การกึกบาปฏิกิริยาในสภาพของแข็งของสารประกอบของ โครเมียม เหล็ก โกบอลท์ และทองแคง

นางสาววิไลวรรณ บัญญาวิวัฒน

004832

วิทยานิพนธนี้เป็นส่วนหนึ่งอางการสึกษาตามหลักสูกรปริจุญาวิทยาศาสกรมหาบัณฑิต แผนกวิชาเคมี บัณฑิตวิจยาลัย จุฬาลงกรณมหาวิทยาลัย พ.ศ. 2521

INVESTIGATIONS OF SOLID-REACTIONS OF CHROMIUM, IRON,

÷

COBALT AND COPPER COMPOUNES

MISS VILAINON BOONYANIWAT

A Thesis Submitted in Partial Fulfillment of the Requirements For the Degree of Master of Science Department of Chemistry Graduate School Chulalongkorn University 1978

Thesis Title	:	Investigations of solid-reactions of chromium,
		iron, cobalt and copper compounds.
By	2	Miss Wilaiwon Boonyawiwat
Department	0	Chemistry
Thesis Advisor	0	Archan Rosna Autchakit

Accepted by the Graduate School, Chulalongkorn University in partial fulfillment of the requirements for the Master's degree.

> .S.Burnag (Assistant Professor Supradit Bunnag, Ph.D.)

Thesis Committee

Sunt Techakunguch . Chairman

(Associate Professor Sunt Techakumpuch, Ph.D.)

Simuan Thanomkal. Member

(Assistant Professor Srinuan Thanonkul, Dr. Ing.)

Proespin Kanatharane Menber

(Assistant Professor Proespun Kanatharana, Ph.D.) Revua Autchakit Member

(Archan Rosna Autchakit M.Sc.)

Copyright of the Graduate School, Chulalonghorn University.

การถึกษาปฏิกิริยาในสภาพของแข็งของสารประกอบของโครเมียม เหล็ก โคบอลท์ และทองแกง นางสาว วิไลวรรณ บุญญาวิวัฒน์ อาวารย์ รถนา อัชชะกิจ เกมี 2521

หัวขอวิทยานิพนธ์

ชื่อนิลิต อาจารยที่ปรึกษา แผนกวิชา ปีการศึกษา

บทกักยอ

การศึกษาปฏิกิริยาในสภาพของแข็งของสารประกอบของโกร เมียม เหล็ก โคบอลท์ และทองแคง ซึ่งเป็นอากุทรานสิชันแถวที่หนึ่งโคยสังเกตจากการ เปลี่ยนสี่ที่อุณหภูมิห้องและในช่วง อณหภูมิระหว่าง 50–150 องศา เบล เซียส พร้อมกันนี้ใก้ฝึการ เปรียบ เทียบกับปฏิกิริยาที่เกิดใน สภาพสารละลายค้าย

การ เกิดปฏิกิริบาจะ เพิ่มจานวนมากขึ้น เมื่ออุณหภูมิสูง เกิน 200 องสา เซล เซียส การทีกษาธรรมชาติทาง เกมีของผลิตผลก้วย เกรื่องมือนาน**าชนิดทำให**้พบสิ่งที่น่าสนใจ ทั้งในแง่ของกลไกและการ จักตัวในผลึกอันกวรแก่การกึกษา เกี่ยวกับวิถีทางการ เปลี่ยนแปลงใน**สภา**พ ของแข็งซึ่งแตกต่างและติกตามสังเกตไก้ ง่ายกว่าการ เปลี่ยนแปลงในสภาพสารละลาย

iv

Thesis Title	8	Investagations of solid-reactions of chromium,
		Lion, cobait and copper compounds.
Name	8	Miss Williwon Boonyawiwat
Thesis Advisor	e o	Archan Rosna Autchakit
Department	0	Chemistry
Academic Year	0	1978

ABSTRACT

The solid-solid reactions of the first transition metal compounds such as chromium, iron, cobalt and copper compounds were studied by observing the colour change at room temperature and in the range of temperature between 50-150 degree Celcius. The reactions in aqueous solution were studied paralling those in solid phase.

The temperature above 200 degree Celcius increased the amount and number of reactions.

