REFERENCES

1.	Joo, H.K., and Curtis, C.W., "Effect of Reaction Time on the Coprocessing of
	Low-Density Polyethylene with Coal and Petroleum Resid", Energy &
	<u>Fuels.</u> 11(1997): 801-812.
2.	Williams, P.T., and Williams, E.A., "Interaction of Plastics in Mixed-Plastics
	Pyrolysis", <u>Energy & Fuels.</u> 13(1999): 188-196.
3.	Joo, H.K., and Curtis, C.W., "Catalytic Coprocessing of Plastics with Coal and
	Petroleum Resid Using NiMo/Al ₂ O ₃ ", <u>Energy & Fuels.</u> 10(1996): 603-
	611.
4.	Francis,W., Fuels and Fuel Technology Volume One, London: The Institute of
	Petroleum, (1965): 5-23.
5.	Francis, W., Fuels and Fuel Technology Volume Two, London: The Institute of
	Petroleum, (1965): 357-360.
6.	Schlosberg, R.H., Chemistry of Coal Conversion, chapter 2, New York and
	London, (1985): 3-42.
7.	Lowry, H.H., Chemistry of Coal Utilization, chapter 2, America, (1963): 35-62.
8.	Pajares, J.A., and Tascon, J.M., Coal Science Volume II. New York: Elsevier,
	(1995): 225-256.
9.	Pajares, J.A., and Tascon, J.M.D., " Direct Liquefaction of Waste Plastics and
	Coliquefaction of Waste Plastics With Coal", Coal Science. (1995):
	1519-1522.
10.	Pajares, J.A., and Tascon, J.M.D., " Coliquefaction of Coal and Waste
	Polymers", <u>Coal Science</u> . (1995): 1515-1518.
11.	Wiseman, P, Petrochemicals. New York, (1986): 43-63.
12.	Hatch, L.F., and Matar, S. From Hydrocarbon to Petrochemicals, Houston,
	London, (1981): 170-183.
13.	Gary, J.H., and Handwerk, G.H., Petroleum Refining: Technology and
	Economics (vol.5), New York: Marcel Dekker, (1975).
14.	Francis, W., Fuels and Fuel Technology, section B: Liquid Fuel, New York,
	(1965): 311-315.
15.	Luo, M., and Curtis, C.W., "Thermal and catalytic coprocessing of Illinois No 6.
	Coal with model and commingled waste plastics", Fuel Processing
	<u>Technology.</u> 49(1996): 91-117.

- Nakamura, I., and Fujimoto, K., "Development of new disposable catalyst for waste plastics treatment for high quality transportation fuel", <u>Catalysis</u> <u>Today</u>. 27(1996): 175-179.
- Ochoa, R.; Woert, H.V., and Lee, W.H., "Catalytic degradation of medium density polyethylene over silica-alumina supports", <u>Fuel Processing</u> <u>Technology.</u> 49(1996): 119-136.
- Naiyachan Yatanaputi, " Synthesis of Lubricating oil from Coconut oil", Master Thesis, Program of Petrochemistry and Polymer Science, Chulalongkorn University, 1991.
- Ding, W.B.; Liang, T.J., and Anderson, L.L., "Depolymerization of waste plastics with coal over metal-loaded silica-alumina catalysts", <u>Fuel Processing</u> <u>Technology</u>. 49(1996): 49-63.
- Padlo, D.M,; Subramanian, R.B., and Kugler, E.L., "Hydrocarbon class analysis of coal-derived liquids using high performance liquid chromatography", <u>Fuel Processing Technology</u>. 49(1996): 247-258.
- Feng, Z.; Zhao, J.; Rockwell, J., and Bailey, D., "Direct liquefaction of waste plastics and coliquefaction of coal-plastic mixtures", <u>Fuel Processing</u> <u>Technology</u>. 49(1996): 17-30.
- Orr, E.C.; Shi, Y.; Shao, L.; Liang, J., and Ding, W., "Waste oils used as solvents for different ranks of coal", <u>Fuel Processing Technology</u>. 49 (1996): 233-246.
- Ibrahim, M.M., and Seehra, M.S., "Effect of hydrogen pressure and temperature on free radicals produced in coal-tire coprocessing", <u>Fuel Processing</u> <u>Technology</u>. 49(1996): 197-205.
- Stiller, A.; Dadyburjor, B., and Wann, J.P., "Co-processing of agricultural and biomass waste with coal", <u>Fuel Processing Technology</u>. 49(1996): 167-175.

APPENDIX

Appendix A

Table A.1The condition reactions of all parameter of catalytic coprocessing ofLDPE with lignite using Ni-Mo on alumina and results.

.

Table A.2The percentage of oil composition by GC simulated distillation.

Table A.1: The condition reactions of all parameter of catalytic coprocessing of LDPE

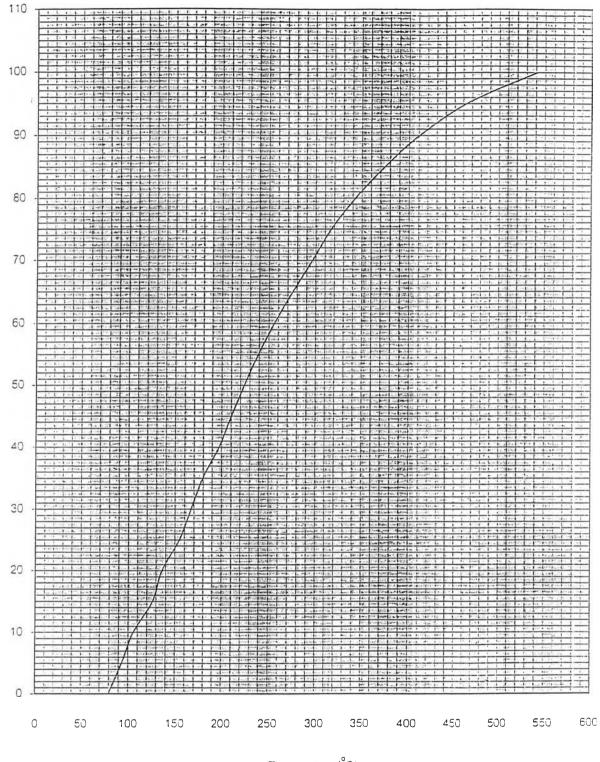
with lignite	using	Ni-Mo	on	alumina	and	results.

BATCH NO.			DITION		PE(g)	COAL(g) CAT.(g)		REACTOR (g)		BEAKER (g)		FILTER+PAP	%YIELD	
BATCHINO.	TEMP(^O C)	P (kg/cm ²)	t (min)	RATIO PE:COAL	7 C(g)		BEFORE	AFTER	BEFORE	AFTER	BEFORE	AFTER	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
1	400	45	60	-	15.00	0.00	0.45						Section and	wax
2	420	45	60	-	15.01	0.00	0.45	743.15	744.65	50.14	58.48	116.65	117.02	55.56
3	435	45	60	-	15.00	0.00	0.45	745.84	747.25	50.15	57.92	116.70	117.02	51.80
4	450	45	60	-	14.97	0.00	0.45	742.92	744.08	50.15	59.06	121.34	122.01	59.52
5	400	60	60	-	15.00	0.00	0.45	1		的建筑的	学業の			wax
6	420	60	60	-	15.03	0.00	0.45	742.58	743.84	50.40	59.43	116.67	117.07	60.08
7	435	60	60	-	14.99	0.00	0.45	924.21	925.87	50.38	55.94	116.70	117.02	37.09
8	450	60	60	-	15.02	0.00	0.45	742.34	744.02	50.39	51.96	116.65	116.82	10.45
9	400	75	60	-	15.01	0.00	0.46	746.12	747.39	50.39	57.61	121.32	121.79	48.10
10	420	75	60	-	15.01	0.00	0.43	924.21	925.71	50.39	57.55	121.30	121.50	47.70
11	435	75	60	-	15.01	0.00	0.45	926.68	929.08	50.39	52.85	121.29	121.41	16.39
12	450	75	60	-	15.00	0.00	0.45	924.21	925.95	50.38	51.75	121.30	121.70	9.13
13	400	30	60	-	15.04	0.00	0.44				和認識		認能被	wax
14	420	30	60	-	15.00	0.00	0.45						Filter Fridge	wax
15	435	30	60	-	15.00	0.00	0.46	746.44	749.08	50.39	57.80	121.30	121.45	49.40
16	450	30	60	-	15.03	0.00	0.45	741.46	743.14	29.23	38.25	121.32	123.03	60.01

