REFERENCES

- 1. Ethel, B.<u>Toxicity and Metabolism of Industrial Solvents.</u> pp. 66-76, Elsevier Publishing Company, London, 1965.
- Mar, F. M., Bikales, N. M., Overberger, C. G., and Menges, G.,eds. <u>Encvclopedia of</u> <u>Polymer Science and Engineering</u>. Vol.16, 2nd ed., pp. 443-473, New York: John Wiley & Sons, 1987.
- 3. Yuan, H. G.; Kalfas, G.; and Ray, W. H. Suspension Polymerization. <u>Macromol. Chem.</u> <u>Phys.</u> C31 (1991): 215-299.
- Barton, J., and Capek, I. <u>Radical Polymerization in Dispersion Systems</u>. pp. 290-319. New York: Ellis Herwood, 1994.
- Dimone. V. L.; Daniels E. S.; Shaffer O. L.; and El-Aasser M. S. Control of Particle Morphology. In P. A. Lovell; and M.S. El-Aasser (eds.), <u>Emulsion Polymerization</u> <u>and Emulsion Polymer</u>. pp. 293-326. New York: John Wiley & Sons, 1997.
- Min, T. I.; Klien, A.; El-Aasser, M. S.; and Vanderhoff. J. W. Morphology and Grafting in Polybutylacrylate-Polystyrene Core-Shell Emulsion Polymerization. <u>J. Polym.</u> <u>Sci. Polym. Chem</u>. 21 (1983): 2845-2861.
- Segall, I.; Dimonie, V. L.; El-Aasser M. S.; Soskey, P. R. and Mylonakis, S. G. Copolymerization of Styrene/Benzyl Methacrylate as a Choice for Shell Material and Characterization of Poly(n-butyl acrylate) Core Latex Particles. <u>J. Appl.</u> <u>Polym. Sci</u>. 58 (1995): 385-399.
- 8. Crank, J., and Park, G.S., eds. Diffussion in Polymers. New York: Academic Press, 1986.
- 9. Tanaka, T., and Fillmore, D. J. Kinetics of Swelling of Gels. <u>J. Chem. Phys</u>. 70 (February 1979): 1215-1218.
- 10. Kang, M. H. J. Suspension Polymerization. Ph. D. Dissertation, Lehigh University, 1986.
- Grancio, M. R.; and Williams, D.J. Morphology of the monomer-polymer particle in styrene emulsion polymerization. <u>J. Polym. Sci</u>. Part A-1 8(9) (1970): 2617-2629.
- Grancio, M. R.; and Williams, D.J. Molecular weight development in constant-rate styrene emulsion polymerization. <u>J. Polym. Sci</u>. Part A-1 8(10) (1970): 2733-2745.

- Okubo, M.; Izumi, J.; Hosotani, T.; and Yamashita, T. Production of Micron-Sized Monodisperse Core/Shell Polymethyl methacrylate/Polystyrene Particles by Seeded Dispersion Polymerization. <u>Colloid Polym. Sci</u>. 275 (1997): 797-801.
- Cho, I.; and Lee, K. W. Morphology of Latex Particles Formed By Poly(methyl methacrylate)-Seeded Emulsion Polymerization of Styrene. <u>J. Appl. Polym. Sci</u>. 30 (1985): 1903-1926.
- 15. Kiatkamjornwong, S.; and Asawaworarith, P. Seeded Suspension Polymerization of Styrenic Imbiber Beads for use in Removal of Spilled Solvents. <u>Proceedings</u> of the Reginal Symposium on Petrochemical and Environment Technology'93. <u>Bangkok, Thailand</u>. pp.ET-133-1 to Et-13-12. January 18-20, 1993.
- Kiatkamjornwong, S.; Trisaranapong, S.; and Prassasanakich, P. Styrene- Divinylbenzene Copolymers: Influence of Diluents on Absorption and Desorption Properties. <u>J. Porous</u> <u>Mat</u>. 6 (1999): 205-215.
- Kangwansupamonkon, W. <u>Svnthesis of Solvent Absorption-Desorption Stvrenic Imbiber</u> <u>Beads by Suspension Polymerization.</u> Master's Thesis, Graduate School, Chułalongkorn University, 1999.
- Shen, S.; Sudol. E. D.; and El-Aasser, M. S. Dispersion Polymerization of Methyl Methacrylate: Mechanism of Particle Formation. <u>J. Polym. Sci., Polym. Chem</u>. 32 (1997): 1087-1100.
- Sheu, H. R.; El-Aasser, M. S.; and Vanderhoff. J. W. Phase Separation in Polystyrene Latex Interpenetrating Polymer Networks. <u>J. Polym. Sci.. Polym. Chem</u>. 28 (1990): 629-651.
- Shen, S.; Sudol. E. D.; and El-Aasser, M. S. Control of Particle Size in Dispersion Polymerization of Methyl Methacrylate. <u>J. Polym. Sci., Polym. Chem</u>. 31(1993): 1393-1402.
- Ober, C. K.; and Hair, M. L. The Effect of Temperature and Initiator Levels on the Dispersion Polymerization of Polystyrene. <u>J. Polym. Sci., Polym. Chem</u>. 25 (1987): 1395-1407.
- Rabelo, D.; and Coutinho, F. M. B. Structure and Particles of Styrene-Divinylbenzene Copolymers I. Pure Solvents as Pore Forming Agents. <u>Polymer Bulletin</u>. 33 (1994): 479-486.

