
C H A P T E R  II

R A D IO  A S T R O N O M Y  F U N D A M E N T A L S

This chapter provides the important concept for the measurement the radio 

signal for the celestial objects. We start with the blackbody radiation connected to the 

b r ig h tn ess  B  which is the physical quantity o f interest. The other related w ill be all so 

considered. From the observational point o f view ,the physical quantity which we can 

develop from the electromagnetic energy radiated is the power. It is useful to relate 

them to the brightness o f the distance object and the treatment is in the next part. The 

last one is about the coordinate and time system which play the important role on the 

astronomical observation.

Blackbody Radiation
A ll  objects at temperatures above absolute zero radiate energy in the form o f 

electromagnetic waves. In 1859, G. R. K ircho ff showed that a good radiator is also a 

good absorber. A  perfect object which can absorb or reflect energy incident from 

them is called b la ck b o d y .

For the blackbody o f temperature T, the energy (in form o f power) radiated per 

unit area per unit bandwidth per unit angle, called b rig h tn ess B  at the observed

frequency V is
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This law is called P lan ck's ra d ia tio n  la w  which proposed by Planck in 1901. 

Referring to Fig 2.1, we can see that the higher temperature has the higher brightness. 

For a constant temperature, the curve reach the peak at a certain frequency and roll o ff 

i f  the observed frequency is higher than the peak frequency. In logarithmic scale, we 

can see that the curve o f low frequency seem linearly. It is according to the special 

case when the situation o f h «  kT  occur as in the case o f radio astronomy. The 

approximation can be derived by Taylor's expansion.

e h v /k T - 1  =  1 + hv
k f

1 = hv
kT

Introducing the result to (2.1)

2hv3 kT 2kT (2.2)

Where X =  wavelength, m.

The approximation is the R ayle igh -Jean s ra d ia tio n  la w  which is useful 

approximation in the radio part o f the spectrum.

Although the Rayleigh-Jeans approximation is a special case o f the more 

general Planck's radiation law, it may be derived directly by consideration o f the
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classical behavior o f a blackbody radiator. The Rayleight-Jeans law antedates the 

Planck's law before the quantum concept was established.

Brightness Distribution and Incident Power
In the observational situation, the electromagnetic energy is falling on the earth 

surface in any direction. By the aid o f the directional antenna, the brightness o f the 

observed is distinguished from the other signal.

F ig  2.2 Antenna power pattern and the brightness distribution o f the sky (Kraus, 1986)
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The response o f the antenna to the radiation is called the p o w e r  p a tte rn  p n . It 

is the normalized quantity which is the function o f angle 0 and <t>, as suggested in Fig

2.2.

It is reasonable to imagine that the antenna collecting the energy from the sky 

incident on an arbitrary area. The energy collecting area is called the effective  

a p ertu re  A e o f the antenna.

The Pn and A e  are characteristic o f antenna, regardless the physical appearance 

o f the antenna. They w ill be discussed in detail by the next chapter.

Hence, the infinitesimal power d w  from a solid angle dQ  o f the sky incident 

on the antenna with the effective aperture Ae and the power pattern pn(0,<|>) may be 

expressed by

dW = B(0,<j>). P(0,(f)) - A  6 dQdv

where d w  =

B(0,4>) = 

Pn(0,<t>) = 

A e  

dQ

dv =

infinitesimal power, พ

brightness o f the sky from direction (0,<j)) 5 พ  m'2 sr'1 H z '1 

normalized power pattern o f the antenna 

effective aperture o f the antenna, m2 

infinitesimal solid angle o f the sky, sr'1. 

infinitesimal element o f the detected bandwidth, Hz

By integration over a ll direction, we obtain the amounts o f total power

received by antenna at its terminal as follow
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Avv0+ —
พ  = A e f  JjB(8,<t,).P„(6,« dnd v  (2.3)

A v ท
v”~ y

The v0 is the operating frequency and ÀV is the bandwidth o f the antenna. 

