การพัฒนาระบบตรวจวัดสัญญาณสำหรับกล้องโทรทรรศน์วิทยุ

นาย อำนาจ สาธานนท์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต ภาควิชาฟิสิกส์ บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2539 ISBN 974-636-809-5 ลิขสิทธิ์ของบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

1 17136267

DEVELOPMENT OF A SIGNAL MEASUREMENT SYSTEM FOR A RADIO TELESCOPE

Mr. Umnart Sathanon

A Thesis Submitted in Partial Fulfilment of the Requirements

for the Degree of Master of Science

Department of Physics

Graduate school

Chulalongkorn University

Academic Year 1996

ISBN 974-636-809-5

Thesis Title	Development of a Signal Measurement System for a Radio	
	Telescope	
Ву	Mr. Umnart Sathanon	
Department	Physics	
Thesis Advisor	David Ruffolo, Ph.D.	

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfilment of the Requirements for Master's Degree.

Super A Chuling Dean of Graduate School

(Professor Supawat Chutivongse, M.D.)

Thesis Committee

Yuth Hekarames Chairman

(Associate Professor Yuth Akkaramas, M.S.)

(David Ruffolo, Ph.D.)

How He Patchevara Member

(Assistant Professor Pisistha Ratanavararaksa, Ph.D.)

Manit Ryvivinate. Member

(Assistant Professor Manit Rujiwarodom, M.Sc.)

พิมพ์ต้นฉบับบทคัดย่อวิทยานิพนธ์ภายในกรอบสีเขียวนี้เพียงแผ่นเดียว

C625465 : MAJOR PHYSICS KEY WORD: RADIO TELESCOPE / RADIO ASTRONOMY IUMNART SATHANON: DEVELOPMENT OF A SIGNAL MEASUREMENT SYSTEM FOR A RADIO ITELESCOPE. THESIS ADVISOR: DAVID RUFFOLO, Ph.D. 200 pp. ISBN 974-636-809-5.

We developed a measurement system for a radio telescope. The data acquisition is controlled by a personal computer, which facilitates accurate data analysis by the aid of numerical methods. The characteristics of the many pieces of equipment in the system are also measured more precisely in order to determine the important parameters for the estimation of some physical quantities. Observations were made in the rural area of Saraburi province to minimize the effects of the man-made noise. The system is verified to be able to detect small signals from many intensive terrestrial radio sources. However, the long-term measurement suffers from the instability of the system even when the calibration is applied. If the gain instability and the minor lobe of antenna have a small effect, the equivalent blackbody temperature measured from the thermal noise when the Sun appears should be on the order of 1 to 10 million Kelvin, which is comparable to the value of a million Kelvin which is measured by previous radio astronomers in the same wavelength at the time of the quiet Sun.

ภาควิชานี	สักล์
สาขาวิชา	ฟลักส์
ปีการศึกษา	2539
Diff for the family	

.....

ลายมือชื่อนิสิต	Bur.
ลายมือชื่ออาจารย์ที่ปรึกษา เกวิด	suTulTa
ลายมือชื่ออาจารย์ที่ปรึกษาร่วม	

พิมพ์ต้นฉบับบทคัดย่อวิทยานิพนธ์ภายในกรอบสึเขียวนี้เพียงแผ่นเดียว

อำนาจ สาธานนท์ : การพัฒนาระบบตรวจวัดสัญญาณสำหรับกล้องโทรทรรศน์วิทยุ (DEVELOPMENT OF A SIGNAL MEASUREMENT SYSTEM FOR A RADIO TELESCOPE) อ. ที่ปรึกษา : ดร. เดวิด รูฟโฟโล. 200 หน้า. ISBN 974-636-809-5.

การวิจัยครั้งนี้มีวัตถุประสงค์เพื่อพัฒนาระบบกล้องโทรทรรศน์วิทยุ ได้มีการออกแบบและสร้าง อุปกรณ์ช่วยในการเก็บข้อมูลและประมวลผลโดยการควบคุมของเครื่องคอมพิวเตอร์ส่วนบุคคล ในการวิจัยนี้ ได้มีการตรวจวัดคุณสมบัติของเครื่องมือที่ใช้โดยละเอียด เพื่อที่จะสามารถนำผลที่ได้ไปใช้ในการคำนวณหา ปริมาณเชิงฟิสิกส์จากข้อมูลที่ได้จากการวัดจริงซึ่งได้ทำการวัดที่บริเวณชานเมืองจังหวัดสระบุรีเพื่อหลีกเลี่ยง ผลของสัญญาณรบกวนที่มนุษย์สร้างขึ้น ข้อมูลที่ได้จากการวัดที่บริเวณชานเมืองจังหวัดสระบุรีเพื่อหลีกเลี่ยง ผลของสัญญาณรบกวนที่มนุษย์สร้างขึ้น ข้อมูลที่ได้จากการวัดโดยใช้เครื่องมือที่สร้างไ ด้แสดงให้เห็นว่าระบบ กล้องโทรทรรศน์วิทยุสามารถใช้ตรวจจับสัญญาณซึ่งเกิดจากแหล่งกำเนิดสัญญาณรบกวนความเข้มสูงภายใน โลกได้ แต่การวัดสัญญาณจากวัตถุท้องฟ้าในเวลานานๆยังคงมีปัญหาทางด้านความไม่เสถียรภาพของระบบ แม้ว่าจะมีการปรับเทียบเป็นระยะแล้วก็ตาม อย่างไรก็ตามค่าของอุณหภูมิเทียบเท่าวัตถุดำของดวงอาทิตย์ที่ ได้จากการวัดแสดงให้เห็นว่ามีค่าอยู่ในระหว่าง 1 ถึง 10 ล้านเคลวิน ซึ่งอยู่ในระดับเดียวกับค่าที่เคยมีการวัดไว้ แล้ว (ประมาณ 1 ล้านเคลวิน) ที่ความยาวคลื่นเดียวกัน