- 23. Rabelo, D.; and Coutinho, F. M. B. Porous Structure Formation and Swelling Properties of Styrene-Divinylbenzene Copolymers. <u>Eur. Polvm. J</u>. 30 (1994): 675-682.
- 24. Coutinho, F. M. B.; Barbosa, C. C. R.; and Rezende, S. M. Copolymers based on Styrene and Divinylbenzene Synthesized in the Presence of bis-2-Diethylhexylphosphoric Acid (DEHPA)-I. Structural Characterization. <u>Eur.</u> <u>Polvm. J</u>. 31 (1995): 1243-1250.
- Coutinho, F. M. B.; Torre, M. L. L.; and Rabelo, D.Cosolvency Effect on the Porous Structure Formation of Styrene and Divinylbenzene Copolymers. <u>Eur. Polvm. J</u>. 34 (1998): 805-808.
- 26. Ma, G. H.; Nagai, M.; and Omi, S. Synthesis of Uniform Microspheres with Higher Content of 2-Hydroxyethyl Methacrylate by Employing SPG (Shirasu Porous Glass) Emulsion Technique Followed by Swelling Process of Droplets. <u>J. Appl. Polym.</u> <u>Sci</u>. 66 (1997): 1325-1341.
- 27. Cheng, C. M.; Vanderhoff, J. W.; and El-Aasser, M. S. Monodisperse Particles: Formation of Porous Structure. <u>J. Polvm. Sci., Polvm. Chem</u>. 30 (1992): 245-256.
- Baines, F. L.; Dinonisio, S.; Billingham, N. C.; and Armes, S. P. Use of Block Copolymer Stabilizers for the Dispersion polymerization Of Styrene in Alcoholic Media. <u>Macromolecules</u>. 29 (1996): 3096-3102.
- Kiatkamjornwong, S.; and Anantapiphat, A. Syntheses of Super Fine-Monodisperse Particles of Poly(Styrene-co-Methyl Methacrylate) by Dispersion Copolymerization.
 <u>J. Sci. Soc. Thailand.</u> 24(1998): 169-192.
- Brandrup, J.; and Immergut, E. H. <u>Polymer Handbook</u>. 2 nd eds. New York: John Wiley & Sons, 1975.
- Okubo, M.; Lu Y. Production of Core-Shell Composite Polymer Particles Utilizing the Stepwise Heterocoagulation Method. <u>Colloids and Surfaces A: Physicochem.</u> <u>Eng. Aspects</u>. 109 (1996) 49-53.
- 32. Wang, D.; Dimonie, V. L.; and El-Aasser, M. S. <u>Preparation of Micron-Size Polv(Butvl</u> <u>acrvlate)/Polvstvrene Structured Latex Particles for Impact Modification of</u> <u>Polystvrene.</u> Ph.D Dissertation, Lehigh University, 1993.
- 33. Kuroda, H.; and Osawa, Z. Synthesis and Characterization of Macroporous Glycidyl Methacrylate-Divinylbenzene Copolymer Beads. <u>Eur. Polym. J</u>. 31 (1995): 57-62.

