REFERENCES

- Bronstein, L. M., Solodovnikov, S. P., Mirzoeva, E. Sh., Baukova, E. Yu., and Valetsky, P. M. Nanodispersed metal particles in polymeric matrices.
 <u>Preprints of the ACS</u> PMSE Division, Fall Meeting, Washington, 71 (1994) : 397-398.
- Chow, G. M., Gonsalves, K. E., eds. <u>Nanotechnology : Molecularly designed</u> <u>materials</u>. ACS Symposium Series # 622, Washington : ACS Publishing, 1996.
- Chow, G.M., Klemens, P. G., and Strutt, P. R. Nanometer-size fibre composite synthesis by laser-induced reaction. <u>Journal of Applied Physics</u> 66 (1989): 3304-3308.
- Giannelis, E. P. Polymer layered silicate nanocomposites. <u>Advanced material</u> 8 (1996) : 29-35.
- Giannelis, E. P., Vaia, R. A., Jandt, K. D., and Kramer, E. J. Kinetics of polymer melt intercalation. <u>Macromolecules</u> 28 (1995) : 8080-8085.
- Jou, J. H. and Huang, P. T. Effect of thermal curing on the structures and properties of aromatic polyimide films. <u>Macromolecules</u> 24 (1991) : 3796-3803.
- Jou, J. H., Huang, P. T., Chen, H. C., and Liao, C. N. Coating thickness effect on the orientation and thermal expansion coefficient of polyimide film. <u>Polymer</u> 33 (1992) : 967-974.
- Kamal, M. R., Garmabi, H., Hozhabr, S., and Arghyris, L. The development of laminar morphology during extrusion of polymer blends. <u>Polymer</u> <u>Engineering and Science</u> 35 (1995) : 41-51.

4

Kelly, A., eds. <u>Concise Encyclopedia of Composite Material</u>. Oxford : Pergamon, 1994.

- Klein, L. C. and Woodman, R. Sol-gel processing of silica-poly(vinyl acetate) nanocomposites. <u>Ceramics Transaction</u> 55 (1995) : 105-116.
- Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Kurauchi, T., and
 Kamigaito, O. One-pot synthesis of nylon 6-clay hybrid. Journal of
 <u>Polymer Science, Part A: Polymer Chemistry</u> 31 (1993) : 1755-1758.
- Ku, C. C. and Liepins, R. <u>Electrical properties of polymers : Chemical</u> <u>principles</u>. Munich : Hanser, 1987.
- Mascia, L. and Kioul, A. Influence of siloxane composition and morphology on properties of polyimide-silica hybrids. <u>Polymer</u> 36 (1995) : 3649-3659.
- Messersmith, P. B. and Giannelis, E. P. Synthesis and barrier properties of poly(ε-caprolactone) layered silicate nanocomposites. Journal of <u>Polymer Science, Part A: Polymer Chemistry</u> 33 (1995) : 1047-1057.
- Miller, R. W. and Donahue, R. L. <u>Soils. An introduction to soils and plant</u> <u>growth</u>. New York : Prentice-Hall International, 1990.
- Morikawa, A., Iyoku, Y., Kakimoto, M., and Imai, Y. Preparation of new polyimide-silica hybrid materials *via* the sol-gel process. <u>Journal of Materials Chemistry</u> 2 (1992) : 670-690.
- Naiyana Asawakanjana. <u>Polyimide film as protective polymer for</u> <u>microelectronic gas sensors</u>. Master's Thesis. The Petroleum and Petrochemical College, Chulalongkorn University, 1997.
- Newnham, R. E. and Trolier-McKinstry, S. E. Structure-properties relationships in ferroic nanocomposites. <u>Ceramics Transaction</u> 8 (1990) : 235-252.
- Niihara, K. New design concept of structural ceramics : ceramic nanocomposites. <u>Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi</u>, 99 (1991) : 974-982.