The chemistry of products was studied with several instrumental techniques. There were a lot of interesting phenomena that were worthwhile to study about the process of change in solid state which was different and could be observed more easily than the reaction in aqueous solution. v

ACKNOWLEDGEMENT

Grateful acknowledgement is accorded to my supervisor, Archan Rosna Autohakit for her constant guidance and encouragement during all stages of this work. I greatly appreciate the kindness of Professor Vichai Hayodom, Head of Physics Department, for his permission to use the X-ray Laboratory. Appreciation and thanks are due to Assistant Professor Dr. Phatana Phavanantha for his valuable suggestions and providing the X-ray powder diffraction patterns. I also wish to express my deep gratitude to Assistant Professor Sukda Siripant for his permission to use the photographic laboratory. Appreciation and thanks are due to Mr. Somporn Jongkam, member of Physics Division, Office of Atomic Energy for Peace, for his kindness to operate the X-ray fluorescence instrument and many valuable suggestions. All the X-ray powder diffraction patterns are provided by Mr. Lapthong Chumboonrawd and are reproduced by Miss Thida Jeenapant and these are greatfully acknowledged.

Appreciation and thanks are also due to the staff of the Electrical Engineering Laboratory, King Mongkut's Institute of Technology (North Bangkok Campus) for their valuable cooperation and suggestions in measurement the conductivity of solid state chemicals. I wish to express my deep gratitude to Miss Siriluk Sithivangkul and my freind who assisted and stimulated me in various ways. I also wish to express my appreciation to the University Development Commission for granting a fellowship and supporting the research program.

vi

CONTENTS

	PAGE
ABSTRACT (IN THAI)	iv
ABSTRACT	v
ACKNOWLEDGEMENTS	vi
LIST OF TABLES	x
LIST OF FIGURES	xiv
CHAPTER	
Per de la companya de	
1. INTRODUCTION	1
2. SOLID-REACTION	13
3. SHEDDING LIGHT ON THE COLOUR	26
4. STRUCTURAL STUDY BY INFRA-RED SPECTROSCOFY	44
5. EXPERIMENTAL	60
5.1 Materials	60
5.2 Preliminary investigation of solid	
reactions at various temperatures	60
5.2.1 Investigation of solid reaction at	
room temperature	60
5.2.2 Investigation of solid reaction at	
higher temperatures	61

	5.2.3 The comparison between reactions in	
	solid state and aqueous solution at	
	room temporature	61
5.3	Study on kinetic and mechanism of interesting	
	reactions at various temperatures(25°C-150°C)	61
5.4	Taking photographs of the colour change during	
	the progression of interesting reactions by	
1	microscope at 100-400 times magnification	62
5.5	The study of solid reactions by instrument	
	methods	62
	5.5.1 Infrared spectroscopic technique	62
	5.5.2 X-ray Powder diffraction technique	63
5.6	Determination of the combosition of the product	
	from the interesting reaction	63
	5.6.1 X-ray fluorescence analysis	64
	5.6.1.1 Preparation of standard sample	64
	5.6.1.2 Percentage determination	6 <i>4</i> ,
	5.6.2 Atomic Absorption Analysis	64
	5.6.3 Gravimetric and Volumetric Analysis	65
5-7	Conductivity measurement	65
	5.7.1 Preparation of sample	65

viii

PAGE

			PAGE
	5.7.2	Apparatus	65
	5.7.3	The comparison of the conductivity	
		measurement between product and	Ϋ́.
		reactants	67
	5.7.4	Conductivity measurement of reaction	
		during the progressive period	67
RESU	LT AID	DISCUSSION	63
6.1.	Prelim	inary investigation of solid-reaction	
~	at var	ious temperatures	68
6.2	Rate o	f formation of product at room	
	temper	ature and higher temperatures	92
6.3	The ph	otographs of the interesting reaction	98
6.4	Detcrm	ination of the interesting product	116
	6.4.1	Composition of the product by X-ray	
		fluorescence method	116
	6.4.2	Determination of all metals by atomic	
		absorption, turbidimetric, gravimetric	
		and volumetric methods	126
6.5	The con	mparison study by instrumental methods	147
	6.5.1	X-ray powder diffraction patterns	
		of product and reactants	147