- Shen, S.; El-Aasser, M. S.; Dimone. V. L.; Vanderhoff. J. W.; and Sudol. E. D. Preparation and Morphological Characterization of Microscopic Composite Particles. <u>J. Polym.</u> <u>Sci., Polym. Chem</u>. 29 (1991): 857-867.
- 35. Cha, Y. J.; and Choe, S. Characterization of Crosslinked Polystyrene Beads and Their Composite in SBR Matrix. J. Appl. Polym. Sci. 58 (1995): 147-157.
- Barrett, K. E. J.; and Thomas, H. R. Kinetics and Mechanism of Dispersion Polymerization.
 In Barrett, K. E. J. (ed.), <u>Dispersion Polymerization in Organic Media</u>. pp. 115-200. London: John Wiley & Sons, 1975.

APPENDICES

APPENDIX A

Data of Absorption and Desorption in Toluene:Isooctane Solvent of the Copolymer Beads.

Table A-1 Absorption and desorption of polymer bead of poly(methyl methacrylate)/

Time		Absorption				
(min)	Bead Dia.	Bead Vol.	Δ٧/ΔΤ	Bead Dia.	Bead Vol.	
	(mm)	(mm ³)	(mm ³ /min)	(mm)	(rnm ³)	(mm ³ /min)
0	1.1111	0.7184	0.1455	1.8222	3.1681	-0.5558
2	1.2444	1.0094	0.1202	1.5778	2.0565	-0.2066
5	1.3778	1.3698	0.0875	1.4000	1.4368	-0.0513
10	1.5111	1.8072	0.0857	1.3111	1.1801	-0.0342
15	1.6222	2.2359	0.0675	1.2444	1.0091	-0.0307
20	1.7000	2.5732	0.0521	1.1777	0.8554	-0.0186
25	1.7556	2.8338	0.0441	1.1333	0.7622	-0.0088
30	1.8000	3.0545	0.0229	1.1111	0.7182	0.0000
35	1.8222	3.1690	0.0000	1.1111	0.7182	0.0000
40	1.8222	3.1690	0.0000	1.1111	0.7182	0.0000
45	1.8222	3.1690	0.0000	1.1111	0.7182	0.000
50	1.8222	3.1690	0.0000	1.1111	0.7182	0.0000
55	1.8222	3.1690	0.0000	1.1111	0.7182	0.0000
60	1.8222	3.1690	0.0000	1.1111	0.7182	0.0000
65	1.8222	3.1690	0.0000	1.1111	0.7182	0.0000
70	1.8222	3.1690	0.0000	1.1111	0.7182	0.0000
75	1.8222	3.1690	0.0000	1.1111	0.7182	0.0000
80	1.8222	3.1690	0.0000	1.1111	0.7182	0.0000
85	1.8222	3.1690	0.0000	1.1111	0.7182	0.0000
90	1.8222	3.1690	0.0000	1.1111	0.7182	0.0000

Figure A-1 Variation of polymer bead volume with time (Run PMMA/PS: 1st)

1

Table A-2 Absorption and desorption of polymer bead of poly(methyl methacrylate)/

Time	Absorption			Desorption		
(min)	Bead Dia.	Bead Vol.	Δν/Δτ	Bead Dia.	Bead Vol.	Δ₩ΔΤ
	(mm)	(mm ³)	(mm ³ /min)	(mm)	(mm ³)	(mm ³ /min)
0	1.1111	0.7184	0.1730	1.8222	3.1681	-0.5986
2	1.2667	1.0644	0.1242	1.5556	1.9709	-0.2005
5	1.4000	1.4372	0.0740	1,3776	1.3694	-0.0610
10	1.5111	1.8072	0.0857	1.2667	1.0641	-0.0319
15	1.6222	2.2359	0.0574	1.2000	0.9048	-0.0099
20	1.6889	2.5231	0.0409	1.1778	0.8554	-0.0095
25	1.7333	2.7275	0.0431	1.1556	0.8079	-0.0091
30	1.7778	2.9428	0.0452	1.1333	0.7622	-0.0088
35	1.8222	3.1690	0.0000	1.1111	0.7182	0.0000
40	1.8222	3.1690	0.0000	1,1111	0.7182	0.0000
45	1.8222	3.1690	0.0000	1.1111	0.7182	0.0000
50	1.8222	3.1690	0.0000	1.1111	0.7182	0.0000
55	1.8222	3.1690	0.0000	1.1111	0.7182	0.0000
60	1.8222	3.1690	0.0000	1.1111	0.7182	0.0000
65	1.8222	3.1690	0.0000	1.1111	0.7182	0.0000
70	1.8222	3.1690	0.0000	1.1111	0.7182	0.0000
75	1.8222	3.1690	0.0000	1.1111	0.7182	0.0000
80	1.8222	3.1690	0.0000	1.1111	0.7182	0.0000
85	1.8222	3.1690	0.0000	1.1111	0.7182	0.0000
90	1.8222	3.1690	0.0000	1.1111	0.7182	0.0000

polystyrene (Run PMMA/PS: 2nd)

Figure A-2 Variation of polymer bead volume with time (Run PMMA/PS: 2nd)

.