When the signal is feed through the receiver, the bandwidth o f the signal is lim ited by 

predetection section o f the receiver. Hence, we may considered ÀV as the bandwidth 

o f the receiver.

A  the previous situation, the power per unit bandwidth is more pertinent than 

the power contain in an arbitrary bandwidth, พ . This power per unit bandwidth is 

often called the sp e c tra l p o w e r  พ which can be expressed in the follow ing form

dw = B(9,(j)) - P(0,<t>) - A edQ

where dw = infinitesimal spectral power, W/Hz.

Also, the spectral power from the radiated energy o f the entire sky received at 

the antenna's terminal can be written as

พ = A e JjB(0,<t>)-Pn(e,(|>)-dQ (2.4)
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The relation (2.3) and (2.4) is valid for the antenna which is able to collect the 

electromagnetic energy at any polarization. If the radiation is o f an incoherent, 

unpolarized nature, only fraction o f the incident power w ill be received since only 

antenna is responsive to only certain polarization component (Kraus, 1986 ; Brown 

and Lovell, 1958). For the linearly polarized antenna, the fraction is 1/2. Hence the 

(2.3) and (2.4) can be respectively written for such antenna as

Avv0+—

พ  = | a c f  | Jb (0,(|)) • Pn(0,<j)) • dQdv (2.5)
^  Ay ท

v‘’“ไโ

พ = ^ A jjB (0 ,< t.)-P n(0,(())dQ (2.6)

As (2.5) and (2.6), we can determine the received output power for arbitrary 

bandwidth Av, i f  we know the spectral power, by the follow ing relation.

พ  =

A v
ÏJw  •

Av
dv (2.7)

Temperature and Noise
In the previous section we considered antenna as the electromagnetic energy's 

collector from the brightness distribution around them. It has already been discussed
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the mechanical o f antenna as the radiometer for determining the temperature o f distant 

region o f space.

In 1928, H. Nyquist was proposed that the noise power per unit bandwidth 

available at the terminal o f a resister R  and temperature T  is given by

Fig 2.3 Thermal noise at the terminals o f the resister (a), the antenna in blackbody 

enclosure (b), and antenna in the sky (c) (Kraus, 1986).

The thermal motion o f electrons in the resister produce a current which form 

the random input to the terminal. The mean value o f this current w ill be zero, but the 

rms. value o f the current i, ( i2) represent the power in the resister as expressed by

พ = kT (2.8)

where พ  = spectral power or power per unit bandwidth, w/Hz 

k = Boltzmann’s constant ( =1.38 X 1 O'23 J/K)

T  = absolute temperature, K.
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(2.8). The spectral power o f the resister is independent o f the value o f the resister 

(Kraus, 1986; Rohlfs, 1990).

A s Fig 2.3b, i f  the resister is replaced by a lossless matched antenna enclosing 

by a blackbody enclosure with ambient temperature T, the spectral power measured at 

the antenna terminals remain the same value as resister o f temperature T  since the 

intrinsic impedance o f the antenna.

Now  the enclosure has been removed and replaced by the sky with temperature 

T  as shown in Fig 2.3c . The antenna sees the sky through the power pattern. Since the 

antenna embedded at temperature T, the brightness B(0,4>) are the same in all 

directions. By Rayleigh-Jeans approximation as indicated by (2.2), we have

พ =■ ^ A j jp „ ( 0 ,< » d n

If we defined the integration o f the antenna's power pattern on the right side o f 

the equation as the beam  s o l id  a n g le  Q a o f the antenna (discussed in the next chapter), 

which is

Q a = JJp „ d fi

we have
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The product o f effective aperture A e  and the beam solid angle Q a  o f the 

antenna equals to the square o f the operating wavelength, say A eQ A ะ= X.2 (derived in 

the next chapter), yields

พ = kT

It can be referred from this result that the antenna behave as the resister R  o f 

temperature T. However, the spectral power is the same but the antenna see any 

portion o f the sky unequally since the power pattern is the function o f directions.

