CHAPTER 4

RESULTS

In this chapter the experimental results are shown by graphs and tables. It is arranged step by step from the data obtained experimentally, then followed by the result obtained from the method of calculation as shown in appendix A until the shear stress components and torsional stiffness are found and compared with the analytical results.

P a	ble	1.
- <u>F</u> O		

Boundary potential of square specimen

x	У	v	x	у	v	x	У	v	x	у	v
0.2	10.0	.009	5.2	10.0	2.84	10.0	0.2	.086	10.0	5.2	2.73
0.4	ti -	.168	5.4	fi	3.03	11	0.4	.098	17	5.4	2.94
0.6	11	.132	5.6	78	3.22	81	0.6	.117	11	5.6	3.16
0.8	12	.077	5.8	11	3.43	11	0.8	.145	17	5.8	3.37
1.0	83	.112	5.0	11	3.64	ti.	1.0	. 180	17	6.0	3.60
1.2	11	.252	6.2	11	3.84	17	1.2	•223	N	6.2	3.84
1.4	53	.284	6.4	97	4.10	11	1.4	•274	;;	6.4	4.09
1.6	17		6.6	29	4.34	93	1.6	•333		6.6	4.34
1.8	Ŧ	.372	6.8	99	4.58	17	1.8	•399	11	6.8	4.61
2.0	н	.485	7.0	ii.	4.82	11	2.0	•474	n	7.0	4.88
2.2	17	.513	7.2	ij	5.18	11	2.2	•556	11	7.2	5.16
2.4	Ω.	.561	7•4	82	5.48	n	2.4	.646	ill u	7.•4	5.44
2.6	79	.653	7.6	n	5.68	11	2.6	•744	ព	7:.6	5.7.3
2.8	17	.850	7.8	17	5.91	17	2.8	.848	97	7:•8	6.04
3.0	н	•937	8.0	17	6.28	٩ĩ	3.0	•963	11	8.0	6.34
3.2	17	1.011	8.2	71	6.7;0	F2	3.2	1.084	ŧ)	8.2	6.66
3.4	fi	1.192	8.4	13	7.07	12	3.4	1.213	11	8.4	6.99
3.6	H	1.436	8.6	11	71.28	82	3.6	1.350	51	8.6	732
3.8	17	1.615	8.8	59	7 :•55	83	3.8	1.495	11	8.8	7.66
4.0	17	1.7.48	9.0	12	8.03	97	4.0	1.648	17	9.0	8.01
4.2	11	1.852	9.2	ម	8.48	17	4.2	1.808	11	9.2	8.36
4.4	11	1.942	9•4	"	8.68	11	4.4	1.976	บ	9•4	8.73
4.6	13	2.200	9.6	11	8.93	88	4.6	2.153	11	9.6	9.10
4.8	E	2.45	9.8	99	9.78	97	4.8	2.34	11	9.8	9.48
5.0	11	2.64				11	5.0	2.53			

40

Sec. Barrier

x	У	v	x	У	v	x	У	v	x	у	v
0.2	15.0	.004	4.2	5.0	1.7,69	8.2	5.0	6.74	10.0	2.2	7.92
0.4	н	.031	4.4	n	1.896	8.4	n	7.06	11	2.4	8.18
0.6	1 11	•047;	4.6	U.	2.099	8.6		7.32	11	2.6	8.11
0.8	2 17 2 17	.115	4.8	п	2.31	8.8	11	7:•71	1	2.8	8.10
1.0	n	.046	5.0	17	2.46	9.0	n	8.13	11	3.0	8.23
1.2	11	.166	5.2	1)	2.66	9.2	11	8.48	n	3.2	8.47
1.4	11	•150	5.4	111	2.94	9.4	53	8.82	н	3.4	8.67
1.6	11	.258	5.6	11	3.18	9.6	11	9.17	11	3.6	8.7,0
1.8	57	•277	5.8	п	3.37	9.8	11	9.70	11	3.8	8.82
2.0	11	.408	6.0	92	3.55	and a second second second			11	4.0	9.14
2.2	11	.383	6.2	11	3.85	10.0	0.2	7.46	10.0	4.2	9.34
2.4	1	•567	6.4	11	4.13	17	0.4	7:.47.	11	4.4	9.44
2.6	n	.659	6.6	11	4.29	H	0.6	7.51	11	4.6	9.45
2.8	11	.760	6.8	0	4.57	II	0.8	7•54	11	4.8	9.81
3.0	n	•903	7:.0	n	4.89	n	1.0	7•54			
3.2	11	1.010	7.2	H	5.23	11	1.2	7.•57.			
3•4	11	1.238	7:•4	5 BF	5.52	11	1.4	7.•7:1			
3.6	"	1.341	7.6	11	5•74	11	1.6	773			
3.8	23	1.432	7.8	11	6.10	11	1.8	7.80			
4.0	11	1.570	8.0	2 11	6.41	11	2.0	7:.80			