Table A-3 Absorption and desorption of polymer bead of poly(methyl methacrylate)/

Time		Absorption	orption Desorption		Desorption		
(min)	Bead Dia.	Bead Vol.		Bead Dia.	Bead Vol.	Δν/Δτ	
	(mm)	(mm ³)	(mm ³ /min)	(mm)	(mm ³)	(mm ³ /min)	
0	-1.1111	0.7184	0.1455	1.7778	2.9419	-0.3986	
2	1.2444	1.0094	0.0984	1.6000	2.1447	-0.1889	
5	1.3556	1.3046	0.1005	1.4444	1.5780	-0.0796	
10	1.5111	1.8072	0.0676	1.3111	1.1801	-0.0342	
15	1.6000	2.1453	0.0559	1.2444	1.0091	-0.0307	
20	1.6667	2.4248	0.0605	1.1778	0.8554	-0.0186	
25	1.7333	2.7275	0.0431	1.1333	0.7622	-0.0088	
30	1.7778	2.9428	0.0452	1.1111	0.7182	0.0000	
35	1.8222	3.1690	0.0000	1.1111	0.7182	0.0000	
40	1.8222	3.1690	0.0000	1.1111	0.7182	0.0000	
45	1.8222	3.1690	0.0000	1.1111	0.7182	0.0000	
50	1.8222	3.1690	0.0000	1.1111	0.7182	0.0000	
55	1.8222	3.1690	0.0000	1.1111	0.7182	0.0000	
60	1.8222	3.1690	0.0000	1.1111	0.7182	0.0000	
65	1.8222	3.1690	0.0000	1.1111	0.7182	0.0000	
70	1.8222	3.1690	0.0000	1.1111	0.7182	0.0000	
75	1.8222	3.1690	0.0000	1.1111	0.7182	0.0000	
80	1.8222	3.1690	0.0000	1 1111	0.7182	0.0000	
85	1.8222	3.1690	0.0000	1.1111	0.7182	0.0000	
90	1.8222	3.1690	0.0000	1.1111	0.7182	0.0000	

polystyrene (Run PMMA/PS: 3rd)

Figure A-3 Variation of polymer bead volume with time (Run PMMA/PS: 3rd)

Time Absorption Desorption Bead Vol. AV/AT (min) Bead Dia. Bead Dia. Bead Vol. AV/AT (mm³) (mm[°]/min) (mm) (mm³/min) (mm) (mm) 0 1.7111 2.6240 0.1594 2.0889 4.7739 -0.2919 2 1.7778 2.9428 0.1145 2.0000 4.1900 -0.1351 5 1.8444 3.2864 0.0240 1.9333 3.7848 -0.0510 10 1.8666 3.4064 0.0499 1.8889 3.5298 -0.0487 15 3.6558 1.8444 1.9111 0.0258 3.2864 -0.0464 1.9333 20 3.7848 0.0264 1.8000 3.0545 -0.0223 1.9556 0.0270 1.7778 25 3.9169 2.9428 -0.0218 30 1.9778 4.0519 0.0276 1.7556 2.8338 -0.0213 35 2.0000 4.1900 0.0282 1.7333 2.7275 -0.0207 40 2.0222 4.3312 0.0289 1.7111 2.6240 0.0000 45 2.0444 4.4756 0.0295 1.7111 2.6240 0.0000 50 2.0667 4.6231 0.0301 1.7111 2.6240 0.0000 55 2.0889 4.7739 0.0000 1.7111 2.6240 0.0000 0.0000 60 2.0889 4.7739 1.7111 2.6240 0.0000 65 2.0889 4.7739 0.0000 1.7111 2.6240 0.0000 70 2.0889 4.7739 0.0000 2.6240 1.7111 0.0000 75 2.0889 4.7739 0.0000 1.7111 2.6240 0.0000 80 2.0889 4.7739 0.0000 1.7111 2.6240 0.0000 85 2.0889 4.7739 0.0000 1.7111 2.6240 0.0000 90 2.0889 4.7739 0.0000 1.7111 2.6240 0.0000