- Numata, S., Oohara, S., Fujisaki, K., Imaizumi, J., and Kinjo, N. Thermal expansion behavior of various aromatic polyimides. <u>Journal of</u> <u>Applied Polymer Science</u> 31 (1986) : 101-110.
- Ogata, N., Jimenez, G., Kawai, H., and Ogihara, T. Structure and thermal/ mechanical properties of poly(*l*-lactide)-clay blend. Journal of <u>Polymer Science</u> 35 (1997) : 389-396.
- Okada, A. and Usuki, A. The chemistry of polymer-clay hybrids. <u>Materials</u> <u>Science and Engineering</u> C3 (1995) : 109-115.
- Pinnavaia, T. J., Lan, T., Wang, Z., Shi, H., and Kaviratna, P. D. Clayreinforced epoxy nanocomposites synthesis, properties, and mechanism of formation. <u>ACS Symposium Series</u> 622 (1996) : 250-261.
- Pottiger, M. T., Coburn, J. C. and Edman , J. R. The effect of orientation on thermal expansion behavior in polyimide films. <u>Journal of Polymer</u> <u>Science, Part B: Polymer Physics</u> 32 (1994) : 825-837.
- Premachandra, J., Kumudine, C., Mark, J. E., Dang, T. D., Chen, J. P., and Arnold, F. E. Polymer-silica hybrid materials prepared from some funtionalized polybenzoxazoles and polybenzobisthiazoles. <u>Journal of</u> <u>Sol-Gel Science and Technology</u> 7(1996) : 163-175.
- Sawyer, L. C. and Grubb, D. T. <u>Polymer microscopy</u>. London : Chapman & and Hall, 1996.
- Subramanian, P. M. and Mehra, V. Laminar morphology in polymer blends : structure and properties. <u>Polymer Engineering and Science</u> 27 (1987) : 663-668.
- Usuki, A., Kawasumi, M., Kojima, Y., Okada, A., Kurauchi, T., and Kamigaito, O. Synthesis of nylon 6-clay hybrid. <u>Journal of Materials</u> <u>Research</u> 8 (1993) : 1179-1184.

- Wade, W. I... Mammone, R. J. and Binder, M. Increased dielectric breakdown : strengths of melt-extruded polypropylene films. <u>Polymer</u> 34 (1993) : 1093-1094.
- Wang, S. H., Ahmed, Z., and Mark, J. E. Polyimide-silica hybrid materials having interfacial bonding through use of a sol-gel technique.
 <u>Macromolecular Reports</u> A31(1994) : 411-419.
- Yano, K., Usuki, A., Okada, A., Kurauchi, T., and Kamigaito, O. Synthesis and properties of polyimide-clay hybrid. <u>Journal of Polymer Science</u>, <u>Part A: Polymer Chemistry</u> 31 (1993) : 2493-2498.

APPENDICES

Appendix I : Stoichiometric Calculation of Organophilic-Clay

The stoichiometric calculation of starting material in preparation of organophilic-clay filler can be shown by the chemical equation :

 $[NH_3(CH_2)_{11}CH_3](Al_2Si_4O_{10}(OH)_2) + NaCl (I.2)$

1.1

Dodecylamine-montmorillonite

M.W.=545 g/mol

The dodecylamine was first reacted with hydrochloric acid resulting in dodecylammonium chloride. Afterwards, one mole of sodium-montmorillonite was reacted by one mole of dodecylammonium ion to yield one mole of dodecylamine-montmorillonite. In order to yield 13 g of dodecylamine-montmorillonite (0.024 mole), 4.42 g of dodecylamine and 2.4 ml of concentrated hydrochloric acid as well as 10 g of sodium-montmorillonite would be reacted.

Appendix II : Determination of Sodium Ions in Montmorillonite by Atomic Absorption Spectrometry (AAS)

(1) Apparatus

- a) Flame Atomic Absorption Spectrometer, air-C₂H₂ flame
 : Varian Model : SpectrAA
- b) Glassware : All of glasswares were rinsed with 1+15 HNO₃ and followed by several portions of deionized water.