Table 2 Boundary potential of rectangular specimen(W-opecimen).

x	У	v	x	У	v	x	У	v	x	У	v
5.0	0.2	.006	5.0	4.2	1.733	5.0	8.2	6.79	2.2	10.0	8.06
11	0.4	. 164	11	4.4	1.914	11	8.4	7.08	2.4	:1	8.10
11	0.6	.057	17	4.6	2.120	17	8.6	7.45	2.6	21	8.10
6	0.8	.147	11	4.8	2.36	Pi	8.8	7.86	2.8	11	8.15
17	1.0	.112	Ţ.	5.0	2.50	e	9.0	8.23	3.0	11	8.35
5.0	1.2	.114	5.0	5.2	2.67	5.0	9.2	8.52	3.2	10.0	8.52
1)	1.4	.1 49	1i	5.4	2.87	n	9.4	8.88	3.4	ĩ	8.62
R	1.6	.253	11	5.6	3.17	11	9.6	9.23	3.6	ti	8.72
16	1.8	.263	li	5.8	3.40	71	9.8	9.76	3.8	f f	9.00
28	2.0	.407	a	6.0	3.58		ine introduction and the		4.0	11	9.18
5.0	2.2	•397	5.0	6.2	3.83	0.2	10.0	7.49	4.2	10.0	9.08
ж	24	.581	11	6.4	4.15	0.4	()	7.50	4.4	11	9.06
11	2.6	.686	н	6.6	4.40	0.6	11	7.54	4.6	11	9.24
54	2.8	•790	n	6.8	4.62	0.8	[]	7.56	4.8	TI	9.85
11	3.0	.895	13	7.0	4.84	1.0	11	7.56			
5.0	3.2	1.004	5.0	7•2	5.21	1,2	10.0	7.58			
17	3.4	1.196	17	7.4	5.54	1.4	11	7.70			
11	3.6	1.272	ti	7.6	5.78	1.6	52	7.75			
łi	3.8	1.438	i e	7.8	6.02	1.8	11	7.79			
58	.1.0	1.527	18	8.0	6.44	2.0	12	7.83			

Table 3 Boundary potential of rectangular specimen (L-specimen).

x	у	v	x	У	v	x	У	v	x	У	v
2.0	0.1	.0336	2.0	2.1	.699	2.1	4.0	2.61	4.1	4.0	4.32
35	0.2	.0420	l,	2.2	•734	2.2	11	2.84	4.2	-	4.42
11	0.3	.0413	IJ	2.3	.812	2.3	11	2.94	4.3	\$7	4.47
1;	0.4	.0448	12	2.4	.917	2.4		2.93	4.4	12	4.72
11	0.5	.0919	51	2.5	•984	2.5	11	2.77	4.5	n	4.86
2.0	0.6	.0705	2.0	2.6	1.037	2.6	4.0	2.79	4.6	4.0	4.97
17	0.7	. 0744	17	2.7	1.122	2.7	11	2.90	4.7	n	5.13
IJ	0.8	.1489	92	2.8	1.235	2.8	u	3.07	4.8	11	5.37
11	0.9	.1557	11	2.9	1.291	2.9	8	3.09	4.9	88	5.48
1i	1.0	.1511	tt	3.0	1.357	3.0	11	3.14	5.0	11	5.54
2.0	1.1	.2093	2.0	3.1	1.413	3.1	4.0	3.20	5.1	4.0	5.71
42	1.2	.268	11	3.2	1.564	3.2	81	3.46	5.2	17	5.91
54	1.3	.283	11	3.3	1.649	3.3	6	3.53	5.3	ti	5.97
-ii	1.4	.299	11	3•4	1.734	3.4	ŧì	3.55	5.4	11	6.12
ii	1.5	.352	L .	3.5	1.852	3.5	Ð	3.45	5.5	11	6.27
2.0	1.6	•431	2.0	3.6	2.018	3.6	4.0	3.77	5.6	4.0	6.46
17	1.7	.458	ti	3.7	2.149	3.7	11	3.87	5.7	17	6.62
17	1.8	•494	11	3.8	2.246	3.8	11	3.94	5.8	Ħ	6.76
NI.	1.9	₀ 5 57	17	3.9	2.300	3.9	· 11	4.02	5.9	17	7.37
17	2.0	.643	u	4.0	2.42	4.0	77	4.25	6.0	y u	-