		CON		PE(g)			REACTOR (g)		BEAKER (g)		FILTER+PAPER FILTER(g)			
BATCH NO.	TĖMP(^O C)	P (kg/cm ²)	t (min)	RATIO PE:COAL	PE(g)	COAL(g)	CAT.(g)	BEFORE	AFTER	BEFORE	AFTER	BEFORE	AFTER	%YIELD
17	420	45	60	3:1	15.01	4.99	0.44	746.20	753.72	67.14	71.24	116.67	117.85	27.32
18	420	45	60	5:1	15.00	3.00	0.46	746.44	749.57	67.14	72.02	121.30	121.59	32.53
19	420	45	60	6:1	15.00	2.51	0.44	744.98	750.01	50.39	58.20	121.32	121.62	52.07
20	420	45	60	15:1	15.00	0.98	0.46	745.03	749.85	50.39	58.95	116.67	117.36	57.07
21	420	45	60	15:0.5	15.01	0.50	0.46	744.97	747.41	67.14	77.41	116.67	117.23	68.42
22	420	60	60	3:1	15.00	5.01	0.44	745.3	754.05	50.15	54.30	121.32	121.70	27.67
23	420	60	60	5:1	14.99	3.01	0.46	744.93	752.10	50.15	55.90	121.32	121.70	38.36
24	420	60	60	6:1	14.99	2.50	0.45	745.57	749.85	50.13	58.64	121.30	121.68	56.77
25	420	60	60	15:1	15.00	1.00	0.45	743.93	746.68	56.81	67.03	116.71	116.98	68.13
26	420	60	60	15:0.5	15.01	0.50	0.45	744.91	747.15	67.14	76.73	121.31	121.79	63.89
27	420	75	60	3:1	15.01	5.00	0.46	926.11	933.02	49.94	55.63	116.69	118.00	37.9 ⁻
28	420	75	60	5:1	15.01	2.99	0.46	744.28	750.24	50.14	59.56	116.67	117.01	62.76
29	420	75	60	6:1	15.01	2.49	0.46	926.49	928.57	50.16	50.40	116.66	117.23	1.60
30	420	75	60	15:1	15.00	1.00	0.45	745.50	748.49	50.14	59.05	121.32	121.61	59.40
31	420	75	60	15:0.5	15.01	0.50	0.45	744.93	746.54	50.14	58.20	121.31	121.80	53.70
32	435	60	60	3:1	15.00	5.00	0.45	744.18	751.68	65.46	68.60	116.66	117.25	20.93
33	435	60	60	5:1	15.00	3.00	0.46	926.33	935.43	50.32	56.80	121.37	122.23	43.20
34	435	60	60	6:1	15.00	2.48	0.46	745.43	749.50	65.94	73.08	121.32	122.82	47.60
35	435	60	60	15:1	15.02	1.00	0.45	744.02	747.19	50.39	59.03	116.67	116.96	57.52

BATCH NO.		CON		PE(g)	COAL(g)	CAT.(q)	REACTOR (g)		BEAKER (g)		FILTER+PAPER FILTER(g)		%YIELD	
BATCH NO.	TEMP(^O C)	P (kg/cm ²)	t (min)	RATIO PE:COAL	ΓL(g)	OUNE(g) ONT (g)	BEFORE	AFTER	BEFORE	AFTER	BEFORE	AFTER	MILLD	
36	435	75	60	3:1	15.00	5.00	0.44	745.73	755.73	50.15	53.85	121.32	121.75	. 24.67
37	435	75	60	5:1	15.00	3.00	0.45	926.30	932.54	50.15	55.73	121.32	121.68	37.20
38	435	75	60	6:1	15.02	2.51	0.45	924.32	928.78	50.14	52.40	121.30	121.85	15.05
39	435	75	60	15:1	15.00	1.00	0.45	745.45	748.5	50.14	57.89	121.32	121.63	51.67
40	450	45	60	3:1	15.02	4.99	0.46	742.92	749.58	29.23	29.93	121.30	122.03	4.66
41	450	45	60	5:1	15.01	3.02	0.45	743.92	750.62	67.20	71.14	121.30	121.91	26.25
42	450	45	60	6:1	15.01	2.51	0.45	743.92	750.31	50.39	56.95	116.66	117.35	43.70
43	450	45	60	15:1	15.01	1.00	0.45	743.92	746.65	49.54	58.36	121.31	121.67	58.76
44	420	60	30	15:1	15.01	1.00	0.45	925.15	928.75	50.32	59.71	121.30	122.63	62.56
45	420	60	90	15:1	15.01	1.00	0.45	926.33	931.23	50.32	57.79	121.31	122.14	49.77
46	420	60	120	15:1	14.99	1.00	0.45	925.15	928.17	65.50	72.67	116.67	116.93	47.83
47	420	60	180	15:1	15.01	1.00	0.46	925.15	928.11	67.65	77.34	121.31	122.24	44.50
48	435	45	60	3:1	15.00	5.00	0.45	744.18	751.69	49.12	55.90	116.66	117.58	45.20
49	435	45	60	5:1	15.00	3.00	0.45	745.43	750.08	65.93	72.81	121.32	122.89	45.87
50	435	45	60	6:1	15.01	2.43	0.45	744.18	748.12	49.13	58.52	116.66	117.75	62.56
51	435	45	60	15:1	14.99	1.00	0.45	745.40	748.48	50.39	59.03	116.67	117.60	57.64
52	450	60	60	15:1	15.01	1.00	0.45	925.15	927.97	66.46	73.22	116.66	117.32	45.04

Batch No.	Naphtha	Kerosene	Light Gas Oil	Heavy Gas Oil	Long Residue
	65 - 200 °C	200 - 250 °C	250 - 300 °C	300 - 350 °C	> 350 °C
6	41.0	17.5	12.5	10.5	18.5
17	60.8	15.2	10.0	6.5	7.5
18	40.6	18.9	13.5	9.5	、 17.5
19	59.5	14.5	9.5	6.5	10.0
20	61.2	13.8	9.0	6.5	9.5
22	67.0	14.0	9.0	5.0	5.0
23	63.5	14.5	9.5	5.5	7.0
24	66.0	14.0	9.0	5.0	6.0
25	65.0	14.0	9.3	4.7	7.0
26	60.0	13.0	10.0	6.0	11.0
28	64.0	14.5	9.5	6.0	6.0
30	64.5	14.5	9.0	6.0	6.0
35	63.5	15.0	9.5	5.5	6.5
38	61.5	15.5	10.5	6.0	6.5
39	66.0	14.0	8.5	5.5	6.0
40	46.5	22.5	13.5	8.5	9.0
44	41.7	13.3	12.0	10.0	23.0
45	36.4	16.1	13.1	11.0	23.5
46	31.8	11.6	13.5	11.5	31.6
47	25.8	10.3	16.2	13.5	33.7
48	46.4	15.4	12.0	9.3	16.9
52	55.0	15.3	11.2	7.6	10.9