(2) Reagents

- a) Stock sodium solution (1000ppm) : Carlo Erba Standard
- b) Potassium chloride : Carlo Erba, AR grade
- c) Hydrochloric acid (37 %w/w) : Merck
- d) Deionized water

(3) **Procedure**

a) Preparation of Standard Sodium Solution for the Calibration Curve

A 1000 ppm of stock sodium solution was diluted to 10 ppm of an intermediate solution using deionized water as a diluent. A blank and sodium standards were prepared by transferring of 0, 2, 5 and 10 ml of an intermediate sodium solution to volumetric flasks and increased the volume of each containers to 100 ml with deionized water. All containers were added 0.4 g of KCl in order to remove some interfered ions and 10 ml of 1+1 HCl as a

conditioning solvent prior to increase the volume. A diagram of preparation method is shown in Figure II.1.

Figure II.1 A preparation diagram of standard sodium solution for a calibration curve.

b) Preparation of Unknown Solution

A mixture of 0.10 g of montmorillonite, 10 ml of 1+1 HCl and 10 ml of deionized water was stirred at 80 °C for 2 hours, yielding an acidic unknown solution. The solution was then cooling down to 30 °C. A precipitate was isolated by filtering with a 0.45 μ m cellulose acetate filter membrane and washing with deionized water. The supernatant with 0.40 g of KCl was transferred to a volumetric flask and increased the volume to 100 ml

by deionized water. The unknown solution was taken to analyze by the AAS. A diagram of preparation method is shown in Figure II.2.

Figure II.2 A preparation diagram of the AAS unknown solution.

c) Determination of Sodium Ions by AAS

The sodium ions in acidic unknown solution were measured using an air- C_2H_2 flame mode with a sodium hollow cathode lamp. The wavelength of a specific lamp was set at 589 nm to produce a maximum absorption. The chamber inside the nebulizer was exposed to a continuous flow of acetylene gas with a flow rate of 2.2 L/min and air with a flow rate of 13.5 L/min. The amount of sodium ions in an atomizer unit were monitored and recorded using the controller software. The average value of absorbance from 3 measurements were reported as a representative value of each sample.

(4) The Recovery Percentage of Sodium Ions as Measured by AAS

(Table 4.4)

	Na ⁺ content (%wt)				
No.	Sodium-montmorillonite	Dodecylamine-montmorillonite			
1	2.87	0.22			
2	2.84	0.20			
3	2.89	0.20			
Average	2.87±0.02*	0.21±0.01			

* The exact value from Kunimine's technical data sheet is 3.15 %wt.

Appendix III : Thermogravimetric Data of BPDA/PDA Polyimide Film and Its Clay Nanocomposites

(Figure 4.9)

Materials	Clay content	Decomposition temperature* (°C)			
	(%wt)	#1	#2	#3	Average
PI2610	0	584	576	580	580.0 <u>+</u> 4.0
PI2610-Clay 1 %	1.17	598	600	595	597.7 <u>+</u> 2.5
PI2610-Clay 3 %	2.89	602	603	595	600.0 <u>+</u> 4.4
PI2610-Clay 6 %	6.19	608	602	601	603.7 <u>+</u> 3.8
PI2610-Clay 9 %	8.87	613	604	608	608.3 <u>+</u> 4.5
PI2610-Clay 11 %	10.86	615	603	609	609.0 <u>+</u> 6.0

* Measured by using a scanning rate of 10 ml/min.

Appendix IV : Thermomechanical Data of Polyimide Films and Their Clay Nanocomposites

Testing Conditions : (1) Annealed from 30 to 300 °C with a rate of 10 °C/min

(2) Cooled down to 30 °C with a rate of 5 °C/min

- (3) Held for 1 hour
- (4) Heated up from 30 to 400 °C with a rate of 5 °C/min and measured the change in length
- (5) Cooled down to 30 °C
- Remark : All steps were performed under a constant force of 30 mN.