Table A-4 Absorption and desorption of polymer bead of poly(methyl acrylate)/polystyrene

(Run PMA/PS: 1st)

Time	Absorption			Desorption		
(min)	Bead Dia.	Bead Vol.		Bead Dia.	Bead Vol.	Δ₩Δτ
	(mm)	(mm ³)	(mm ³ /min)	(mm)	(mm ³)	(mm ³ /min)
0	1.7111	2.6240	0.1049	2.0889	. 4.7739	-0.2213
2	1.7556	2.8338	0.0736	2.0222	4.3312	-0.1381
5	1.8000	3.0545	0.0464	1.9556	3.9169	-0.0522
10	1.8444	3.2864	0.0487	1.9111	3.6558	-0.0739
15	1.8889	3.5298	0.0510	1.8444	3.2864	-0.0235
20	1.9333	3.7848	0.0264	1.8222	3.1690	-0.0452
25	1.9556	3.9169	0.0270	1.7778	2.9428	-0.0218
30	1.9778	4.0519	0.0276	1.7556	2.8338	-0.0213
35	2.0000	4.1900	0.0282	1.7333	2.7275	-0.0207
40	2.0222	4.3312	0.0289	1.7111	2.6240	0.0000
45	2.0444	4.4756	0.0295	1.7111	2.6240	0.0000
50	2.0667	4.6231	0.0301	1.7111	2.6240	0.0000
55	2.0889	4.7739	0.0000	1.7111	2.6240	0.0000
60	2.0889	4.7739	0.0000	1.7111	2.6240	0.0000
65	2.0889	4.7739	0.0000	1.7111	2.6240	0.0000
70	2.0889	4.7739	0.0000	1.7111	2.6240	0.0000
75	2.0889	4.7739	0.0000	1.7111	2.6240	0.0000
80	2.0889	4.7739	0.0000	1.7111	2.6240	0.0000
85	2.0889	4.7739	0.0000	1.7111	2.6240	0.0000
90	2.0889	4.7739	0.0000	1.7111	2.6240	0.0000

Figure A-5 Variation of polymer bead volume with time (Run PMA/PS: 2nd)

Table A-6 Absorption and desorption of polymer bead of poly(methyl acrylate)/polystyrene

Time		Absorption		Desorption		
(min)	Bead Dia.	Bead Vol.		Bead Dia.	Bead Vol.	
	(mm)	(mm ³)	(mm ³ /min)	(mm)	(mm ³)	(mm ^³ /min)
0	1.7111	2.6240	0.1049	2.0889	4.7739	-0.2919
2	1.7556	2.8338	0.0736	2.0000	4.1900	-0.0910
5	1.8000	3.0545	0.0464	1.9556	3.9169	-0.0522
10	1.8444	3.2864	0.0487	1.9111	3.6558	-0.0739
15	1.8889	3.5298	0.0252	1.8444	3.2864	-0.0464
20	1.9111	3.6558	0.0522	1.8000	3.0545	-0.0223
25	1.9556	3.9169	0.0270	1.7778	2.9428	-0.0218
30	1.9778	4.0519	0.0276	1.7556	2.8338	-0.0213
35	2.0000	4.1900	0.0282	1.7333	2.7275	-0.0207
40	2.0222	4.3312	0.0289	1.7111	2.6240	0.0000
45	2.0444	4.4756	0.0295	1.7111	2.6240	0.0000
50	2.0667	4.6231	0.0301	1.7111	2.6240	0.0000
55	2.0889	4.7739	0.0000	1.7111	2.6240	0.0000
60	2.0889	4.7739	0.0000	1.7111	2.6240	0.0000
65	2.0889	4.7739	0.0000	1.7111	2.6240	0.0000
70	2.0889	4.7739	0.0000	1.7111	2.6240	0.0000
75	2.0889	4.7739	0.0000	1.7111	2.6240	0.0000
80	2.0889	4.7739	0.0000	1.7111	2.6240	0.0000
85	2.0889	4.7739	0.0000	1.7111	2.6240	0.0000
90	2.0889	4.7739	0.0000	1.7111	2.6240	0.0000