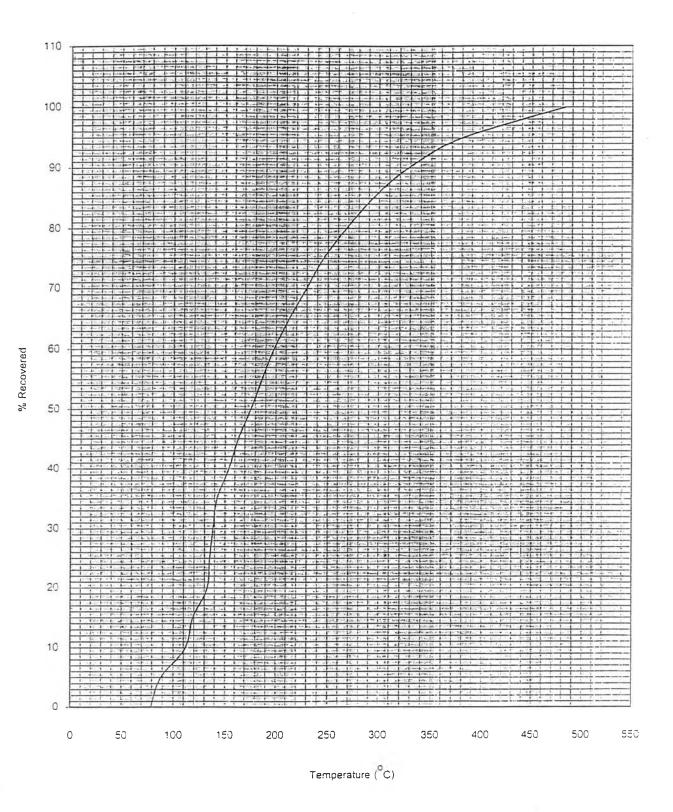

<u>Table A.2:</u> The percentage of oil composition by GC Simulated Distillation.

Appendix B

- Figure B.1 Oil composition at condition 420°C of reaction temperature, 60 kg/cm² of hydrogen, 60 min of reaction time and ratio of LDPE: lignite as 15:0 by GC Simulated Distillation.
- Figure B.2 Oil composition at condition 420°C of reaction temperature, 45 kg/cm² of hydrogen, 60 min of reaction time and ratio of LDPE: lignite as 15: 5 by GC Simulated Distillation.
- Figure B.3 Oil composition at condition 420°C of reaction temperature, 45 kg/cm² of hydrogen, 60 min of reaction time and ratio of LDPE: lignite as 15: 3 by GC Simulated Distillation.
- Figure B.4 Oil composition at condition 420°C of reaction temperature, 45 kg/cm² of hydrogen, 60 min of reaction time and ratio of LDPE: lignite as 15: 2.5 by GC Simulated Distillation.
- Figure B.5 Oil composition at condition 420°C of reaction temperature, 45 kg/cm²
 of hydrogen, 60 min of reaction time and ratio of LDPE: lignite as 15: 1
 by GC Simulated Distillation.
- Figure B.6 Oil composition at condition 420°C of reaction temperature, 60 kg/cm² of hydrogen, 60 min of reaction time and ratio of LDPE: lignite as 15: 5 by GC Simulated Distillation.
- Figure B.7 Oil composition at condition 420°C of reaction temperature, 60 kg/cm² of hydrogen, 60 min of reaction time and ratio of LDPE: lignite as 15: 3 by GC Simulated Distillation.
- Figure B.8 Oil composition at condition 420°C of reaction temperature, 60 kg/cm² of hydrogen, 60 min of reaction time and ratio of LDPE: lignite as 15: 2.5 by GC Simulated Distillation.
- Figure B.9 Oil composition at condition 420°C of reaction temperature, 60 kg/cm² of hydrogen, 60 min of reaction time and ratio of LDPE: lignite as 15: 1 by GC Simulated Distillation.

- Figure B.10 Oil composition at condition 420°C of reaction temperature, 60 kg/cm²
 of hydrogen, 60 min of reaction time and ratio of LDPE: lignite as 15:
 0.5 by GC Simulated Distillation.
- Figure B.11 Oil composition at condition 420°C of reaction temperature, 75 kg/cm² of hydrogen, 60 min of reaction time and ratio of LDPE: lignite as 15: 3 by GC Simulated Distillation.
- Figure B.12 Oil composition at condition 420°C of reaction temperature, 75 kg/cm² of hydrogen, 60 min of reaction time and ratio of LDPE: lignite as 15: 1 by GC Simulated Distillation.
- Figure B.13 Oil composition at condition 435°C of reaction temperature, 60 kg/cm² of hydrogen, 60 min of reaction time and ratio of LDPE: lignite as 15: 1 by GC Simulated Distillation.
- Figure B.14 Oil composition at condition 435°C of reaction temperature, 75 kg/cm² of hydrogen, 60 min of reaction time and ratio of LDPE: lignite as 15: 2.5 by GC Simulated Distillation.
- Figure B.15 Oil composition at condition 435°C of reaction temperature, 75 kg/cm² of hydrogen, 60 min of reaction time and ratio of LDPE: lignite as 15: 1 by GC Simulated Distillation.
- Figure B.16 Oil composition at condition 450°C of reaction temperature, 45 kg/cm² of hydrogen, 60 min of reaction time and ratio of LDPE: lignite as 15: 5 by GC Simulated Distillation.
- Figure B.17 Oil composition at condition 420°C of reaction temperature, 60 kg/cm² of hydrogen, 30 min of reaction time and ratio of LDPE: lignite as 15: 1 by GC Simulated Distillation.
- Figure B.18 Oil composition at condition 420°C of reaction temperature, 60 kg/cm² of hydrogen, 90 min of reaction time and ratio of LDPE: lignite as 15: 1 by GC Simulated Distillation.
- Figure B.19 Oil composition at condition 420°C of reaction temperature, 60 kg/cm² of hydrogen, 120 min of reaction time and ratio of LDPE: lignite as 15:
 1 by GC Simulated Distillation.

- Figure B.20 Oil composition at condition 420°C of reaction temperature, 60 kg/cm² of hydrogen, 180 min of reaction time and ratio of LDPE: lignite as 15:
 1 by GC Simulated Distillation.
- Figure B.21 Oil composition at condition 435^oC of reaction temperature, 45 kg/cm² of hydrogen, 60 min of reaction time and ratio of LDPE: lignite as 15: 5 by GC Simulated Distillation.
- Figure B.22 Oil composition at condition 450°C of reaction temperature, 60 kg/cm² of hydrogen, 60 min of reaction time and ratio of LDPE: lignite as 15: 1 by GC Simulated Distillation.



Temperature (°C)

Figure B.1:

% Recovered

Oil composition at condition 420°C of reaction temperature, 60 kg/cm² of hydrogen, 60 min of reaction time and ratio of LDPE: lignite as 15:0 by GC Simulated Distillation.

Oil composition at condition 420°C of reaction temperature, 45 kg/cm² of hydrogen, 60 min of reaction time and ratio of LDPE: lignite as 15: 5 by GC Simulated Distillation.