Table 4 Boundary potential of I-specimen (W-specimen).

Table 4. (continue)

x	У	v	x	Y	v	20	У	v	x	У	v
6.0	4.1	7.17	5.9	6.0	10.00	3.9	6.0	6.99	1.9	16.0	5.31
99	4.2	7.24	5.8	17	9.74	3.8	1 11	6.84	1.8	11	5.21
12	4•3	7 •45	5.7	17	9.66	3.7	11	6.78	1.7	17	5.20
11	4•4	7.70	5.6	93	9.50	3.6	97	6.70	1.6	51	5.16
11	4•5	7•77	5.5	17	9.41	3.5	6	6.60	1.5	31	5.13
6.0	4.6	7.82	5.4	6.0	9.12	3.4	6.0	6.43	1.4	6.0	5.04
17	4.7	8.04	5.3	17	8.92	3.3	\$1	6.37	1.3	77	5.02
17	4.8	8.22	5.2	п	8.81	3.2	t)	6.33	1.2	43	5.00
11	4.9	8.25	5.1	r	8.69	3.1	11	6.19	1.1	31	4.98
11	5.0	8.37	5.0	11	8.45	3.0	19	6.06	1.0	17	4.88
6.0	5.1	8.59	4.9	6.0	8.32	2.9	6.0	6.01	0.9	6.0	4.86
11	5.2	8.80	4.8	51	8.24	2.8	- n	5•9 7	0.8	51	4.86
īP	5.3	8.89	4.7	17	8.00	2.7	P2	5.90	0.7	11	4.85
ţJ	5•4	9.00	4.6	11	7. 82	2.6	.i	5.75	0.6	11	4.76
12	5.5	9.22	4.5	17	7•74	2.5	11	5.68	0.5	1)	4.76
6.0	5.6	9.50	4.4	6.0	7.69	2.4	6.0	5.63	0.4	6.0	4.78
11	5.7	9.55	4.3	"	7.57	2.3	11	5.54	0.3	:7	4.74
17	5.8	9.68	4.2	11	7.35	2.2	ti	5.43	0.2	;;	4.71
B	5.9	9.99	4.1	17	7.26	2.1	17	5.39	0.1	11	4.76
11	6.0		4.0	11	7.18	2.0	11	5.38	0.0	17	