(Run PMA/PS: 3rd)

Figure A-6 Variation of polymer bead volume with time (Run PMA/PS: 3rd)

Time Absorption Desorption (min) Bead Dia. Bead Vol. Bead Vol. Bead Dia. ΔV/ΔT (mm^3/min) (mm^3) (mm³) (mm^3/min) (mm) (mm) 0 2.5556 8.7414 1.9430 3.9333 31.8625 -2.7894 2 2.8889 0.9361 12,6275 3.6889 26.2837 -2.2971 3.0889 15.4359 0.6393 5 3.3333 19.3925 -0.7251 10 3.2889 18.6325 0.4718 3.1111 15.7668 -0.3883 3.4222 20.9917 0.5092 15 2.9778 13.8254 -0.3550 20 3.5553 23.5377 0.3629 2.8445 12.0502 -0.2975 25 3.6444 25.3522 0 4781 2.7222 10.5625 -0.1759 2.6444 30 3.7556 27.7427 0.1993 9.6828 -0.1888 35 3.8000 28.7392 0.2040 2.5556 8.7389 0.0000 29.7593 40 3.8444 0.1038 2.5556 8.7389 0.0000 45 3.8667 30.2786 0.1050 2.5556 8.7389 0.0000 3.8889 30.8036 50 0.1062 2.5556 8.7389 0.0000 31.3346 55 3.9111 0.1074 2.5556 8.7389 0.0000 60 3.9333 31.8717 0.0000 2.5556 8.7389 0.0000 65 3.9333 31.8717 0.0000 2.5556 8.7389 0.0000 70 3.9333 31.8717 0.0000 2.5556 8.7389 0.0000 75 3.9333 31.8717 0.0000 2.5556 8.7389 0.0000 3.9333 31.8717 80 0.0000 2.5556 8.7389 0.0000 31.8717 85 3.9333 0.0000 2.5556 8.7389 0.0000 90 3.9333 31.8717 0.0000 2.5555 8.7389 0.0000 100 3.9333 31.8717 0.0000 2.5556 8.7389 0.0000 3.9333 31.8717 0.0000 110 2.5556 8.7389 0.0000 3.9333 31.8717 120 0.0000 2.5556 8.7389 0.0000

Table A-7 Absorption and desorption of polymer bead of poly(2-ethylhexyl acrylate)/polystyrene

(Run P(2-EHA)/PS: 1st)

Figure A-7 Variation of polymer bead volume with time (Run P(2-EHA)/PS; 1st)

APPENDIX B

The calculation of the diffusion coefficient of solvents absorbed and desorbed in the core/shell beads.

The diffusion coefficient of core/shell beads can be calculated from equation (B-1)

$$\tau = a^2/D \tag{B-1}$$

where $ au$	is a	characteristic	swelling time
-------------	------	----------------	---------------

a is the final radius of the fully swollen gel

D is the diffusion coefficient of the gel in the liquid

From the equation (B-2), the characteristic swelling time τ can be obtained from the slope of the ln ($\Delta a_t / \Delta a_0$) – time plot.

$$\ln (\Delta a_t / \Delta a_0) = \text{const.} - t / \tau$$
(B-2)

where Δa_t is the difference between the size (radius) at time t and that at the saturation swelling

 Δa_0 is the total change in radius throughout the entire swelling process

From the experiment, the core/shell bead of poly(methyl methacrylate)/polystyrene by one-stage suspension polymerization, as Run PMMA/PS for the first cycle was plotted. The slope of the In ($\Delta a_t / \Delta a_0$) – time plot is –0.0523. Thus,