ภาควิชานิสิกส์	ลายมือชื่อนิสิต and Sw2.
สาขาวิชาฟิส์กล์	ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา ²⁵³⁹	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my thesis adviser, Dr. David Ruffolo, for his encouragement not only in his useful comments but also in his researcher's spirit. I feel indebted to Dr. Pirapat Sirisomboonlarp for many contributions including the equatorial mounthing. I also wishes to express my thanks to the Office of the National Research Council of Thailand for the financial supports.

I would like to express my appreciation for the warm welcome of the Mr. Rangsun Konchanartnikorn, Mr. Suriya and Mr. Suthep Punpeng whose resident was used as the observation site. The thesis is not complete if that observation had never done there. Also, I have to thank to Mr. Rangsee Konchanartnikorn for his vehicle used to convey my equipment back to Bangkok.

I have to thank to Dr. Ahpisit Ungkitchanukit whose kindness permit me to take a computer for the expedition. Thanks to the staffs of the General Physics Laboratory for many apparatus used to test my equipment. Thanks to Mr. Chaiwat Kittinunprakorn for his log-periodic dipole antenna which I use for the thesis.

The specially thanks is taken to Mr. Porncharoen Palotaidamkerng and Mr. Chatchai Srinitiworawong. Their uncountable helps contribute greatly to the thesis including the literature preparation. Also, I feel indebted to the many people whose name is not referred here but their supports are so impressive to me.

Finally, I would like to dedicate the thesis for my parents, the late father who gave me the scientific encouragement not only in the time I was working on the thesis but in the whole life of him, and my dedicated mother, who is working hard for her children.

TABLE OF CONTENTS

ABSTRACT IN ENGLISH	iv
ABSTRACT IN THAI	v
ACKNOWLEDGEMENTS	vi
LIST OF FIGURES	x
LIST OF TABLES	xiii

CHAPTER I	INTRODUCTION	1
	The Early Years of Radio Astronomy	3
	Radio Telescope System	4
	Thesis Purposes and Confinements	6
CHAPTER II	RADIO ASTRONOMY FUNDAMENTALS	8
	Blackbody Radiation	8
	Brightness Distribution and Incident Power 1	1
	Temperature and Noise	14
	Flux Density 1	19
	Minimum Detectable Temperature and Flux Density 2	22
	Astronomical Coordinate and Time	24
CHAPTER III	ANTENNA AND RECEIVER	33
	Definitions	33

	Beam Width, Beam Solid angle, Directivity and Effective
	Aperture
	Measurement of the Antenna Pattern42
	Log-periodic dipole antenna46
	Radio Telescope Receivers47
	Superheterodyne Receiver and Mixer49
	Calibration of the Receiver
CHAPTER IV	COMPUTER INTERFACING
	IBM PC Architecture
	Digital Decoder and Buffer Circuit 59
	Counter and Timer
	Basic I/O Interface
	Digital Converter
	Operational and Instrumentation Amplifier
	Sampling Theorem and Anti-Aliasing Filter
	Digital Filter
CHAPTER V	SYSTEM DESIGN AND CALIBRATION RESULTS 100
	General Description of the System 100
	AT Prototype Card 102
	Data Acquisition Module 105
	Signal Conditioner 108
	Antenna Pattern Measurement 110
	Receiver Parameters' Estimation 119

	Digital Low-pass Filter Test	125
CHAPTER VI	OBSERVATION RESULTS AND CONCLUSION	128
	Observation Site and Treatment	128
	Local Noise Survey Results	129
	Observational Result	135
	Conclusion and Discussion	136