The spectral power measured at the antenna terminal can be determined by 

(2.6). It determines the temperature o f the distance regions in space couple to the 

system through the radiation resistant o f the antenna (Kraus, 1986). The temperature 

o f the antenna resistant is called the an ten n a tem p era tu re  Ta- It is important to note 

that it is not the temperature o f the antenna structure (Kraus, 1986).

This property is important for astronomical purpose since it is possible to 

determine the temperature from the remote object in the sky. If the brightness 

distribution o f the sky, B(0,<j)), is considered as the radiation o f  black body with 

temperature Ts(0,<j)), the spectral power can be expressed as
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1 ff2kT  (0,<j))พ = \ A e JJ— ^ P ^ P n(0,<i))dQ = kTA 

T „  = ^ - J jT ,(0 ,t )P „ (9 ,* )d n

Since A eQ A ะ= A.2, we have

Ta = q 7  n T s(e,<|.>P„(0,<t.)dn (2.9)

We can refer this relation that the antenna temperature is the integration o f the 

temperature o f the source in all direction weighting by the antenna pattern. It is 

impossible to determine the exact temperature o f a certain object i f  the main lobe o f 

the antenna is insufficiently sharp. It is suffered from the temperature received by the 

minor lobe. A s the result, the pin-point beam antenna is the major requirement o f the 

modem radio telescope.

The source temperature, Ts(0,<t>) is the eq u iva len t tem p era tu re  o r  b rig h tn ess  

tem p era tu re  which may be equal to the thermal temperature o f the source i f  the radio 

noise power is due to thermal emission. However, i f  the noise can be generated by a 

non-thermal mechanism, such as plasma or synchrotron oscillation which the 

equivalent temperature is greater than the thermal temperature o f the source (Kraus,

1986).
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Flux Density
In the previous sections we discussed the measured power from the distributed 

source around the antenna. The individual source w ill be treated in this section.

Discrete radio source is classified as the p o in t  so u rce  when the source 

subtends the infinitesimal sky portion compared to the solid angle o f the antenna's 

main beam. The largest sources may be classified as the lo c a liz e d  or ex ten d ed  sou rce. 

In common practice, it may be regard the sources o f less diameter than 1° as the 

localized source and the sources with diameter o f more than 1° as the extended source 

(Kraus, 1986).

For any discrete source, the integral o f the brightness over the source yield the 

total source f lu x  d en s ity  ร. Thus,

where ร  = flux density o f source, พ  m'2 H z '1

This unit is inconveniently large in practice. The flux density are normally 

expressed in the smaller unit o f Jansky (Jy) which identical with the f lu x  unit found in 

the older literature and is defined as lx lO '26 พ  m'2 H z '1 ( Rohlfs, 1990, Christiansen 

and Hogbom, 1985). The name Jansky is after the pioneer radio astronomer Carl G.

(2.10)

Jansky.
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ร0= JjB(e,4,)Pn(e,<t>)dQ (2 .11)
source

W h e n  th e  s o u r c e  is  o b s e r v e d  w it h  a n d  a n te n n a  o f  p o w e r  p a t te rn  p n(9,(j)), th e

o b s e r v e d  f l u x  d e n s i t y  S o  is

The observed flux density is usually less than the actual flux density from 

(2.10). I f the observed source is the point source and situated at the main beam 

direction the Pn(0,<t>) s i  , the observed flux density approach to the true value. From 

this reason, the flux density is appropriate quantity to express the intensity o f the point 

source. For the sources o f the larger extent, the flux density refer to some portion o f 

the source. Hence, for the largest sources, the brightness B(0,<|>) or the brightness 

temperature T s(0,cj)) o f the source should be applied.