x	У	v	x	у	v	x	у	v	x	у	v
2.0	0.1	.0427	2.0	2.1	.696	2.1	4.0	2.54	4.1	4.0	4.31
Đ	0.2	.0410	1 11	2.2	•732	2.2	11	2.83	4.2	11	4.42
57	0.3	.0356	11	2.3	.813	2.3	11	2.94	4.3	11	4.52
10	0.4	.0510	U	2.4	.923	2.4	11	2.94	4.4	11	4.74
n	0.5	.0953	11	2.5	•984	2.5	11	2.82	4.5	12	4.84
2.0	0.6	.0896	2.0	2.6	1.039	2.6	4.0	2.76	4.6	4.0	5.00
12	0.7	.0684	17	2.7	1.108	2.7	11	2.91	4.7	11	5.19
13	0.8	.1404	11	2.8	1.222	2.8	11	3.10	4.8	11	5.38
11	0.9	.1660	11	2.9	1.287	2.9	11	3.12	4.9	83	5.46
, 11	1.0	.1628	Ħ	3.0	1.332	3.0	11	3.10	5.0		5.56
2.0	1.1	•1996	2.0	3.1	1.412	3.1	4.0	3.22	5.1	4.0	5.76
11	1.2	.253	11	3.2	1.560	3.2	12	3.47	5.2	12	5.93
11	1.3	.277	El anti internet	3.3	1.651	3.3	17	3.53	5.3	11	6.00
p	1.4	.307	11	3.4	1.729	3.4	11	3.50	5.4	tr	6.19
11	1.5	•346	H	3.5	1.847	3.5	ii	3.51	5.5	11	6.36
2.0	1.6	.426	2.0	3.6	2.023	3.6	4.0	3.76	5.6	4.0	6.51
11	1.7	•457	11	3.7	2.159	3.7	n	3.86	5.7	11	6.63
FI	1.8	.486	11	3.8	2.249	3.8	99	3.93	5.8	16	6.84
ū	1.9	•557	"	3.9	2.300	3.9	H	4.06	5.9	u	7.21
11	2.0	.647	17	4.0	2.40	4.0	n	4.25	6.0	11	

Table 5 Boundary potential of I-specimen (L-specimen).

Pable	5.	(continue)
rabte	· .	(convinue)

Х	У	v	x	У	v	х	У	v	x	У	v
6.0	4.1	7.36	5.9	6.0	10.12	3.9	6.0	7.03	1.9	6.0	5.32
"	4.2	7.39	5.8	83	9.78	3.8	11	6.86	1.8	11	5.21
11	4.3	7.51	5.7	17	9.67	3.7	úe.	6.78	1.7	17	5.19
1;	4.4	7.73	5.6	17	9.50	3.6	Ŧ	6.72	1.6	17	5.18
11	4.5	7.79	5.5	11	9.42	3.5	11	6.62	1.5	6	5.13
6.0	4.6	7.85	5.4	6.0	9.12	3.4	6.0	6.44	1.4	6.0	5.04
H	4.7	8.10	5.3	11	8.94	3.3	n	6.38	1.3	11	5.02
81	4.8	8.24	5.2	97	8.81	3.2	91	6.34	1.2	н	5.03
(I	4.9	8.28	5.1	91	8.75	3.1	11	6.19	1.1	81	4.99
67	5.0	8.46	5.0	57	8.48	3.0	н	6.06	1.0	51	4.89
6.0	5.1	8.66	4•9	6.0	8.34	2.9	6.0	6.01	0.9	6.0	4.87
95	5.2	8.86	4.8	97	8.24	2.8	ę,	5.97	0.8	11	4.88
.i	5.3	8.92	4.7	11	8.06	2.7	57	5.91	0.7	11	4.88
N	5•4	9.03	4.6	11	7.85	2.6	ä	5 •7 5	0.6	n.	4.78
29	5.5	9.25	4.5	92	7.76	2.5	11	5.68	0.5	¥ł	4.78
6.0	5.6	9.52	4.4	6.0	7.73	2.4	6.0	5.66	0.4	6.0	4.80
17	5•7	9.58	4.3	17	7.59	2.3	13	5.58	0.3	11	4.75
Ħ	5.8	9.73	4.2	51	7•37	2.2	17	5•44	0.2	11	4.72
17	5•9	10.08	4.1	\$1	7.28	2.1	17	5.40	0.1	if	4.77
17	6.0		4.0	11	7.19	2.0	17	5.40	0.0	89	-

	Fitting equation	Theoretical
Square	$V = .09795 x^{2} + .0825$	$V = 0.1 x^2$
Rectangular W	$V = .09968(x^2+y^2)-2.494$	$V = 0.1 (x^2 + y^2) - 2.5$
L	$v = .09963(x^2 + y^2) - 2.481$	$V = 0.1 (x^2 + y^2) - 2.5$
I - croos section W	$v = .1474(x^2+y^2)5196$	$V = 0.15(x^2 + y^2) - 0.5$
L	$V = .1485(x^2 + y^2)5471$	$V = 0.15(x^2 + y^2) - 0.6$

Table 6 Comparison of fitting equations and analytical equations of the boundary potential.

specimen obtained experimentally.

experimentally.

