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Chapter 111
MODELING
3.1 Introduction
The simple equations of the motion of a fin-stabilized

short-range rocket have been derived from Newton's law des-

cribed in the previous chapter. For the further implementa-

tion, it is seen that the equations of the motion previously

described can be divided into two parts.

(a) The motion along the path of the rocket.

(b) The motion around the path of the rocket.

In this section, three kinds of actual actions are
encountered in the equations of the motions. These are pitch,
yvyaw and roll actions.

(a) Pitch

Pitching is the angular motion about center of

mass in the vertical plane.

(b) Yaw

Yawing is the angular motion about center of mass

in the lateral or horizontal plane if the rocket is travelling

horizontally.

(c) Roll

Rolling is the angular motion about the longitudi-

nal axis.
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For a fin-stabilized rocket, the motions in the verti-
cal and the horizontal plane are symmetrical due to the shape
of fins fixed at the rear of the rocket. According to this

symmetrical axis, pitching and yawing can be represented by

the same equation. Thus the motion can be divided into two
main portions. These motions -consist of the trajectory, pitch-
ing, yawing and rolling which are described in the next sections.

3.2 Motion During Burning

These are the motions from launching until the powder
is completely burnt. The motion comprises only three kinds
of actions.

3.2.1 Trajectory

In the case of a normal firing, a good approximation
of the actual trajectory during burning can be obtained by
the assumption that the stabilizing action of the fins s
perfect so that the axis of the rocket always parallels to
its direction of the motion. Hence the rocket axis is always
tangent to the trajectory and the yaw angle is always zero.

From eqns. (2.2) and (2.3), the appropriate equations

for this case can be written as

- g Sin e (3.1)

T CDpv2d2
m ——— =g Sin 6 (3.2)
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Vertical

Trajectory

Ground

Figure 3.1

A Diagram of Trajectory During Burning.

000938
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\Y, = X (3.3)
and V. N = g Cos O
V.0 = g Cos O (3.4)

Equns. (3.2) and (3.4) represent the motions of the center
of the mass for a fin-stabilized rocket. The trajectory of
the rocket occurs only in the vertical plane. For a short-
range rocket the firing range is very much greater than the
height of the trajectory.

3.2.2 Pitching and Yawing

In this case, pitching and yawing may be considered
together. when the pitch or yaw behavior of a varying mass
is encountered and the variation of the mass may be constrained

by the approximate equation.

m = mO0 (1 - ct) (3.5)
where 1 is the initial mass
c is the rate of the mass flow

From eqns. (3.2) and (3.5), we obtain

mo (1 - ct). = T - 1+ CDpd2v?2 (3.6)

which is a Riccati equation and the velocity \% can be

solved as
/ T {Co + (1 - ct)B}

V (1) (3.7)
/5 CDpd2 {CQ - (1 - ct)B}
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where
B V~2C pT
cm_
2T
C = v + lér
voo— 2%

The equation of a varying mass rocket related to the yaw angle

has been derived by W.F. Byrne and . Raynorn™ as
mQk2 (1 - ct) $ + (r2 - k2)cmo > + ncyipl. v2d2. 0 = 0 (3.8)
where a = the rocket length
CM = aerodynamic restoring moment coefficient
r = the distance from the center of the mass to

the nozzle axis.

From eqgn. (3.8) we may write

(r2- k2).cin CMp£v2d2
0 + b+ $ = 0 (3.9)

mQk (1 - ct) 2ka2(1—ct)

Substituting v(t) from eqn. (3.7) into eqn. (3.9), we obtain

CM£T Co + (1-ct)

B P
* + X - ct! - * + chO k2 (l-ct) Co - (1l-ct)
= 0 (3.10)
When a small rocket is concerned, the ratio of the
final mass to the initial mass is greater than 0.8. Thus

the mass ratio is

M, fin al

Minitial * 100 80%
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Vertical

actual trajectory

Center of grawity of projectile

Horizontal

Figure 3.2
A Diagram Showing the Angle of Yaw with Reference to

Projectile Path
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For a short-range rocket system, the initial mass is
about 2 kg. and the burn out mass remains 0.2 kg. Hence the
mass ratio is 90%. The term (™ © ® involved in eqgn. (3.11)

can be expressed as
1j; ct = 1 + ct + c2t2 + c3t3 + . (3.11)