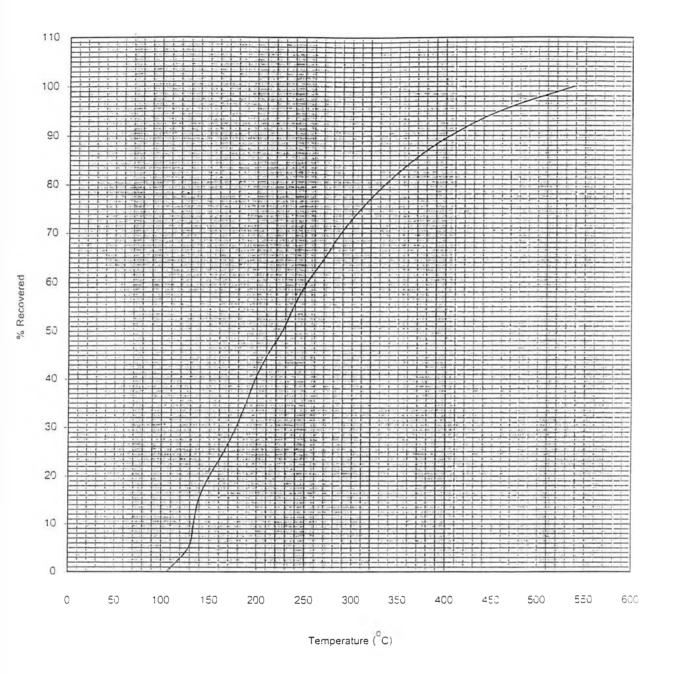
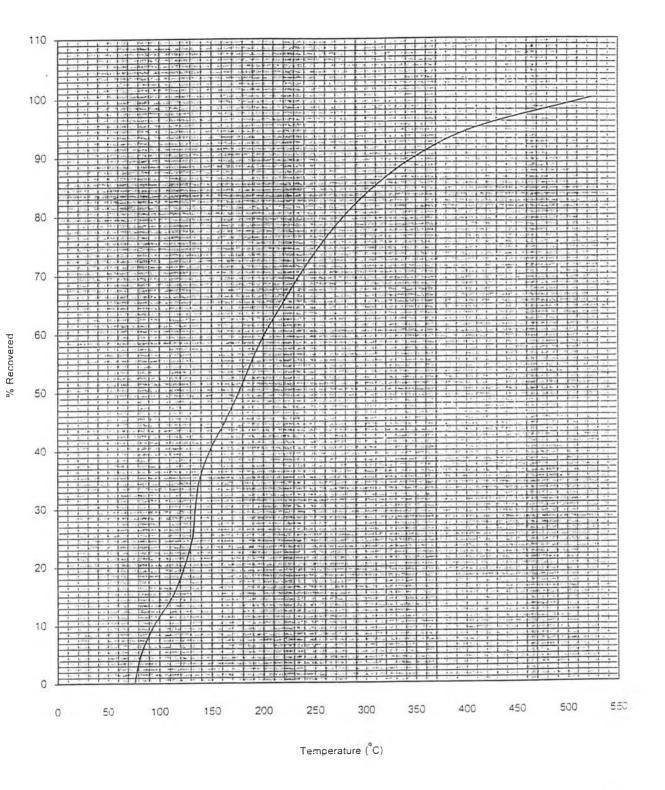



Figure B.3:Oil composition at condition 420°C of reaction temperature, 45 kg/cm²of hydrogen, 60 min of reaction time and ratio of LDPE: lignite as 15: 3by GC Simulated Distillation.

<u>Figure B.4</u>: Oil composition at condition 420^oC of reaction temperature, 45 kg/cm²
 of hydrogen, 60 min of reaction time and ratio of LDPE: lignite as 15:
 2.5 by GC Simulated Distillation.

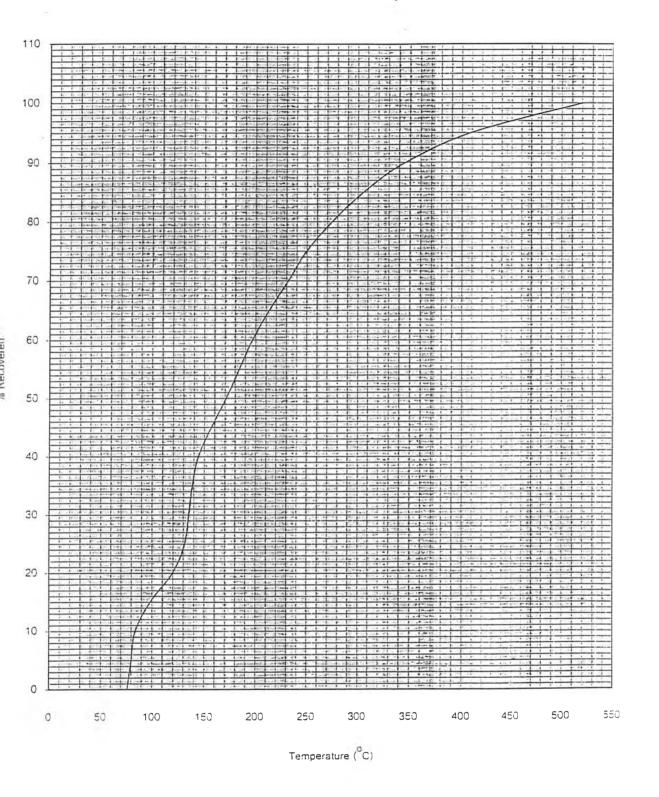


Figure B.5:Oil composition at condition 420°C of reaction temperature, 45 kg/cm²of hydrogen, 60 min of reaction time and ratio of LDPE: lignite as 15: 1by GC Simulated Distillation.

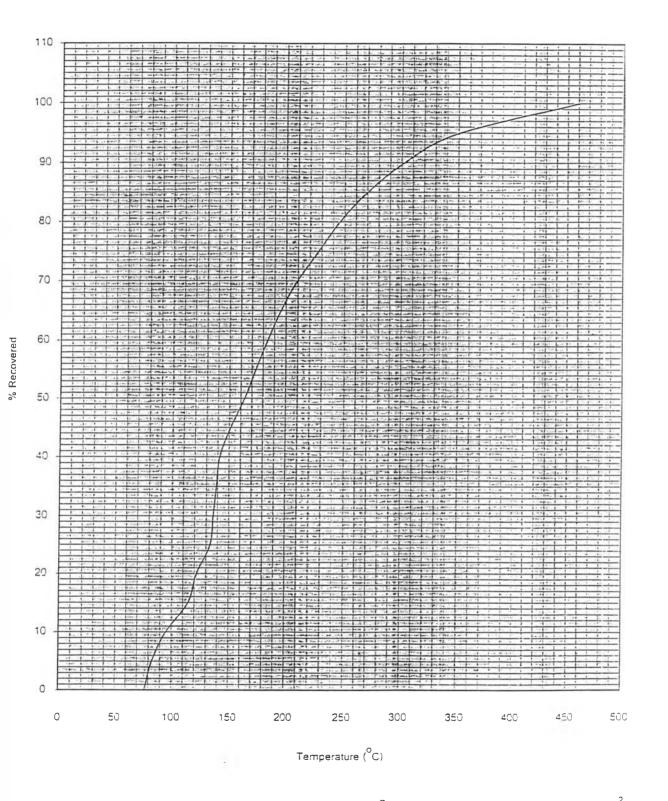


Figure B.6:Oil composition at condition 420°C of reaction temperature, 60 kg/cm²of hydrogen, 60 min of reaction time and ratio of LDPE: lignite as 15: 5by GC Simulated Distillation.

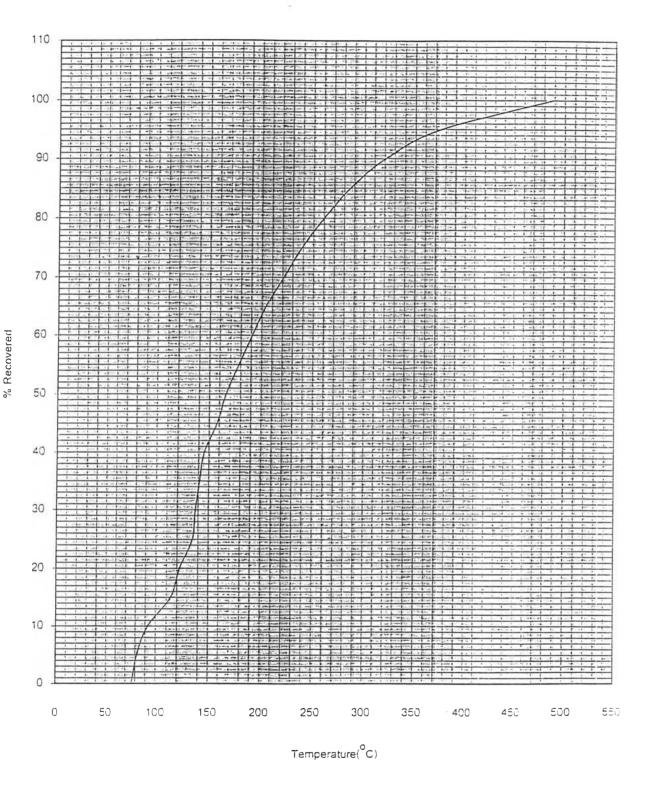


Figure B.7:Oil composition at condition 420°C of reaction temperature, 60 kg/cm²of hydrogen, 60 min of reaction time and ratio of LDPE: lignite as 15: 3by GC Simulated Distillation.