Follow ing from the previous reason, when the antenna is aligned with the 

localized or extended source and pn(0,<|>) in minor lobe is considerably small, the 

o b se rv e d  or a p p a re n t b rig h tn ess  B 0 is then

_ JjB(e,'t.)P„(9,4>)dfl  ̂ ร 0

0 =  i J p „ ( 0 ,« d n  ท A
(2.12)

The variation o f the flux density ร  with frequency is called the f lu x  d en sity  

spectru m . The integration S0(9,<t>) over a operating bandwidth Av yield the to ta l f lu x  

d e n sity  ร  ' in this band o f frequency Av 5 thus
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ร '= (2.13)

It follows that the total (observed) power พ  at the receiver o f bandwidth Av is 

given by

,<j>)P„ (9,<j>)dQdv

(2.14)

where ร 0 = observed flux density spectrum from the source, i f  the minor lobe o f the 

antenna considerably small.

If the radiating source o f temperature Ts(0,<j)) subtends a solid angle Q s, the 

observed flux density can be calculated by aid o f the Raleigh-Jean approximation. 

Thus,

ร 0 = | r  J h o . O d Q (2.15)

j
vi?in 1.
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From above equation, If the source have uniform temperature distribution Ts 

(0,(J)) = Ts, we have

The Minimum Detectable Temperature and Flux Density
The temperature which we measured at the receiver is not only the antenna 

temperature T a as discussed in the previous section, but also the temperature from 

another noise source in the system such as the transmit line or the receiver itself.

The transmission line have an certain impedance act as the resister in the 

Nyquist's theorem. Hence, it add the noise to the signal received from antenna. By the 

way the antenna temperature is higher than the actual value.

In the receiver, the component emitted the thermal noise. This noise is 

amplified along with any external signal and cannot in principle be distinguished from 

it, i f  there are no any calibration measure (Rohlfs, 1990).

The se n s itiv ity  or m inim um  d e tec ta b le  tem pera tu re  can be defined as the value 

o f rms. noise temperature. The system noise can be reduced to desire extent by 

increasing integration time (after detection). Increasing predetection bandwidth, or by 

taking average more than one observation (Kraus, 1986). The increasing integration 

time and averaging process give a change o f cancellation for the noise fluctuation. The 

increasing bandwidth increase the noise and also the more cancellation is 

accomplished. The noise level is the minimum detectable level. Since the ro o t m ean
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sq u a re  (rm s.) value o f the signal, the noise level may be represented by rms. level. If 

the receiver is o f the total-power type (see the next chapter), the sensitivity may be 

written as (Kraus, 1986; Brown and Lovell, 1958; Rohlfs, 1990)

AT๗" = ATrms = ' (2.17)

where ATmin = sensitivity or minimum detectable temperature, K  

ATrms = rms. system noise temperature K  

Tsys = system noise temperature = T a + T r ,K  

Ta = antenna temperature 

T r = noise temperature for the receiver 

Av = predetection bandwidth, Hz 

t = integration time, ร 

ท = number o f record average

According to the Rayleigh-Jeans approximation, the m inim um  d e tec ta b le  

b rig h tn ess ABmin can be determined by

AB min
2 k Tsys
X2 V a v - t - ท

(2.18)
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Since the spectral power measured at the antenna terminal have the property as 

the thermal noise as discussed in the previous section, we have

พ »  kTA = i A t JjB(0,+)P„(0,*)dO= :~AtS0

ร 0
2kTA

A e
(2.19)

Substitute the minimum detectable temperature in (2.17) to the antenna 

temperature T a in (2.19), we have the m inim um  d e tec ta b le  f lu x  d en sity  ASmin which is

A S  min
2 k Tsys 

A e V A v • t •ท
(2.20)

Astronomical Coordinate and Time
It is essential to understand the astronomical coordinate system and the 

measure o f  time when we are interested in study the celestial object.

Fig 2.4 Horizontal coordinate system (Kraus, 1986).
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We should start with the h o r iz o n ta l  c o o r d in a te  s y s te m  which is used to 

describe the position of object at the observer's site. As the perspective of observer on 

the Earth, the sky appears the hemisphere as shown by Fig 2.4 .