For the mass ratio is greater than 80%, the above equation

may be approximated as™

Yoo~ et - 1 + ct + 24 - (1 + ct)2 (3.12)

Since the rate of mass flow 1is equal to the inverse of the

burning time Tb. Hence, egn. (3.12) becomes
1 t//\E
T=ar - S2ig)
b

Assume that the velocity during very short burning time s
constant, that is

V(t) = Vo (3.14)

From eqns. (3.10), (3.13) and (3.14), the eqns. (3.10) becomes

&+ 20k, 1 Fkav2 (1 os1r)2 4 o= 0 (3.15)
where K = ~ _ -2k X1 o+ 1 ) 2 (3.16)
S '
N .

Let 1 n A - non-dimension time



W = .= 1= 3.18
e have & dt Tbdx ( )
v
12 o ? (3.19)
dx °
Tb Tb

Therefore, the eqn. (3.15) becomes

2k ,

% d2f + K2 V2X2

Th dT Tp 9%

Simplifying, we obtain

= 0
<" 2KTb = @ = 3.20
o <t K2 yo Tp2 : ( )
-KT, X
Let ®>(x) = e b o ()
-KT, T
<T(t) = b 0'(t) - KTbhe KTbT 0
(t)
-KT. T
Ot = e b K\ 2O(X) - 2e'KThbT KTbO(x) + e-KTbTe—~(x)
Substituting <pt o, and 4 into eqn. (3.20), we have finally
e (1) + k2 V2 T2 (£2 - By -2-) 0o (1) = 0 (3.21)
Kl Vo
For the small size of the rocket is concerned and the mass

ratio > 80%, the value of (™ )2 is approximated to three”™.

Kl

However, the initial velocity VQ is very large comparing to

™ )2, the term (N )2 N2 may be neglected. Thus the eqn.

K1 KLl Vo
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(3.21) becomes

e~(T) + K-jVAk T2 0(T) = 0 (3.22)
The solution of the above equation can be obtained in the
terms of Bessel Functions as

0(T) = AtNJAKjVOTh 2) + BTAYSHEKIVOTHT2)  (3.23)
where A and B are constant and determined from the initial

conditions.

It can be seen that the factor " Kj™ Tb 2 which is the

argument of the Bessel Functions is large.

Finally, the yaw angle ¥ may be expressed as

H(t) = A~-~e-1~ 1 Cos (JgkjvolIbT2 - & ., (3.24)
where the constants A and B~ are determined from the initial
conditions.

3.2.3 Rolling

For a symmetrical rocket in a perfect rolling flight,

the equation of the rotation of a rigid body for the angle

of roll, y is given by
.~ = - C (3.25)
where | = the axial moment of inertia (Slug - ft2)
o = the roll damping moment
The roll damping moment has been derived by Ray E.

Bolz and John D. Nicolaides2 and expressed as

C = kd v (3.26)
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where Ip is the angle of roll

_ _ o 41121
K is the roll damping toefficiegmt = — =
R d V a

Thus, eqn. (3.26) becomes

lip + KRiv : 0 (3.27)

For a short-range rocket during burning time, we have

lip + (Kt at) | £ 0
or Ip + (Kr a) t i E 0 (3.28)
let z be the horizontal distance and V - ~ , eqgn. (3.28)
becomes
+ (/ 7. £E2N) = 0] (3.29)

where the prime denotes differentiation with respect to z.

Now consider the forces in horizontal plane, we may

write

mv = - {j d2CcD) V2 = - CRV2 (3.30)

where CR is a constant.