Fig.16 Equipotential lines and shear stress lines on the I-specimen obtained experimentally.

Fig.17 Equipotential lines and Shear stress lines on the I-specimen obtained experimentally.

Fig. 18 Compares the results of the square specimen.

- Curve a Compares the experimental results and the analytical results of conjugate function along co ordinate axis.
- Curve b Compares the experimental results and the analytical results of conjugate function along diagonal line.
- Curvo c Compares the experimental results and analytical results of shearing stress function along co - ordinate axis.

Curve d Compare the experimental results and analytical results of shearing stress function along diagonal line.

Y _{ubs}	Vobs	Y _{obs}	Vobs	Y _{obs}	Vobs	Yobs	Vobs
2.34	1.715	4.20	1.670	6.58	1.400	9.03	.600
2.82	1.710	4.59	1.650	7.00	1.300	9.31	.400
3.42	1.700	5.22	1.600	7.38	1.200	9.70	.200
3.70	1.690	5.63	1.550	8.00	1.000	_	-
4.03	1.680	6.06	1.500	8.56	.800	-	-

Table 7. Co-ordinate and potential where equipotential line cut the y-axis of square specimen.

Tobs	V _{obs}	Xobs	Vobs	Tobs	Vobs	້ດວຣ	Vobs
1.69	1.715	3.97	1.67	6.53	1.40	9.00	.60
2.32	1.710	4.39	1.65	7.01	1.30	9.38	.40
3.07	1.700	5.08	1.60	7.40	1.20	9.67	.20
3.43	1.69	5.55	1.55	8.04	1.00	-	-
3.73	1.68	5.92	1.50	8.56	.80	-	-

Table 8. Co-ordinate and potential where equipotential lines cut the (-axis of square specimen.

Dobs	Vobs	Dobs	Vobs	200 ^C	Vobs	obs	Vobs
1.937	1.72	6.760	2.10	9.376	3.20	12.403	6.40
2.857	1.73	7.156	2.20	9.673	3.40	12.657	6.80
3.323	1.74	7 •495	2.30	9.942	3.60	12.883	7.20
3.366	1.75	7.821	2.40	10.409	4.00	13.081	7.60
4.101	1.77	8.061	2.50	10.819	4.40	13.279	8.00
4.596	1.80	8.287	2.60	11.215	4.80	13.506	8.40
5.204	1.85	8.514	2.70	11.540	5.20	13.718	8.80
5.629	1.90	8.712	2.80	11.865	5.60	-	-
6.251	2.00	9.065	3.00	12.134	6.00	-	-

Table 9. Distance from origin and potential where . equipotential lines cut the diagonal line of square specimen.

Xobs	Vobs	Yobs	Vobs	Xobs	V _{obs}	Xobs	V _{obs}
•37	1.80	2.38	1.40	3.36	1.00	4.54	.20
1.26	1.70	2.66	1.30	3.72	.80		
1.72	1.60	2.90	1.20	4.08	.60		_
2.08	1.50	3.14	1.10	4.37	. 4, 0	-	-

Table 10. Co-ordinate and potential where equipotential lines cut the (-axis of rectangularspecimen ()-specimen)

Kobs	V _{obs}	Xobs	Vobs	X oʻos	V _{obs}	^X obs	Vobs
•55	2.10	2.28	1.70	3.16	1.30	3.97	.80
1.24	2.00	2.54	1.60	3.32	1.20	4.24	. 60
1.66	1.90	2.77	1.50	3.50	1.10	4.52	•40
2.00	1.80	2.95	1.40	3.67	1.00	-	

Table 11. Co-ordinate and potential where equipotential lines cut the X-axis of rectangular specimen (1-specimen)