The point overhead the observer is called ze n ith . It may also be imagined 

another hemisphere which complete the sphere. The point o f another site o f the zenith 

is called n a d ir . The great circle which passed through the zenith and nadir and 

oriented in direction north and south is called the o b s e r v e r  ’ร m e r id ia n .

In this system, we can identify and object by the a z im u th , A z  or horizontal 

angle from the North clockwise to the circle which pass the poles (i.e., zenith and 

nadir) through the object of interest, and the a l t i tu d e  Alt, or elevation angle from the 

observer's horizon to the object. The altitude may be replaced by the z e n ith  d is ta n c e  

z, which is the angle from the zenith to the object o f interest, if  it is more convenient. 

The identification is shown in Fig 2-4.

It is clearly to see the simplicity of this system, but the system depend on the 

position of the observer in the Earth's surface and also the celestial objects are moving 

from east to west when the time is elapsed.

The other e q u a to r ia l  c o o r d in a te  in this situation, is introduced. Although, we 

know that the Earth have the motion relatively to the other object in the universe, it 

remain useful to apply the geocentric concept to measure the position of celestial 

object. As the revelation of the observer on the Earth, the sphere of the sky rotated 

around an axis which pass through the fixed poles in the sky rather than the Earth 

have rotation in the space. The sphere o f the sky contain all celestial objects is called
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the c e le s t ia l  s p h e r e . The poles o f the celestial sphere moving around coincide with the 

north and south poles of the Earth as seen in Fig 2.5 .

Celestial 
North Pole

Object at R.A. 4 hr.Dec. +30* (Hour anale = -2 hr)

South Pole

Fig. 2.5 Equatorial coordinate system (Kraus, 1986).

The poles are n o r th  c e le s t ia l  p o l e  (N C P ) and s o u th  c e le s t ia l  p o l e  (S C P )  

respectively. The great circle which is the extension o f the Earth's equator is also 

called the c e le s t ia l  e q u a to r . A ll o f the celestial object except the รนท and the other 

members of the solar system are seem to occupy fixed position in the celestial sphere 

since the immensely distance from the Earth.

The coordinate of a celestial object are given by the r ig h t  a s c e n s io n  a  and the 

d e c l in a t io n  8. The great circle which pass through the object and the celestial poles is 

called the h o u r  c ir c le . The declination is the angle from the celestial equator to the
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object o f interest measured along the hour circle. The right ascension is the angle 

between and arbiter point at the celestial equator to the object's hour angle. The 

arbitrary point o f reference is the v e r n a l  e q u in o x  y  which is the point where the orbital 

path of the รนท on the celestial sphere intersect with the celestial equator and the รนท 

w ill ascend to the northern hemisphere after situate at that point.

The right ascension is expressed in unit of hour, minute and second of time 

(0h < a < 24h) and the declination is expressed in degree. If the object is north of the 

celestial equator, the declination is positive and w ill be negative if  south 

(-90° < Ô < +90° ). For example, the object, as shown in Fig 2.5 situates a  = 4h0m0s 

and 6 = +30°.

It is useful to relate both system together. Now, we have to know that the 

position of a distance object depends on the position o f the observer and the 

observation time in the horizontal coordinate system, but it is rather fixed in equatorial 

coordinate. At first, it should be considered some aspect of time.

The measurement of time is related to the rotation o f the Earth, i.e. we define 

one day (24h0m0s) as the period of the Earth’s rotation, there are two points of 

reference use to identify the completeness of the rotation. One is an arbitrary fixed 

point in the space and the other one is the รนท. The vernal equinox was selected to the 

reference point in the space.

The period o f the vernal equinox situated to the same point in horizontal 

system of a certain observation site is defined as the s id e r e a l  d a y  which coincide with 

the period of the Earth compare to the vernal equinox and have the same value for the
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period of rotation of celestial sphere. The sidereal day is not common for human 

whose activities depend on the daylight, so the รนท is more rational to apply than the 

vernal equinox.