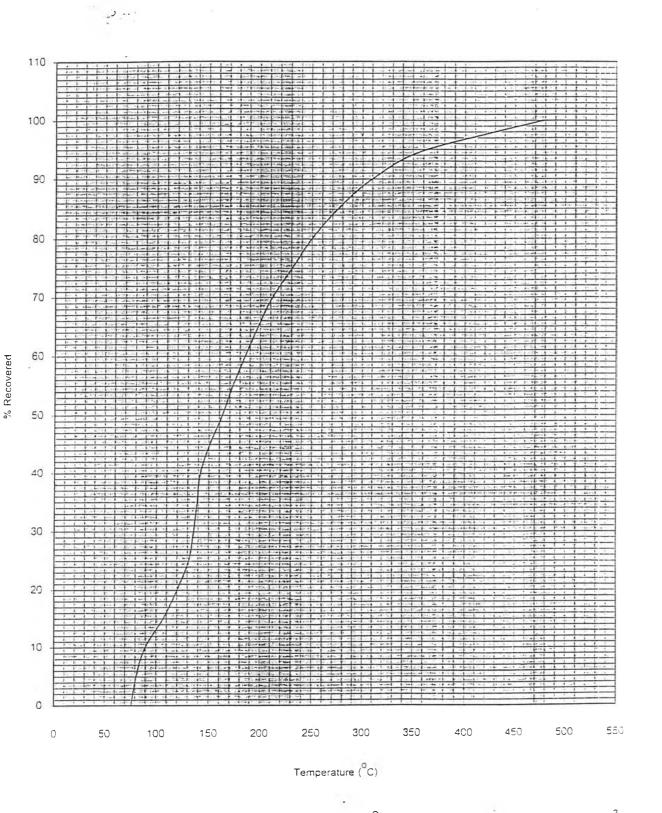


Figure B.8:Oil composition at condition 420°C of reaction temperature, 60 kg/cm²of hydrogen, 60 min of reaction time and ratio of LDPE: lignite as 15:2.5 by GC Simulated Distillation.

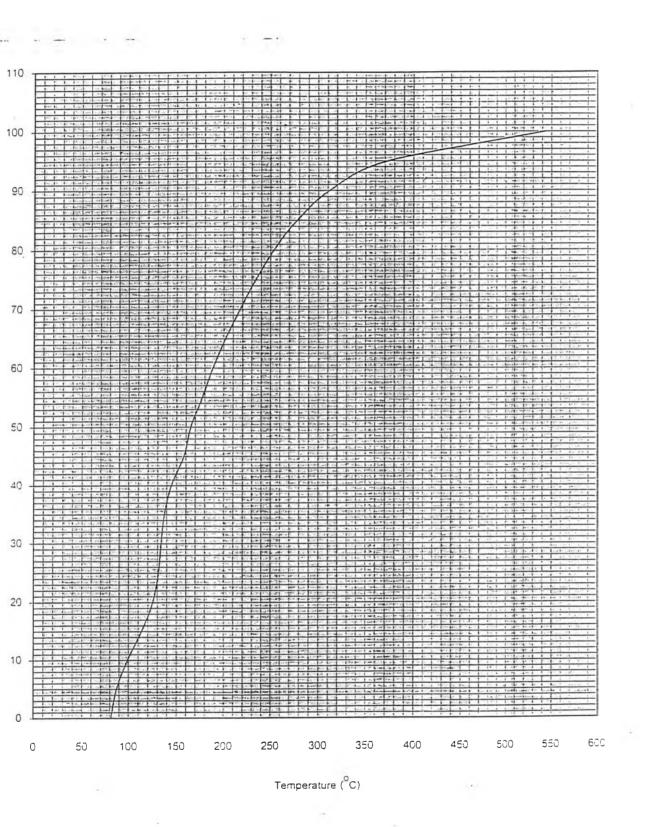


Figure B.9:

Oil composition at condition 420°C of reaction temperature, 60 kg/cm² of hydrogen, 60 min of reaction time and ratio of LDPE: lignite as 15: 1 by GC Simulated Distillation.

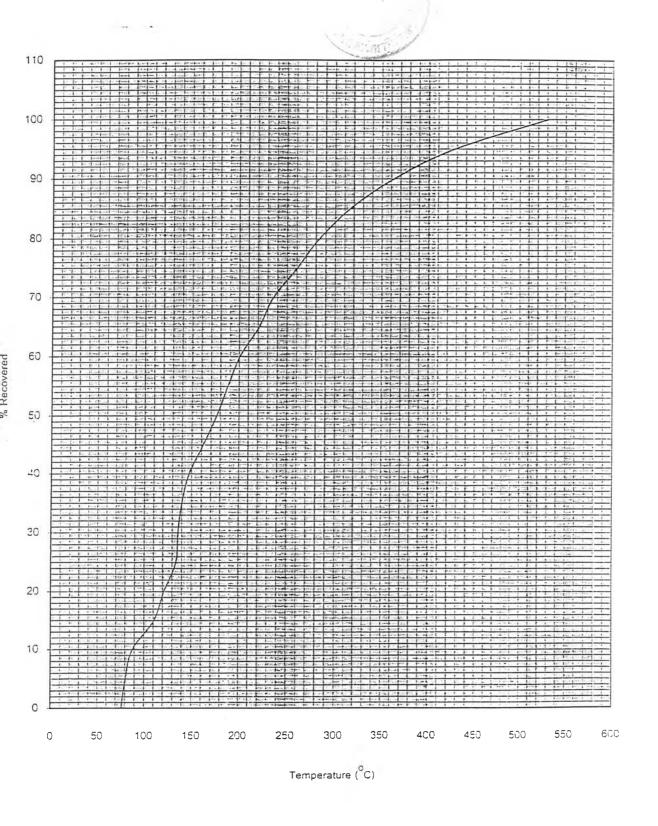


Figure B.10:Oil composition at condition 420°C of reaction temperature, 60 kg/cm²of hydrogen, 60 min of reaction time and ratio of LDPE: lignite as 15:0.5 by GC Simulated Distillation.

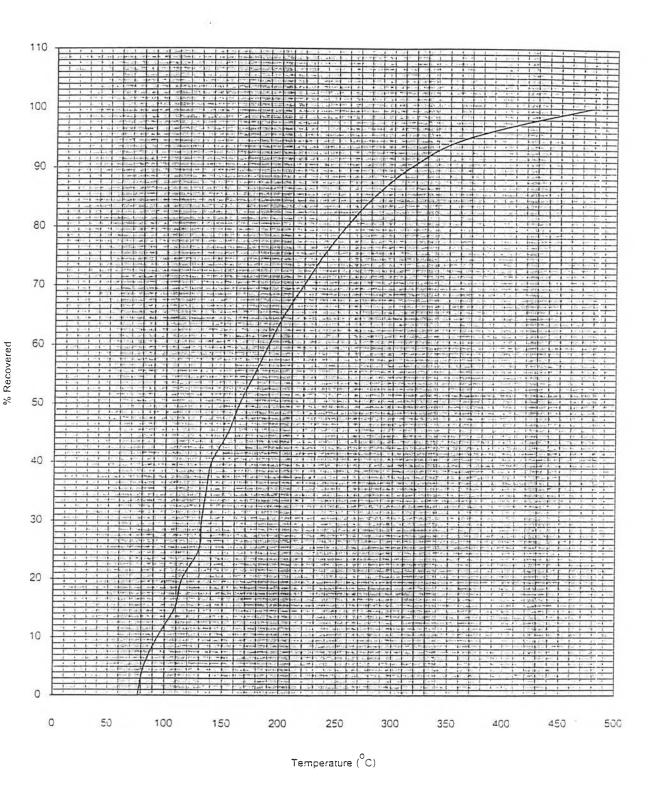


Figure B.11:Oil composition at condition 420°C of reaction temperature, 75 kg/cm²of hydrogen, 60 min of reaction time and ratio of LDPE: lignite as 15: 3by GC Simulated Distillation.