(1) **In-Plane** CTE (α_{50-250})

BPDA/PDA (PI2610)

(Figure 4.14)

1.1.	Clay	α ₅₀₋₂₅₀ (ppm/°C)			Average
Materials	content	#1	#2	Average	thickness
-81	(%wt)				(µm)
PI2610	0	45.20	33.76	39.48+8.08	28.0+1.3
PI2610-Clay 1 %	1.00	42.66	40.30	41.48 <u>+</u> 1.67	25.5 <u>+</u> 1.6
PI2610-Clay 3 %	2.67	33.12	34.78	33.95+1.17	23.2+3.0
PI2610-Clay 6 %	5.96	32.63	37.25	34.94+3.27	23.3+3.6
PI2610-Clay 9 %	8.85	35.70	35.47	35.59+0.16	24.0+3.6

BTDA/ODA-MDA (PI2579)

(Figure 4.14)

	Clay	α ₅₀₋₂₅₀ (ppm/°C)			Average
Materials	content (%wt)	#1	#2	Average	thickness (µm)
PI2579	0	73.24	-	73.24 <u>+</u> 0.00	21.0 <u>+</u> 0.0
PI2579-Clay 1 %	1.04	74.80	71.92	73.36 <u>+</u> 2.04	23.0 <u>+</u> 1.4
PI2579-Clay 3 %	3.04	66.28	69.01	67.64 <u>+</u> 1.93	23.5 <u>+</u> 2.1
PI2579-Clay 6 %	5.86	63.19	61.40	62.34 <u>+</u> 1.20	20.0 <u>+</u> 1.4
PI2579-Clay 9 %	8.79	62.30	62.10	62.20 <u>+</u> 0.14	24.0 <u>+</u> 0.0
PI2579-Clay 11%	10.95	60.38	59.16	59.77 <u>+</u> 0.86	21.0 <u>+</u> 0.0

(2) Expansion Temperature (T_c)

a) Definition

The temperature at inflection point on the plot of in-plane CTE as function of temperature as shown in Figure IV.1. At this point, the film starts to expand dramatically with an in-plane CTE.

Figure IV.1 The plot of in-plane CTE as a function of temperature of a typical polyimide film.

b) Raw Data

BPDA/PDA (PI2610)

(Figure 4.15)

Materials	Clay content	Τ _e (°C)			
	(%wt)	#1	#2	Average	
PI2610	0	328	324	326.0+2.8	
PI2610-Clay 0.5%	0.50	308	307	307.5+0.7	
PI2610-Clay 1 %	1.00	310	311	310.5+0.7	
PI2610-Clay 3 %	2.67	312	316	314.0+2.8	
PI2610-Clay 6 %	5.96	306	309	307.5 <u>+</u> 2.1	
PI2610-Clay 9 %	8.85	310	318	314.0+5.6	

BTDA/ODA-MDA (PI2579)

(Figure 4.15)

Materials	Clay content		T _e (°C)		
5. I	(%wt)	#1	#2	Average	
PI2579	0	305	298	301.5+4.9	
PI2579-Clay 1 %	1.04	301	303	302.0+1.4	
P12579-Clay 3 %	3.04	296	294	295.0 <u>+</u> 1.4	
PI2579-Clay 6 %	5.86	298	305	301.5+4.9	
P12579-Clay 9 %	8.79	260	265	262.5 <u>+</u> 3.5	
PI2579-Clay11%	10.95	285	283	284.0+1.4	

(3) Yielding Temperature (T_y)

a) Definition

4

The temperature at which the film starts to permanent deform. It can be found by extrapolating a 0.2 % off-set of the elongation axis to the temperature axis on the curve as shown in Figure IV.2.

Figure IV.2 The plot of temperature as a function of elongation of a typical polyimide film.