Fig. 2.6 Sidereal and solar day in comparison (Kraus, 1986).

The solar day is define as same as the sidereal day but the reference point is 

replaced by the รนท. Since the irregularity of the period depend on the position of the 

Earth on its ellipse orbit around the รนท, the m e a n  s o la r  d a y  is commonly applied. In 

the Fig 2.6, it can be shown the relation of the sidereal day and solar day. It is obvious 

that the solar day is longer than the sidereal day. From the observation, the r a t io  o f  th e  

s id e r e a l  to  m e a n  s o la r  tim e  v is

V e r n a l

e q u i n o x

v= 1.002737903 (2.21)

US Naval. American ephemeris andjututicaLAlmanac. พร: Government printing office, 1966 cite in Kraus, J. D. Radio astronomy. 2 . NY: McGraw- 
Hill. 1986.
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since the time of a day depends on the longitude of the observer. The common 

tine should be applied for communication easily. The common time is the mean solar 

time at Greenwich (0° longitude) is called the u n iv e r s a l t im e , U T . It is easily to 

convert the standard time of the observer to the universal time which is given by

UT = ST - TZ (2.22)

where UT = universal time

ST = standard time of the observer 

TZ = time zone of the observer. *

Where the long time interval are involved, it is convenient to reckon as the 

J u lia n  d a te . The Julian date reckon time entirely in days instead of days, months or 

years. The number of days reckon from noon (12h0m0s UT) of 1ช January 4713 BC. 

Now, we have already to relate the previous astronomical coordinate system together. 

Since the celestial sphere is infinitely large, it may be consider that the sphere of the 

sky in horizontal coordinate coincide with the celestial sphere in equatorial 

coordinate. By a little trigonometry, as shown in Fig 2.7, it can be proved that the 

NCP is the point of Az = 0° and A lt = 9 which is the latitude of the observer ( if we 

consider the Earth is perfect sphere). The object at the zenith distant z  situated at the 

meridian have the declination 8 as given by

For Thailand, time zone equal to +7.
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where 8 = declination of the object, degree 

0 = latitude of the object, degree 

z  = zenith distance of the object, degree

Since the celestial sphere rotated around the poles westwards, the celestial 

object rises from the east and set to the west. We can see that hour circle of an object 

move as the same. The angle from the observer's meridian measured westwards to the 

vernal equinox along the celestial equator is called the lo c a l  s id e r e a l  tim e , L S T . If the 

angle is measure to the hour circle o f an object, it is called h o u r  a n g le  H A . thus, the 

hour angle of the object with right ascension a can be written as
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Fig 2.8 Local sidereal time of the observer at longitude X

HA = LST - a (2.23)

The local sidereal time, LST is related to the universal 

the observer. From the Fig 2.8, the local sidereal time at UT is

time and longitude X of 

given by

LST = X + Yo + Ay

where LST = local sidereal time

X =  longitude of the observers.

Yo = sidereal time on 0h UT at Greenwich 

Ay = deviation of vernal equinox at UT
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Since the celestial sphere rotates with the period equal to sidereal day. Hence, 

the deviation angle Ay when the time elapsed as mean solar time, UT, can be given by

Ay = v * UT (2.24)

where V = ratio between sidereal time to solar time (=1.0027379093).

UT = universal time.

Substitute (2.24) to the previous equation, we have

LST =  ̂+ y0 + V*UT (2.25)

The sidereal time on 0h UT at Greenwich Yo can be found in American ephemeris and 

Nautical Almanac or by calculate directly from

r o = re +24l’ » v .( J - J 0) (2.26)

where Ye = Greenwich’s sidereal time at 0h UT of an instant of time (called the 

e p o c h ) .

J = Julian date for the observation.

Jo = Julian date o f epoch.
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