REFERENCES	141
APPENDIX A NUMERICAL METHODS	144
APPENDIX B SOFTWARE CONSIDERATIONS	156
APPENDIX C SCHEMATIC DIAGRAMS	163
APPENDIX D AD1674 DATA SHEETS	186
CURRICULUM VITAE	200

LIST OF FIGURES

Fig. 1.1	The transparency of the Earth's atmosphere for electromagnetic
	energy 2
Fig. 2.1	Blackbody radiation curve
Fig. 2.2	Antenna power pattern and the brightness distribution of thr sky 11
Fig. 2.3	Thermal noise at terminals of the resistor and antenna 15
Fig. 2.4	Horizontal coordinate system
Fig. 2.5	Equatorial coordinate system
Fig. 2.6	Sidereal and solar day in comparison
Fig. 2.7	Posion of NCP compare to the observer horizon
Fig. 2.8	Local sidereal time of the observer at longitude λ
Fig. 3.1	Power pattern of an antenna in polar coordinate and in rectangular
	coordinate
Fig. 3.2	Antenna pattern plot in terms of directive gain
Fig. 3.3	Radiation from aperture A with uniform field E_a
Fig. 3.4	Amplitude distribution on an aperture 40
Fig. 3.5	Measurement for the horizontally polarized antenna power pattern 43
Fig. 3.6	The longest element of an antenna in the electric field of the point
	source
Fig. 3.7	Log-periodic dipole antenna 46
Fig. 3.8	Power pattern of a log-periodic dipole antenna 47

Fig. 3.9	A superheterodyne radio telescope receiver	. 49
Fig. 4.1	Block diagram for a typical computer system	. 55
Fig. 4.2	PC-AT 16-bit extension slot	. 60
Fig. 4.3	Crystal oscillator	64
Fig. 4.4	Timing diagram for T Flip-Flop	. 65
Fig. 4.5	Direct conversion ADC block diagram	69
Fig. 4.6	Successive conversion ADC block diagram	70
Fig. 4.7	Differential amplifier circuit	73
Fig. 4.8	Differential amplifier with the input buffers	77
Fig. 4.9	Instrumentation amplifier	77
Fig. 4.10	Bode plot for dynamic response of an realistic op-amp	79
Fig. 4.11	Trimming method for offset voltage for LF351	81
Fig. 4.12	Compensation of the offset voltage for instrumentation amplifier	81
Fig. 4.13	Frequency aliasing	83
Fig. 4.14	First order low-pass filter	85
Fig. 4.15	Frequency response of the low-pass filters with difference order	86
Fig. 4.16	Second order low-pass filter	88
Fig. 4.17	Digital filter block diagram	94
Fig. 4.18	Transfer function of low-pass filter in complex notation	95
Fig. 4.19	Transfer function of a low-pass filter with and without window	98
Fig. 5.1	Radio telescope system block diagram	100
Fig. 5.2	Block diagram for AT prototype card	103
Fig. 5.3	Block diagram for DAM	106

3 A.

Fig. 5.4	Block diagram of the signal conditioner 1	09
Fig. 5.5	3-D log-periodic dipole pattern in linear scale 1	17
Fig. 5.6	3-D log-periodic dipole pattern in logarithmic scale 1	18
Fig. 5.7	Partial block diagram for the RF tuner 1	20
Fig. 5.8	Characteristic curve of IF amplifier 1	20
Fig. 5.9	Curve fit for IF amplifier compare to the original data 1	24
Fig. 5.10	Effect of digital low-pass filter to the sinusoidal wave at frequency	
	5 Hz at the cut-off frequency 50 Hz (a) and 0.01 Hz (b) 1	26
Fig. 5.11	Effect of the truncation of the Fourier's series for the input signals	
	of frequency near the cut-off frequency (20 Hz). The frequency of	
	the input signal is 5 Hz (a) and 50 Hz (b) 1	26
Fig. 5.12	Effect of a filter for the signal of two frequency component 1	27
Fig. 6.1	Noise from operation of the hard disk and effects of the filter 1	31
Fig. 6.2	System temperature from the passing motorcycle 1	32
Fig. 6.3	System temperature detected in thunderstroms 1	33
Fig. 6.4	Drift pattern of the receiver temperature 1	34
Fig. 6.5	System temperature observed in 22-Mar-1997 1	37
Fig. 6.6	System temperature observed in 23-Mar-1997 1	38
Fig. 6.7	System temperature observed in 24-Mar-1997 1	39
Fig. 6.8	Temperature of the Sun at difference wavelength 1	40

List of Tables

Table 4.1	Interrupt assignments in IBM AT 58
Table 4.2	Function table for 74LS139
Table 5.1	Dimension for each elements of the used log-periodic dipole
	antenna110
Table 5.2	The measurement data for E-plane of the log-periodic dipole
	antenna 111
Table 5.3	The measurement data for H-plane of the log-periodic dipole
	antenna 113
Table 5.4	IF amplifier characteristic data