BPDA/PDA (Pl2610)

(Table 4.6)

Materials	Clay content	Т _у (°С)		
	(%wt)	#1	#2	Average
P12610	0	370	360	365.0 <u>+</u> 7.1
PI2610-Clay 0.5%	0.50	325	324	324.5 <u>+</u> 0.7
PI2610-Clay 1 %	1.00	323	332	327.5 <u>+</u> 6.4
PI2610-Clay 3 %	2.67	334	350	342.0 <u>+</u> 11.3
Pl2610-Clay 6 %	5.96	-	-	-
PI2610-Clay 9 %	8.85	-	-	-

BTDA/ODA-MDA (P12579)

(Table 4.6)

Materials	Clay content	Τ _y (°C)			
	(%wt)	#1	#2	Average	
P12579	0	316	309	312.5+4.9	
P12579-Clay 1 %	1.04	310	313	311.5+2.1	
PI2579-Clay 3 %	3.04	312	312	312.0+0.0	
PI2579-Clay 6 %	5.86	320	330	325.0 <u>+</u> 7.1	
PI2579-Clay 9 %	8.79	330	320	325.0 <u>+</u> 7.1	
PI2579-Clay 11 %	10.95	318	320	319.0 <u>+</u> 1.4	

Appendix V : Thermal Cycling Data of BPDA/PDA Polyimide Film and Its Clay Nanocomposites

Testing Conditions : (1) Annealed from 30 to 300 °C with a rate of 10 °C/min (2) Held for 10 minute

- (3) Cooled down to 30 °C with a rate of 5 °C/min
- (4) Heated up from 30 to 400 °C with a rate of 5 °C/min and measured the change in length
- (5) Cooled down to 30 $^{\circ}$ C
- (6) Repeated step (4) and (5) for a total of 10 cycles

Remark : All steps were performed under a constant force of 30 mN.

Cycle No.		α ₅₀₋₂₅₀ (ppm/°C)				
14. 14. 14.	PI2610	PI2610-Clay 1 %	PI2610-Clay 9 %			
1	28.06	19.31	34.31			
2	21.78	18.77	41.24			
3	21.83	20.76	41.15			
4	22.79	22.64	39.35			
5	21.98	21.56	34.88			
6	24.42	21.25	34.84			
7	22.74	24.50	40.35			
8	23.36	20.48	42.47			
9	22.28	30.58	35.91			
10	23.94	27.56	39.24			

(Figure 4.16)

Appendix VI : Tensile Properties Data of BPDA/PDA Polyimide Film and Its Clay Nanocomposites

(1) Tensile Modulus

(Table 4.7)

Materials	Clay content	Tensile modulus* (GPa)			
	(%wt)	#1	#2	Average	
PI2610	0	7.00	6.64	6.82 <u>+</u> 0.25	
PI2610-Clay 0.5 %	0.51	7.63	6.41	7.02+0.86	
PI2610-Clay 3 %	2.96	8.01	7.45	7.73+0.40	
PI2610-Clay 8 %	8.02	8.04	7.79	7.92±0.18	

* Initial slope of the stress-strain curve.

(2) Ultimate Strength

(Table 4.7)

Materials	Clay content	Ten	sile strength	* (GPa)
	(%wt)	#1	#2	Average
PI2610	0	5.46	4.52	4.99+0.66
PI2610-Clay 0.5 %	0.51	5.32	4.65	4.99 <u>+</u> 0.47
PI2610-Clay 3 %	2.96	6.88	6.01	6.44+0.62
P12610-Clay 8 %	8.02	6.98	6.80	6.89±0.13

* Strength at break.

Materials	Clay content	Ultimate elongation* (%)			
	(%wt)	#1	#2	Average	
PI2610	0	2.97	3.07	3.02+0.07	
PI2610-Clay 0.5 %	0.51	2.30	2.40	2.35 ± 0.07	
PI2610-Clay 3 %	2.96	1.49	1.65	1.57±0.11	
PI2610-Clay 8 %	8.02	0.86	1.03	0.94+0.12	

(3) Ultimate Elongation

(Table 4.7)

* Elongation at break.