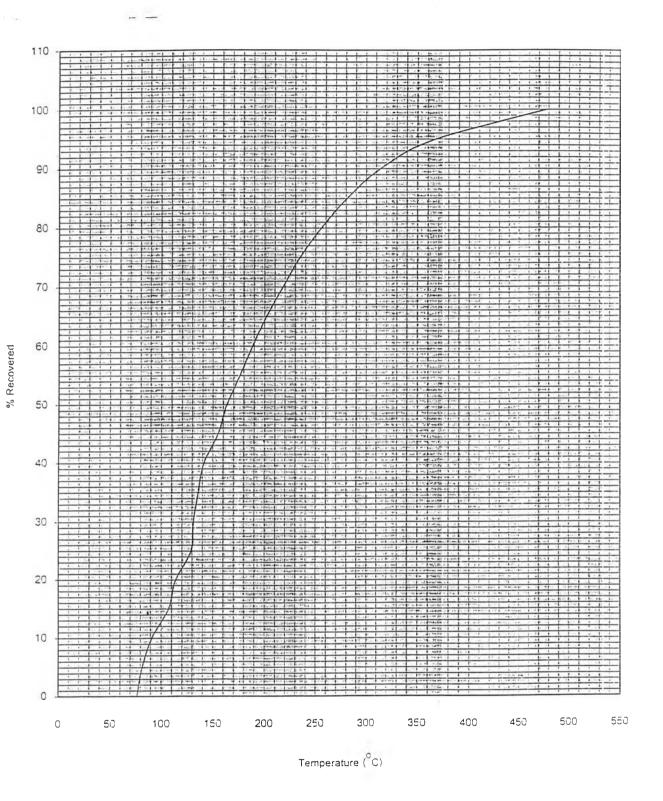


Figure B.12:Oil composition at condition 420°C of reaction temperature, 75 kg/cm²of hydrogen, 60 min of reaction time and ratio of LDPE: lignite as 15: 1by GC Simulated Distillation.

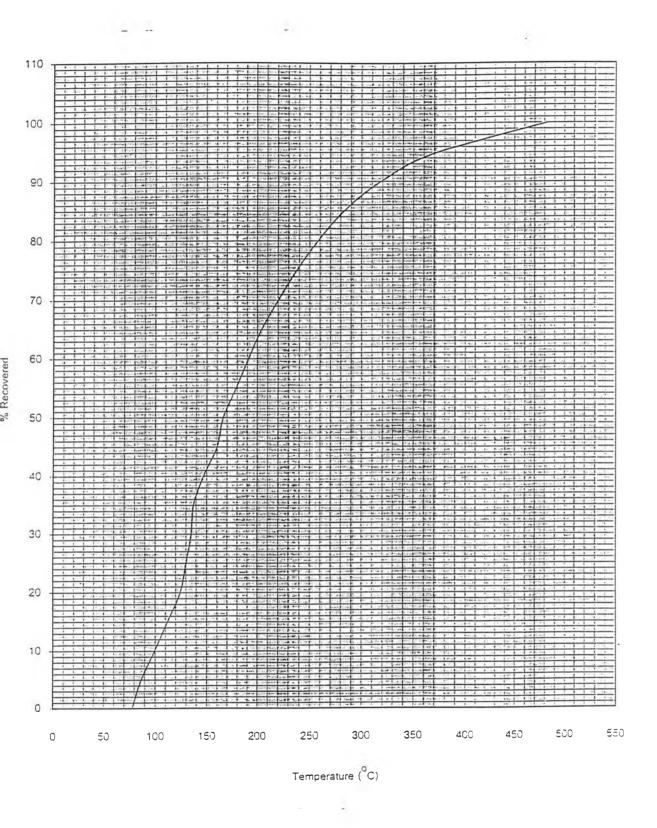


Figure B.13:Oil composition at condition 435°C of reaction temperature, 60 kg/cm²of hydrogen, 60 min of reaction time and ratio of LDPE: lignite as 15: 1by GC Simulated Distillation.

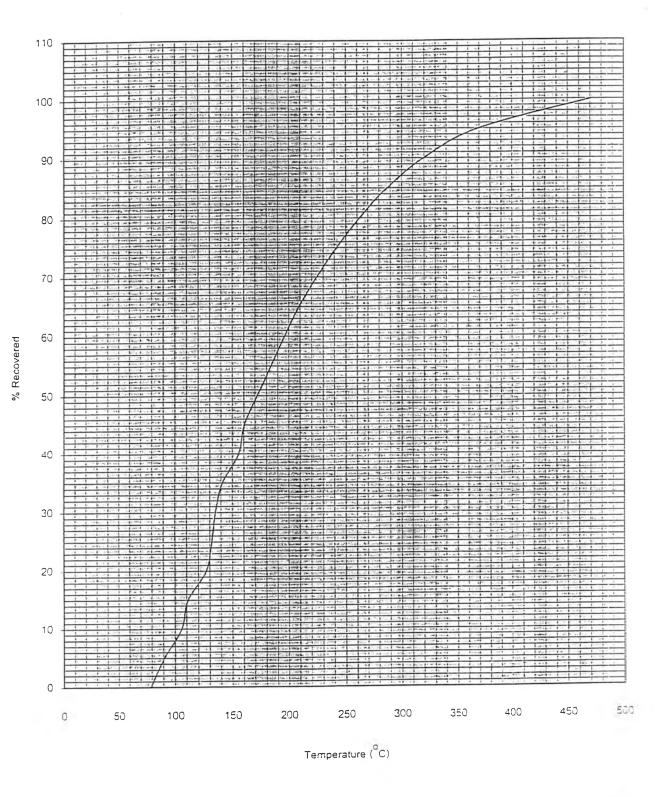


Figure B.14:Oil composition at condition 435°C of reaction temperature, 75 kg/cm²of hydrogen, 60 min of reaction time and ratio of LDPE: lignite as 15:2.5 by GC Simulated Distillation.

% Recovered

Figure B.15:Oil composition at condition 435°C of reaction temperature, 75 kg/cm²of hydrogen, 60 min of reaction time and ratio of LDPE: lignite as 15: 1by GC Simulated Distillation.

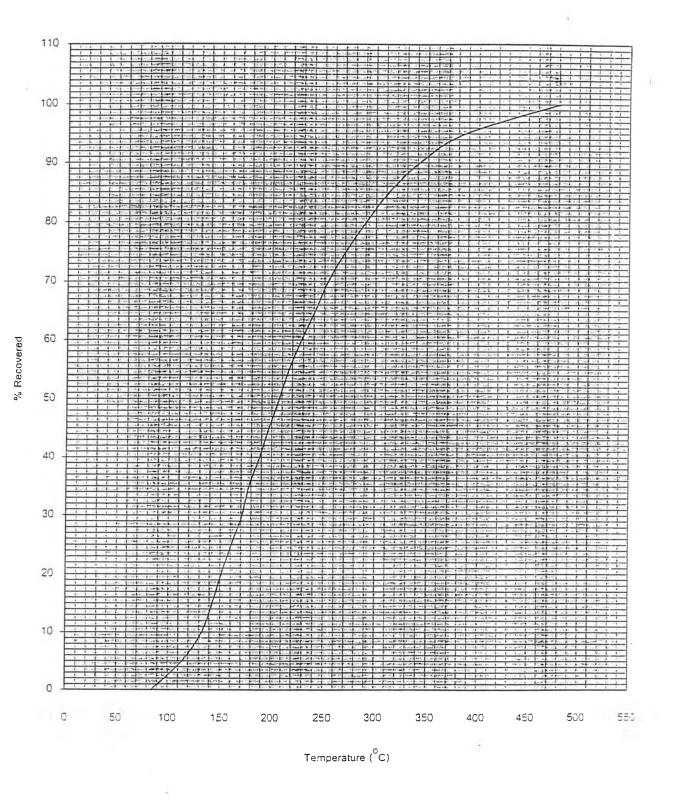


Figure B.16:Oil composition at condition 450°C of reaction temperature, 45 kg/cm²of hydrogen, 60 min of reaction time and ratio of LDPE: lignite as 15: 5by GC. Simulated Distillation.