Xobs	Vobs	[™] o,bs	V _{obs}	obs	Vobs	Xobs	Vobs
.085	•54	1.055	.40	1.610	.20	-	-
•585	.50	1.370	.30	1.845	.10	-	-

Table 12. Co-ordinate and potential where equipotential lines cut the Z-axis of I-specimen (J-specimen)

Xobs	Øobs	Xobs	Øobs	Xobs	Øobs	Tobs	Pobs
.62	3.000	1.20	2.333	1.53	1.667	1.79	1.000
1.00	2.667	1.39	2.000	1.70	1.333	1.89	.667

Table 13. Co-ordinate and shear stress function where shear stress lines cut the axis Y=4 of I-specimen (-specimen).

Y _{obs}	V _{obs}	Yobs	V _{obs}	Yobs	V _{obs}	Y _{obs}	V _{obs}
4.07	2.60	4.45	3.40	4•9 7	4.20	5.61	5.00
4.13	2.80	4.58	3.60	5.13	4.40	4.79	5.20
4.23	3.00	4.71	3.80	5.29	4.60	-	-
4.33	3.20	4.85	4.00	5.43	4.80	-	-

Table 14. Co-ordinate and potential where equipotential lines cut the axis X=2 of I-specimen (7-specimen)

Xobs	V _{obs}	X _{obs}	V _{obs}	X _{obs}	Vobs	Kobs	Vobs
•47	.60	1.22	•40	1.645	•20		-
.92	.50	1.455	.30	1.825	.10	-	-

Table 15. Co-ordinate and potential where equipotential lines cut the X- axis of I-specimen (L-specimen).

Xobs	Øods	X _{obs}	Øobs	^X obs	Øobs	X _{obs}	$\phi_{ m obs}$
•38	3.333	1.22	2.333	1.71	1.333	-	_
1.84	3.000	1.42	2.000	1.78	1.000	-	-
1.02	2.667	1.58	1.667	1.87	.667	-	

Table 16. Co-ordinate and shear stress function where shear stress lines cut theaxls Y=4 of I-specimen

Yobs	V _{obs}	Y _{obs}	V _{obs}	Yobs	Vobs	Yobs	Vobs
4.10	2.60	4.48	3.40	5.00	4.20	5.63	5.00
4.18	2.80	4.60	3.60	5.15	4•40	5 •7 9	5.20
4.26	3.00	4•73	3.80	5.30	4.60	-	-
4.36	3.20	4.86	4.00	5.45	4.80	-	-

Table 17. Co-ordinate and potential where equipotential line cut the axis X=2 of I-specimen (L-specimen)

Curve(a) Compare the experimental results and analytical results of 7/404 ong the co-ordinate axis of the square specimen Curve(b) compare the experimental results and analytical results of 7/404 along the diagonal line of the square specimen

Fig 20. show how the square specimen is divided and the number assigned for the dividing squares

					and the second second second second				
no	Þ	no	Ø	no	Ø	no	ϕ	no	ø
1	57.0	6	53.6	11	45 •3 .	16	31.9	21	12.4
2	53.6	7	49•7	12	42.3	17	30.0	22	11.7
3	45.2	. 8	42.4	13	36.1	18	25.8	23	10.7
4	32.0	9	30.1	14	25.9	19	18.8	24	8.3
5	12.6	10	12.0	15	10.8	20	8.1	25	3.6
		1		5			2	su m	709.6

Table 18 Shear ng stress function in the middle of each dividing squares of the square specimen being obtained by interpolation.

Fig.21 Show how the rectangular specimen is divided and the number assigned for the dividing squares.

no.	Ø	no.	¢	no.	\$	no.	\$
1	21.3	6	17.4	11	18.0	16	7.8
2	20.9	7	15.3	12	17.3	17	7.4
3	20.6	8	12.0	13	15.4	18	6.7
4	19.8	9	9•4	14	12.6	19	5.7
5	18.8	10	4•4	15	6.5	20	3.8
÷		Sum	159.9			Sum	101.2

(W-specimen)

Table 19 Shearing stress functions in the middle of each /= dividing squares of the rectangular specimen being obtained by interpolation. (L-specimen)

no.	¢	no.	ø	no.	Ø	no.	Ø
1	22.7	6	18.7	11	19.4	16	8.5
2	22.5	7	16.5	12	18.5	17	7.9
3	22.0	8	13.5	13	16.7	18	7.2
4	21.3	9	9.6	14	13.1	19	6.0
5	20.2	10	4.2	15	6.5	20	3.6
		Sum	171.2			Sum	1074

Table 20 Shearing stress functions in the middle of each dividing squares of the rectangular specimen being obtained by interpolation.