 τ = 19.12 minutes Since a = 0.911 mm, thus D = 0.0434 mm²min⁻¹

				· · · · · · · · · · · · · · · · ·
Runs	Time	Bead Radius	Δ a,	In ($\Delta { extsf{a}_{ extsf{t}}}$ / $\Delta { extsf{a}_{ extsf{o}}}$)
	(min)	(a, mm)	(mm)	
PMMA/PS: 1st	0	0.55555	-	-
	2	0.62222	0.06665	-1.6740
	5	0.68889	0.06667	-1.6740
	10	0.75555	0.06665	-1.6740
	15	0.81111	0.05555	-1.8563
	20	0.85000	0.03889	-2.2129
	25	0.87778	0.02778	-2.5494
	30	0.90000	0.02222	-2.7727
	35	0.91111	0.01111	-3.4658
PMMA/PS: 2nd	0	0.55555	-	-
	2	063335	0.07778	-1.5198
	5	0.76000	0.06666	-1.6740
	10	0.75555	0.05555	-1.8563
	15	0.81111	0.05555	-1.8563
	20	0.84445	0.03333	-2.3671
	25	0.86665	0.02222	-2.7725
	30	0.88889	0.02222	-2.7225
	35	0.91111	0.02222	-2.7725
PMMA/PS: 3rd	0	0.55555	-	-
	2	0.62222	0.06667	-1.6740
	5	0.67778	0.05556	-1.8562
	10	0.75555	0.07777	-1.5199
	15	0.80000	0.04444	-2.0794
	20	0.83335	0.03333	-2.3671
	25	0.86665	0.03333	-2.3671
	30	0.88889	0.02222	-2.7725
	35	0.91111	0.02222	-2.7725

Table B-1 Data for the calculation of the diffusion coefficient of solvents absorbed and desorbed in the core/shell beads.

Runs	Time	Bead Radius	Δa_t	In (Δa_t / Δa_o)
	(min)	(a, mm)	(mm)	
PMA/PS: 1st	0	0.85555	-	-
	2	0.88889	0.03335	-1.7346
	5	0.92222	0.03333	-1.7347
	10	0.93331	0.01109	-2.8351
	15	0.95555	0.02225	-2.1391
	20	0.96665	0.01111	-2.8333
	25	0.97778	0.01111	-2.8333
	30	0.98889	0.01111	-2.8333
	35	1.00000	0.01111	-2.8333
	40	1.01111	0.01111	-2.8333
	45	1.02222	0.01111	-2.8333
	50	1.03335	0.01111	-2.8333
	55	1.04445	0.01111	-2.8333
PMA/PS: 2nd	0	0.85555	-	-
	2	0.87778	0.02225	-2.1399
	5	0.90000	0.02222	-2.1402
	10	0.92222	0.02222	-2.1402
	15	0.94445	0.02225	-2.1399
	20	0.96665	0.02222	-2.1402
	25	0.97778	0.01111	-2.8333
	30	0.98889	0.01111	-2.8333
	35	1.00000	0.01111	-2.8333
	40	1.01111	0.01111	-2.8333
	45	1.02222	0.01111	-2.8333
	50	1.03335	0.01111	-2.8333
	55	1.04445	0.01111	-2.8333

Table B-1 (Continued)

÷

Runs	Time	Bead Radius	Δ a,	In ($\Delta a_t^{}/\Delta a_0^{})$
	(min)	(a, mm)	(mm)	
PMA/PS: 3rd	0	0.85555	-	-
	2	0.87778	0.02222	-2.1399
	5	0.90000	0.02222	-2.1402
	10	0.92222	0.02222	-2.1402
	15	0.94445	0.02222	-2.1399
	20	0.95555	0.01111	-2.8333
	25	0.97778	0.02222	-2.1399
	30	0.98889	0.01111	-2.8333
	35	1.00000	0.01111	-2.8333
	40	1.01111	0.01111	-2.8333
	45	1.02222	0.01111	-2.8333
	50	1.03335	0.01111	-2.8333
	55	1.04445	0.01111	-2.8333
P(2-EHA)/PS: 1st	0	1.27778	-	-
	2	1.44445	0.16665	-1.4191
	5	1.54445	0.10000	-1.9299
	10	1.64445	0.10000	-1.2929
	15	1.71111	0.06665	-2.3354
	20	1.77766	0.06665	-2.3370
	25	1.82222	0.04455	-2.7383
	30	1.87778	0.05556	-2.5176
	35	1.90000	0.02222	-3.4341
	40	1.92222	0.02222	-3.4341
	45	1.93335	0.01111	-4.1268
	50	1.94445	0.01111	-4.1272
	55	1.95555	0.01111	-4.1272
	60	1,96665	0.01111	-4.1272

.

.

.

VITA

Mr. Pranut Akkarakittimongkol was born on July 31, 1974, in Phrae, Thailand. He received his Bechelor's degree of Science in Industrial Chemistry from the Faculty of Science, Chiang Mai University in 1996. He pursued the Master's Degree in Polymer Science, in the Program of Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University in 1997 and finished his study in 2000.