6

iz

		PAGE
	6.5.2 The comparison of infrarel spectra	
	of product and reactants	153
6.6	Conductivity measurements	175
C .7	Conclusion, remarks and the suggestion	
	for future work	195
RMETRUNGIN		19 7
NTIV		200

Х

LIST OF TABLE

TABLE		PAGE
6.1.1	Solid-solid reactions of the first transition	
	series at room temperature	68
6.1.2	Solid-solid reactions at higher temperatures	83
6.1.3	The comparisor between reactions in solid	
	state and in agueous solution at room	
	temperature	33
6.2.1	Result of growth rate of solid-solil	
	reaction of \cos_47 $\frac{1}{2}$ 0 + $(11)_2$ $\frac{1}{2}$ at room	
	tenperature	92
6.2.2	Result of growth rate of solid-solid	
	reaction of $CoCl_2 \leq L_2 C + K_2 CrO_4$ at room	
	temperature	93
6.2.3	Result of growth rate of solid-solil	
	reaction of $CoP_2^{2T_2O}$ + CaS at room	
	tenperature	94
6.2.4	Result of growth rate of solid-solid	
	reaction of $Cu(C_2I_3O_2)_2 + Ha_2S_2O_3$	
	at room temperature	95
6.2.5	Result of growth rate of solid-solid	
	reaction of $CuCl_2^{2H}c_0 + K_cFe(CN)_6$ at room	
	temperature	96
6.4.1.1	Data for the relationship between activities	
	and percentages of heavy metal by X-ray	
	fluorescence technique	116

TVBTE		FUGE	
6.4.1.2	Result of percentage determination of heavy		
	metal by X-ray fluorescence technique	118	
6.4.2.1	The relationship between absorbances and		
	concentrations of chromium by atomic		
0.	absorption technique	126	
6.4.2.2	Determination of chromium in various products	127	
6.4.2.3	The relationship between absorbances and		
	concentrations of cobalt by atomic		
	alsorption technique	128	
6.4.2.4	Determination of cobalt in various products	129	
6.4.2.5	The relationship between absorbances and		
	concentrations of iron by atomic absorption		
	technique	130	
6.4.2.6	Determination of iron in various products.	131	
6.4.2.7	The relationship between absorbances and		
	concentrations of copper by atomic		
	absorption technique	132	
6.4.2.3	Determination of copper in various products	-33	
6.4.2.9	The relationship between absorbances and		
	concentrations of potassium by atomic		
	absorption technique	134	
6.4.2.10	Determination of potassium in various		
	products	135	

xii

TABLE		P'.CE
6.4.2.11	The relationship between absorbances and	
	concentrations of sodium by atomic	
	absorption technique	136
6.4.2.12	Determination of sodium in various products	137
6.4.2.13	The relationship botwoon absorbances and	
	concentrations of calcium by atomic	
	absorption technicue	138
6.4.2.14	The relationship between absorbances and	
	concentrations of cobalt ($CoSO_47H_2O_4$	
	$(\text{IIII}_4)_2$ CrO ₄) by atomic absorption	139
6.4.2.15	The relationship between absorbances and	
	concentrations of chromium (\cos_27 H $_2^{\circ}$	
	$(H_4)_2 Cro_4$) by atomic absorption	140
6.4.2.16	Determination of SO_4^{2-} by turbidimetry methol	141
6.4.2.17	Analytical compositions of products between	
	$CcSO_47H_2Om(MH_4)_2CrO_4$	142

xiii

LIST OF FIGURES

FIGURE	P	AGE
1.1	Diffusion mechanism: (a) interstitial (b)	
5	dissociative (c) vacancy (d) ring.	1
1.2	Diffusion coefficient of carbon in d-iron	7
1.3	Heating curve for BaO + $CuSO_4$ (according to	
	Hedvall)	8
1.4	Schematic representation of the course of	
	the reaction between CaO and SiO_2 in the	
	solid state	11
2.1	Production of cation vacancies in AgCl by the	
	addition of a divalent impurity	14
2.2	Schematic of a solid-state addition reaction,	
	showing motions and reactions at the interfaces	
	with the assumption that both cations are mobil	с
5	in the product phase	17
2.3	Schematic of layer structure for solid-solid	
	reaction of AgCl and Mar	20
2.4	Schematic of a solid-state double decomposition	
	reaction, showing ionic motions and reactions	
	at the interfaces	21
2.5	Schematic of solid-state reaction requiring	
	flow of electrons through product phases	22
3.1	Plots of d orbitals showed the regions in space	
	where electrons in each orbital may be found	
	with 90 % probability	28