(0,6)					(6	,6)				
6	12	14	16	18	20	F4	- 22 S	Barry Prom	the T	
5	11	13	15	17	19	1 is	s divid	led and	the nu	mber assi
4	10	(2,	4)		(6	,4) fc	or the	dividin	ig squa	res,
3	9									
2	8									
	1 07	1								
Tabl	e 21 res	1 (2 Shea of 1.	,0) aring -spec ()	stra imen	bei	functi ng obt	on in ained no.	the mid by inte	dle of	each div ion.
Tabl	e 21 res	1 (2 Shea of I.	,0) aring -spec 0 3.56	stra imen	bei	functi ng obt 7 1.67	on in ained no.	the mid by inte 2.00	dlė of rpolat no. 16	each div ion. Ø .82
Tabl	res	1 (2 Sher of 1 10, 1 2	,0) aring -spec () 3.56 3.47	; str:	bei 0.	functi ng obt 7 1.67 1.65	on in ained no. 11 12	the mid by inte 2.00 1.27	dle of rpolat no. 16 17	each div ion. 0 .82 .46
Tabl	res	1 (2 Shea of I- 1 2 3	,0) aring -spec Ø 3.56 3.47 3.34	stra imen n	bei 0. 6 7 8	functi ng obt 7 1.67 1.65 1.61	on in ained no. 11 12 13	the mid by inte 2.00 1.27 .97	dle of rpolat no. 16 17 18	each div ion. .82 .46 .68
Tabl	res	1 (2 Shee of 1 10, 1 2 3 4	,0) aring -spec (2) 3.56 3.47 3.34 3.24	; str:	bei 0. 6 7 8 9	functi nr obt 1.67 1.65 1.61 1.61	on in ained no. 11 12 13 14	the mid by inte 2.00 1.27 .97 1.00	dle of rpolat no. 16 17 18 19	each div ion. .82 .46 .68 .23
Tabl	res	1 (2 Shea of I 1 2 3 4 5	,0) aring -spec (2) 3.56 3.47 3.24 2.78	stra imen n	bei bei 6 7 8 9 0	functi ng obt 1.67 1.65 1.61 1.61 1.61	on in ained no. 11 12 13 14 15	the mid by inte 2.00 1.27 .97 1.00 .55	dle of rpolat no. 16 17 18 19 20	each div ion. .82 .46 .68 .23 .54

Table 22 Shearing stress functions in the middle of each dividing squares of I-specimen being obtained by interpolation.

	ϕ	no.	¢	no.	Ø	no.	ϕ
1	3.82	6	1.45	11	1.95	16	•75
2	3.80	7	1.81	12	1.16	17	.64
3	3,76	8	1.77	13	1.02	18	•75
4	3.42	9	1.73	14	•93	19	•33
5	2.86	10	1.72	15	.76	20	•42
Las	pecimen)				Sum	34.85

	W-side	L-side	Average	Theory
K	.669	.678	.674	.675
K ₁		-	.1419	•1406

Table 23 Comparison between experimental results and theoretical values of K and K_1 of the square specimen.

	W-specimen	L-spccimen	Avenage	Theory
K	.912	.950	•931	930
K ₁	.226	.240	.233	.229

Table 24 Comparison between experimental results and theoretical values of K and K₁ of the rectargular specimens.

	7	М	
	Nax.	at the reentrant corners	M.X.
W-specimen	3.47	6.56	264.48
L-spacimen	4.08	10.79	278.80
Average	3.77	8.67	271.64
Approximate equation	4		234.67

Table 25 Comparison between experimental results and approximate values of max. The cand The reentmant corner and tors onal stiffness of the I-specimens.