Appendix VII : Water Absorption Data of BPDA/PDA Polyimide Film and Its Clay Nanocomposites

(Figure 4.19)

Materials	Clay content	Water content* (%wt)			
	(%wt)	#1	#2	#3	Average
PI2610	0	2.20	1.80	1.90	1.97±0.21
PI2610-Clay 1 %	1.17	1.19	1.70	1.80	1.80±0.10
PI2610-Clay 3 %	2.89	1.70	1.60	1.80	1.70 ± 0.10
PI2610-Clay 6 %	6.19	1.60	1.50	1.70	1.60 <u>+</u> 0.10
PI2610-Clay 9 %	8.87	1.50	1.40	1.30	1.40 ± 0.10
PI2610-Clay 11%	10.86	1.40	1.50	1.70	1.53±0.15

* Water content of the films were measured by using TGA technique.

Appendix VIII : Dielectric Strength Data of BPDA/PDA Polyimide Film and Its Clay Nanocomposites

No.	Thickness (mil)	Dielectric breakdown (V)	Dielectric strength (V/mil)
1	0.80	5300	6625
2	1.04	6400	6154
3	0.76	4500	5921
4	0.92	5400	5870
5	0.64	3400	5312
6	0.92	6200	6739
	Average	5200+1115	6104±527

(1) **BPDA/PDA (PI2610)**

(Figure 4.21)

(2)	PI26	0-Clay	0.96	%wt
-----	-------------	--------	------	-----

(Figure 4.21)

No.	Thickness	Dielectric	Dielectric
1.1.1	(mil)	breakdown (V)	strength (V/mil)
1	0.92	6600	7174
2	0.84	6400	7616
3	0.72	5500	7639
4	0.88	6000	6818
5	0.52	4600	8846
6	1.16	7800	6724
I	Average	6150+1080	7470+776

(3) PI2610-Clay 2.07 %wt

(F	iø	ure	4	2	ł)
۱	15	ure			T.	1

No.	Thickness	Dielectric	Dielectric
名目の日	(mil)	breakdown (V)	strength (V/mil)
1	0.68	5600	8235
2	1.16	9000	7758
3	0.88	6500	7386
4	0.92	7100	7771
5	0.72	5800	8056
6	0.96	8100	8438
	Average	7017+1332	7932+384

(4) PI2610-Clay 6.80 %wt

(Figure 4.21)

No.	Thickness	Dielectric	Dielectric
	(mil)	breakdown (V)	strength (V/mil)
1	0.72	6100	8472
2	1.12	8000	7143
3	0.56	4800	8571
4	0.92	6000	6521
5	0.84	7000	8333
6	1.20	8800	7330
	Average	6783+1457	7728+847

(5) PI2610-Clay 8.85 %wt

(F	ig	ure	4.2	1)
· ·				

No.	Thickness	Dielectric	Dielectric
Ne al la compañía de	(mil)	breakdown (V)	strength (V/mil)
1	0.68	5900	8676
2	0.52	3800	7308
3	1.04	8000	7692
4	0.84	6000	7143
5	0.96	7700	8021
6	0.64	3000	4688
	Average	5733±2016	7255+1371

(6) PI2610-Clay 10.96 %wt

(Figure 4.21)

No.	Thickness	Dielectric	Dielectric
新社	(mil)	breakdown (V)	strength (V/mil)
1	0.44	2500	5682
2	1.12	8600	7679
3	1.20	9500	7916
4	0.72	3000	4167
5	1.08	8600	7963
6	0.76	3000	3947
	Average	5867±3344	6226±1882

CURRICULUM VITAE

Name Mr. Wittaya Lilayuthalert

Birth Date : 25 February 1974

Nationality : Thai

University Education :

1991-1994Bachelor's Degree of Science in Chemistry,Second Class Honors, Prince of Songkla University