It can be found that

5%
m (3.31)
Substituting eqgn. (3.31) into eqgn. (3.29), we obtain
ip"+ ip- R . R (3.32)
m
It can be seen that this equation is stable for > /R
| m

Therefore the solution of above equation can be obtained as



e (2)
and wo (z) = - =2e - clz + r
c1 3
It is known that the angle of roll is
C2 _
Hence = - Finally, we have
(z) = n (L - e-cl
and ~ (1) = ac2te 'cial
Therefore
02 1, -c,at2,
Ip (t) = u - if)
where
A

C]. | B m
C2 = constant

For simplicity, we may write

1 / -kt2
- e

y (t) = ipQ (1 )

3.3 Motion After Burning

As mentioned in Chapter 1, the
after the propellant completely burnt

an artillery projectile. However, the

w ill be discussed in more details in the

zero

motions

are

when

similar

analysis

3.3.1 Trajectory After Burn Out

The forces acting on the rocket

the tangential and normal components as

can

of

t

the

of

following

these
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(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

rocket

those

sections.

be divided into

follow s.

motions



Vertical

mg

: 6:,\ Ground

Figure 3.3

A Diagram of Forces on the Rocket after Burn Out.
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(@ Tangential Component
The trajectory along the tangential direction is

A= -j4PW2- g Sin 0 (3.38)

where the drag %\/2 Is defined in the previous section.
(b) Normal Component
The centrifugal force as shown in Fig. (3.3) is

m = -ngCos 0 (3.39)
From the radius of curvature, we have
1 -d2yldx2 4
r )
4 >2
p = ~(d2y/dx2) Cos20
we obtain
dy 3.40
dx2 r COS20 (3.40)

Substituting egn. (3.39) into the above equation, we obtain

- (3.41)

U

From egn. (3.39), we nmay write

vit = -gCos O (3.42)
From egn. (3.38), we have
dv

dd = <€ f(v) -gSin0



where ¢ = +p

For a short-range rocket with speed about 60 nph
to 1 Mach3?, f(v) is expressed as v2. The equation in the
horizontal line is

N Cs 0 = -Cf(v) AR

Multiplying both sides of this equation by d0 , we obtain
d MOB) 4¢ = -c f(v) CosOd0

Replacing by the value given in egn. (3.42), we obtain
gd( CosO) = W f(v) dO

= ¢cv3 do
Since the velocity in the horizontal line is

dx o
v, dt - VCos0 = X
Therefore gd® - QB8 d
dx = COV3do
OX
cvd O
gV Cos0
Q2d0
g CosO
& - cd
X
which gives i = Xe-Gs (3.43)

Substituting egn. (3.43) into egn (3.41), we have
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Vertical

Trajectory

Se—

Horizontal line
vx = v Cos®

Ground

Figure 3.4
Horizontal Component
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dx2 xX’'1'cV

For a flat trajectory, the trajectory path is about the

distance » or . x, and for high elevation - HjQR
Thus d2y -g X
dx2 (XO»
Integrating, we have
20X
dy * ge t (3.44)
dx 2C(X0)

Clx + ¢2

To find and C, consider Fig. (3.5), when XQ=10

h tan 0 + 3.45
we have 2000) (3.45)
(3.46)
4C2(X0)2
The complete solution is
2X -
y = xtanG - —/— +—4221— + —J—
4C2 (X ) 2C(X )™ 4C (Xp)
(3.47)
where 0 = the launcher angle
XQ= the velocity at initial of after burning

(see Chapter 4)
c - 95
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Vertical

Ground

During Burning After Burning

Figure 3.5
Initial Condition Consideration
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3.3=2 Pure Roll after Burn Out
Refering to the section (3.2.3), we have the equation
of roll in the form

lip + Kat)y .0 (3.48)
KV
= 0 (3.49)

Assume that the velocity after the powder is completely burnt
is decreased as an exponential form.

V(1) VAL (3.50)

This equation nmay be approximated as
= N 3.51
v 1+ bt (3:31)

where Mn is the meximnum initial velocity after burning
b is a constant which can be determined from an
experiment
Substituting egn. (3.51) into egn. (3.49), we have

p + Ke Pl - (3.52)

The horizontal distance can be directly evaluated
by simple integrating from egn. (3.50)

Hence ;o= 04 OV (f_ e'bt-l (3.53)
From egn. (3.52), the yaw motion may be expressed as
W .
m i
b 1 + bt

let P = ¢t A = IQ{n = constant
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Then It (L * bt)

Do o B-54>
The solution of eqn. (3.54) can be simply determined as
p = (1 +Dbt) Al (3.55)

Therefore b

fpdt
f(1+ bt)"Alb dt
i (L+Dbt)L+ (Ah) (3.56)

Thus b(t)
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