Low

our proposed  sch em e  
M ahalanobis D ist.(LDFE) 84.69 98.53 99.34 99.49 Low
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