xv

3.2	The coordinative system defined by the six oxygens	
	of octahedral coordination site in a mineral	29
3.3	The energy separation, or crystal field splitting	
	$(riangle_0)$, of the d orbitals of a transition metal	
	ion located	3 0
3.4	Energy levels for the d electrons of Fe^{2+} in the	
	M1 (D _{4h} symmetry) and the M2 (C_{3v} symmetry)	33
3.5	Electrons in d orbitals of Fe ³⁺ bearing chrysoberyl	35
3.6	Electrons in d orbitals of Fe ²⁺ in peridot	36
4.1	Normal modes of vibration in CO_2 and H_2O molecules	
	(+ and - denote the vibrations going upward and	
	downward, respectively, in the direction	
	perpe dicular to the paper plane)	49
4.2	Normal modes of vibration of linear molecules	50
4.3	Normal modes of vibration of pyramidal XY	
	molecules	51
4.4	Normal modes of vibration of planar XY molecules	52
4.5	Normal modes of vibration of nonlinear molecules	53
4.6	Normal modes of vibration of nonlinear MXYZ	
	molecules	54
4.7	Normal modes of vibration of tetrahedral $XY_{\mathcal{A}}$	
	moleculcs	55
4.8	Normal modes of vibration of square-planar XY	56

FIGURE

JURE		PAGE
4.9	Normal modes of vibration of trigonal	
	bipyramidal XY ₅ molecules	57
4.10	Normal modes of vibration of octahedral	
	XY ₆ molecules	5 8
5.1	Reaction of solids $\mathbb A$ and $\mathbb B$ to give product $\mathbb P$	60
5.2	The electric circuit for conductivity	
	measurement in solid state	65
5.3	The enlargement of tested element part	65
6.3.1	The progression of product of \cos_47H_20 +	
	KSCN by microscopic observation at 100 times	
-	magnification	100
6.3.2	The progression of blue product of $CoSO_47H_2O$	
	+KSCN by microscopic observation at 100 times	
	magnification	102
6.3.3	The progression of blue product of $\cos_27H_2^{-0}$	
	+ NaSCH by microscopic observation at 100 time	S
	magnification ,	104
6.3.4	The progression of blue product of $CoCl_2GH_2O$	
	+ NaSCN by microscopic observation at 100	
	times magnification	106
6.3.5	The progression of blue product of CoCl_6IL_0	
	+ KSCN by microscopic observation at 100	
	times magnification	108
6.3.6	The progression of black product of $\text{CoF}_2^{2\text{H}_2\text{C}}$	
	+ CaS by microscopic observation at 100	
	times magnification	110

xvi

1

FIGURE

6.3.7 The progression of black product of CuC122H20	
+ K_{A} Fe(CH) ₆ by microscopic observation at	
100 times magnification 11	1
6.3.8 The black product of $CuCl_2 2H_2 O + K_4 Te(CP)_6$ was	
magnified ll	.2
6.3.9 The progression of black product of $CoCl_2 6H_2 0$	
+ K2CrO, by microscopic observation at 100	
times magnification ll	.3
6.3.10 The progression of brown, green products of	
$CuCl_22H_2O + (NH_4)_2CrO_4$ by microscopic	
observation at 100 times magnification 11	. 4
6.4.1.1 The relationship between activities and	
percentages of chromium in $CoSO_47II_2O + (IH_4)_2CrO_4$	
by X-ray fluorescence technique 12	0
6.4.1.2 The relationship between activities and	
percentages of cobalt in $CoSO_7 TH_2O + (NH_4)_2 CrO_4$	
by X-ray fluorescence tochnique 12	0
6.4.1.3 The relationship between activities and	
percentages of copper in $Cu(C_2H_3C_2) + Ma_2S_2O_3$	
by X-ray fluorescence technique 12	!1
6.4.1.4 The relationship between activities and	
percentages of iron in $CuCl_22\pi_2C + Fe(WI_4)_2(SO_4)_2$	
6H20 by X-ray fluorescence technique 12	2