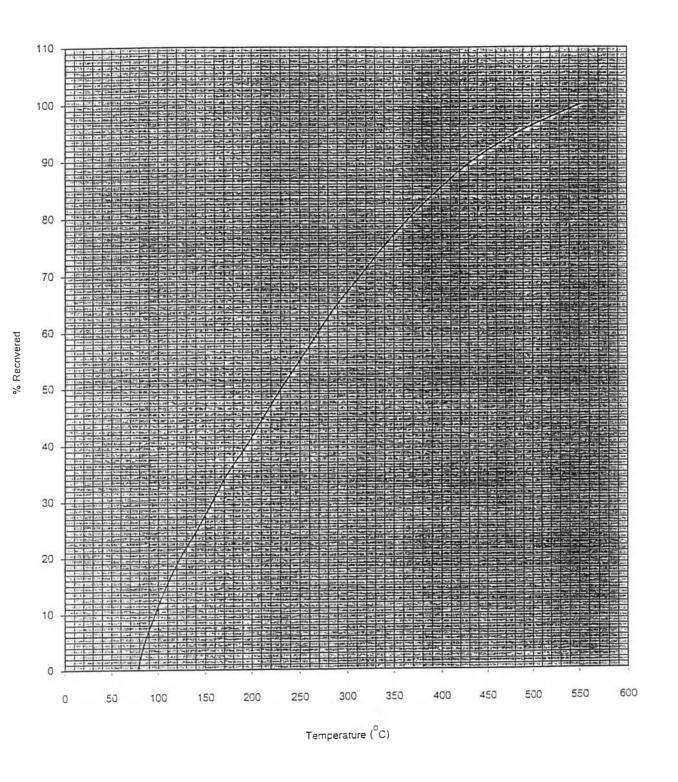
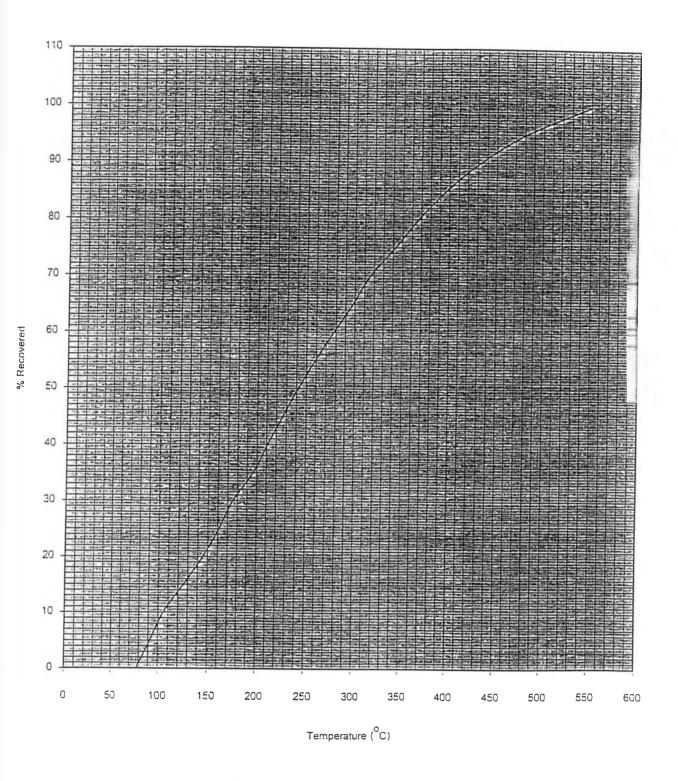
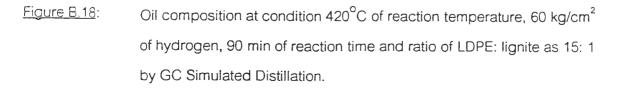




Figure B.17:Oil composition at condition 420°C of reaction temperature, 60 kg/cm²of hydrogen, 30 min of reaction time and ratio of LDPE: lignite as 15: 1by GC Simulated Distillation.

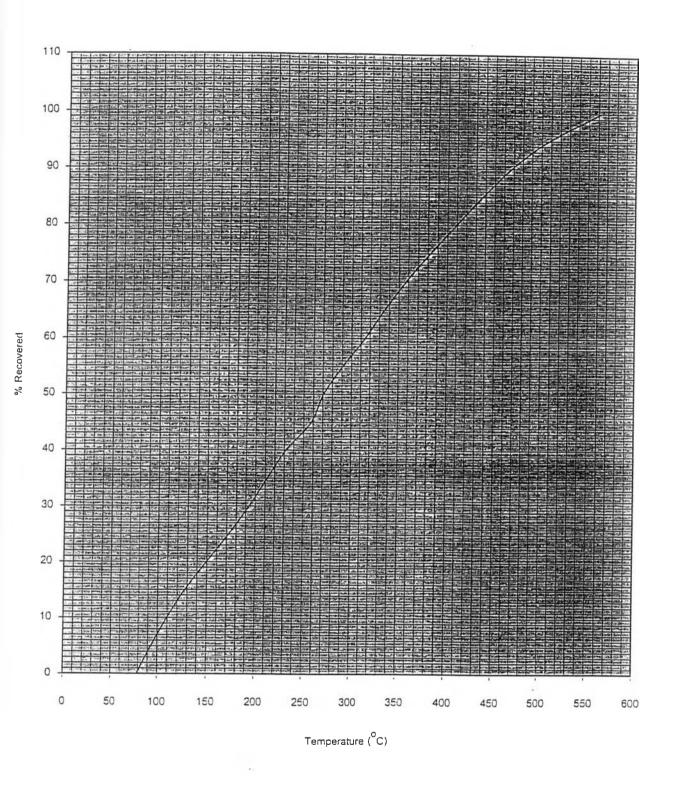
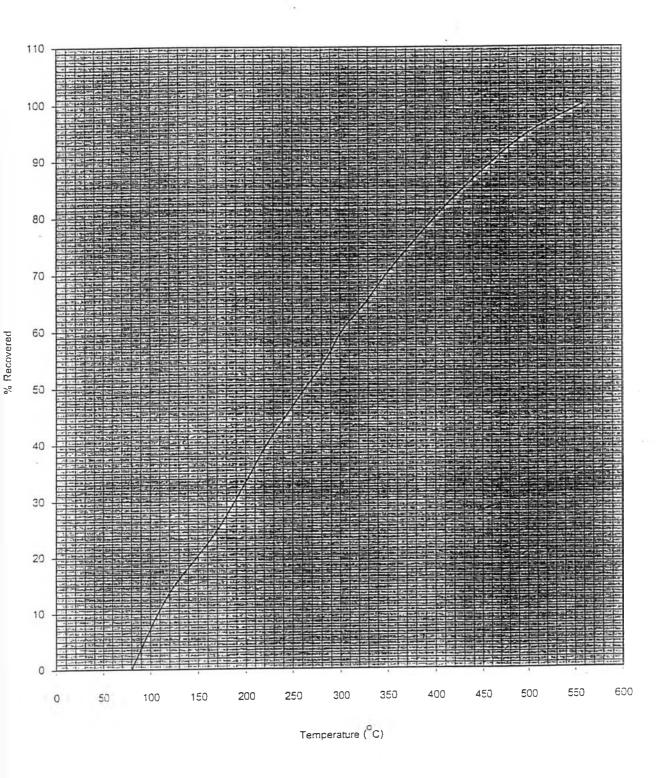



Figure B.19:Oil composition at condition 420°C of reaction temperature, 60 kg/cm²of hydrogen, 120 min of reaction time and ratio of LDPE: lignite as 15:1 by GC Simulated Distillation.

<u>Figure B.20</u>: Oil composition at condition 420°C of reaction temperature, 60 kg/cm² of hydrogen, 180 min of reaction time and ratio of LDPE: lignite as 15:
 1 by GC Simulated Distillation.

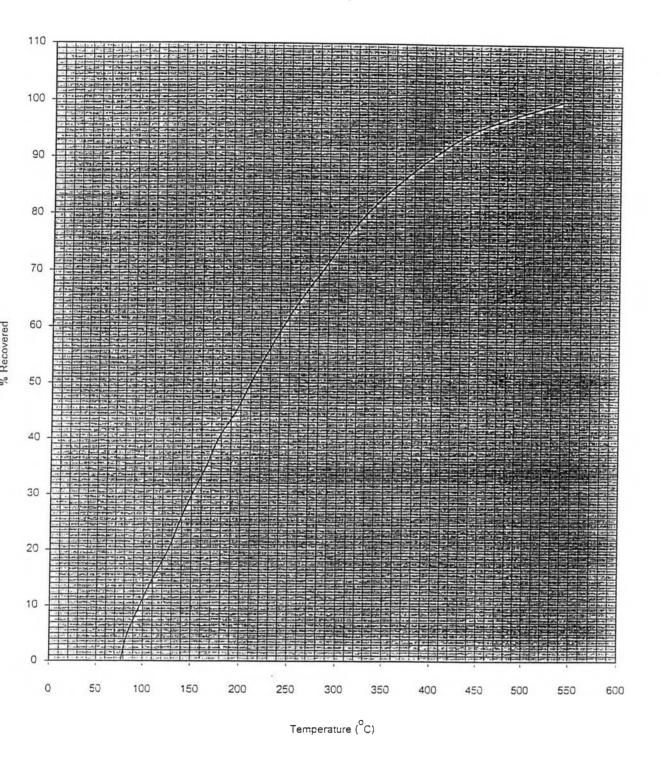


Figure B.21:Oil composition at condition 435°C of reaction temperature, 45 kg/cm²of hydrogen, 60 min of reaction time and ratio of LDPE; lignite as 15: 5by GC Simulated Distillation.

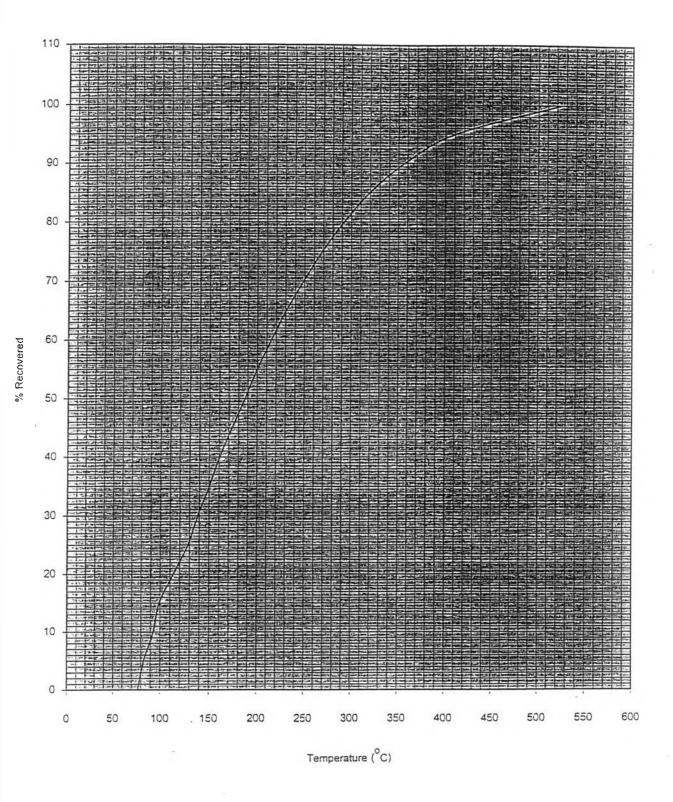


Figure B.22:Oil composition at condition 450°C of reaction temperature, 60 kg/cm²of hydrogen, 60 min of reaction time and ratio of LDPE: lignite as 15: 1by GC Simulated Distillation.

Appendix C

Units of Heat

UNITS OF HEAT

British therrnal unit (B.t.u.)----the amount of heat required to raise the

temperature of 1 lb of water by 1°F from 60 F to 61°F.

Gram calorie or calorie (g cal or cal)----the amount of heat required to raise the temperature of 1 g water by 1 C to 16° C.

1 B.t.u. = 252 g cal.

These units are inconveniently small for industrial purposes. Larger units of heat are:

Therm = 100,000 B.t.u. (gas industry)

Kg cal = 1000 g cal

Tonne.cal = 1000 kg cal

UNITS OF CALORIFIC VALUE

(a) Solid Fuels

English units----B.t.u./Ib----the number of B.t.u. evolved by the combustion of 1 lb of fuel.

C.G.S.units----cal/g----the number of calories evolved by the combustion of 1 g of fuel.

Kcal/kg---the number of kilogram calories evolved by the combustion of 1 kg of fuel.

1 ca/g = 1 kg cal/kg = 1.8 B.t.u./lb

Sometimes, also, the unit kcal/g is used = 1000 cal/g.

(b) Liquid Fuels----as for solid fuels, by weight, or as B.t.u./gal.

(c) Gaseous Fuels

English units---B.t.u./ft³

C.G.S. units----Kg cal/m³

Note that the temperature, pressure and humidity of a gas should be specified to prevent ambiguity, e.g.

1 B.t.u./ ft 3 at 30 in., 60°F, wet = 8.9 kg cal/m 3 at 760 mm, 15°C, wet.

Thermal Capacity or Specific Heat ----- The quantity of heat required to produce unit change of temperature in unit mass of a substance.

Units: B.t.u. /lb/ °F and cal/g/ °C.

(Units are equal in both systems.)

Alternatively, specific heat is the ratio of the thermal capacity of a substance to that of water at 60° F (15.5°C), since the thermal capacity of water at 15.5°C = 1.000.

In the case of gases, it is necessary to distinguish between the specific heat at constant volume, C_{o} . These may be expressed on a weight or volume basis.

OTHER UNITS AND CONVERSION FACTORS

Temperature
$$1^{\circ}C = 1.8^{\circ}F$$

 $^{\circ}C \text{ to }^{\circ}F : {}^{\circ}C \times 9/5 + 32 = {}^{\circ}F$
 $^{\circ}F \text{ to } {}^{\circ}C : ({}^{\circ}F - 32)^{*}5/9 = {}^{\circ}C$

Volume

Mass

Pressure

1 atmosphere = 760 mm Hg at
$$0^{\circ}$$
C = 29.93 in. Hg
= 33.9 ft H₂O =1.033 kg/cm² = 14.695 lb/in²
= 2116 lb/ft²

VITA

Umaporn Pongphutharak was born on July 25,1974 in Suratthanee, Thailand. She received Bachelor's Degree of Science of Chemistry at Thammasat University in 1996. She continued her Master's study at Program of Petrochemical and Polymer Science, Graduate School, Chulalongkorn University in 1998 and completed the program in 2000.