xvii

PAGE

FIGURE		PAGE
6.4.1.5	The relationship between activities and	
	percentages of copper in $CuCl_2 2H_2 0 + Fe(NH_4)_2(SO_4)$)2
	6H20 by Xray fluorescence technique	122
6.4.1.6	The relationship between activities and	
	percentages of cobalt in $CoSO_{1}7H_{2}O$ + MaSCN by	
	X-ray fluorescence technique	123
5.4.1.7	The relationship between activities and	
	percentages of chromium in $CoCl_2GH_2C + (NH_4)_2CrO_4$	
	by X-ray fluorescence technique	12/
6.4.1.8	The relationship between activities and	
	percentages of cobalt in $CoCl_2(H_2O + (H_1)_2O_A)$	
	by Xray fluorescence technique	124
6.4.1.9	The relationship between activities and	
	percentages of copper in $CuCl_2^2H_2^0 + K_4^2Fe(CH)_2^2$	
	by X-ray fluorescence technique	125
6.4.1.10	The relationship between activities and	
	percentages of iron in CuCl ₂ 2H ₂ C + K ₄ Fe(CH) _C	
	by X-ray fluorescence technique	125
6.4.2.1	The relationship between absorbances and	
	concentrations of chromium by atomic absorption	X
	technique	126
6.4.2.2	The relationship between absorbances and	
	concentrations of cobalt by atomic absorption	
	technique	126

FIGURE

6.4.2.3	The relationship between absorbances and concenteations
	of iron by atomic absorption technique 130
6.4.2.4	The relationship between absorbances and concentrations
	of copper by atomic absorption
6.4.2.5	The relationship between absorbances and concentrations
1 2 3	of potassium by atomic absorption technique 134
6.4.2.6.	The relationship between absorbances and concentrations
0.4-4	of sodium by atomic absorption technique
6.2.4.7	The relationship between absorbances and concentrations
3 4.	of calcium by atomic absorption technique 137
6.4.2.8	The relationship between absorbances and concentrations
	of cobalt $(\cos_4 7 \pi_2 c + (NH_4)_2 cro_4)$ by atomic
	absorption technique
6.4.2.9	The relationship between absorbances and concentrations
	of chromium($\cos 27H_2 0 + (MH_4)_2 Cr 0_4$) by atomic
	absorption technique140
6.4.2.10	The relationship between absorbances and concentrations
. .	of SO_4^{2-} by turbidimetry method
6.5.1	X-ray powder diffraction pattern of reactants and
-	products of solid-solid reactions (wixed with Si)
5.5.1.1	$coF_2^{2H_2}O+caS$
6.5.1.2	$\operatorname{Cocl}_{2}\operatorname{H}_{2}O + \operatorname{K}_{2}\operatorname{Cr}_{4}O$
6.5.1.3	$\cos_4 a_{H_2}^{0} + (M_4)_2 c_4^{0}$
6.5.1.4	$Cu(C_2H_3O_2)_2 + Ha_2S_2O_3$
6.5.1.5	$\operatorname{CuCl}_{2}\operatorname{2H}_{2}O \neq \operatorname{K}_{4}\operatorname{FB}(\operatorname{CR})_{6}$

xix

PAGII

IGURE	Ŧ
6.5.2 The comparis of infra-red spectra of product	
and reactants in the solid-solid reactions 15	53
6.5.2.1 $(MF_4)_2 Cr_4^+ Fe(S_4^2(MH_4)_2 GH_2^0 \dots 15)$	54
6.5.2.2 $CoF_2^{2H_2O} + KSCN$	55
$6.5.2.3$ $Coso_47H_20$ + KSCH	56
$6.5.2.4.$ $CoCl_2^{6H_20}$ + KSCN 15	57
$6.5.2.5$ CoF_22H_20 + NaSCF 15	58
$6.5.2.6$ $cocl_2 GH_2 0 + HaSCH 15$	59
$6.5.2.7 \cos_{4}7H_{2}0 + \text{NaSCN}$ 16	:0
$6.5.2.8 \text{ cocl}_2^{6H}_2^0 + K_2^{Cr0}_4$	P
6.5.2.9 $C_2(C_2H_3O_2)_2 + K_2CrO_4$	52
$6.5.2.10 \text{ Cul}_2^{2H_2^0} + \text{K}_2^{Cr_0}_4$ 16	53
6.5 2.11 $\cos_4 7H_2^{0} + (MH_2)_2 Cr_4^{0}$	54
$6.5.2.12 \operatorname{cocl}_{2}6\operatorname{H}_{2}0 + (\operatorname{NH}_{4})_{2}\operatorname{Cr}_{4} \cdots \cdots$	55
6.5.2.13 $\operatorname{Cucl}_2 \operatorname{2H}_2 O + (\operatorname{NH}_4)_2 \operatorname{Cr} O$ 16	56
$6.5.2.14 \text{ Cucl}_{2}^{2H_2O} + K_A^{Fe}(CN)_6 \dots 16$	57
$6,5.2.15 \text{ CoF}_{2}\text{H}_{2}^{0} + \text{CaS} \dots 16$	58
6.5.2.16 $\operatorname{Fe}_2(C_2O_4)_35H_2O + (MH_4)_2CrO_4$	59
6.5.2.17 $\operatorname{Fe}_2(C_2O_4)_35H_2O + (MH_4)_2CO_3H_2O \dots 17$	10
$6.5.2.18 \operatorname{cocl}_{2}6H_{2}0 + (MH_{4})_{2}CO_{3}H_{2}0 \dots 17$	71
$6.5.2.19 \text{ Cu}(\text{C}_{2}\text{H}_{3}\text{O}_{2}) + \text{Ma}_{2}\text{S}_{2}\text{O}_{3} \cdots 17$	12
$6.5.2.20 \text{ Jucl}_{2}^{2H}_{2}^{0} + \text{Fe}(\text{IH}_{4})_{2}^{0}(\text{SO}_{4})_{2}^{0}^{0} + \text{Fe}(\text{IH}_{4})_{2}^{0}(\text{SO}_{4})_{2}^{0}^{0} + \text{Fe}(\text{IH}_{4})_{2}^{0}^{0} + \text{Fe}(\text{IH}_{4})_{2}^{0} + \text{Fe}(\text{IH}_{$	73
6.6 The comparison between conductances of product and	
reactant in the solid-solid reaction	
6.6.1 $\cos 0_{4}7H_{2}0 + (H_{4})gr0_{4}$	15
6.6.2 $\operatorname{Cucl}_2 2 \operatorname{H}_2 0 + (\operatorname{HH}_4)_2 \operatorname{Cr}_4 $	76

XX

PAGE

xxi

6.6.3	$Cccl_2GH_2O + (MH_4)_2CrO_4$ 177
6.6.4	$Cuso_{4}5H_{2}0 + (NH_{4})_{2}Cro_{4}$
6.6.5	$CuCl_2^{2H_2^0} + K_2^{Cr_0}$
6.6.6	$CoCl_2^{2H_20} + K_2^{(\mathbf{r})}_4$
6.6.7	Cu(C ₂ H ₃ O ₂) ₂ + K ₂ CrO ₄ 181
6.6.8	$cuso_{4}7H_{2}0 + Mascm$
6.6.9	CoCl ₂ 2H ₂ 0 + NaSCH 183
6.6.10	CoF ₂ 2II ₂ 0 + R aSCN 184
6.6.11	$CoF_2^{2II}_2^{0} + CaS$
6.6.12	The conductivities of various ratio of reactants in
	the reaction of $CoSO_47H_2O + (MH_4)_2CrO_4$
6.6.13	The conductivities of the reactions of
	cocl ₂ 6H ₂ 0 + KSCN (I) and Cocl ₂ 6H ₂ 0 + NaSCN(II)187
6.6.14	The conductivities of the reactions of
÷ +-	$\cos_4 7 H_2 0 + Hasch 189$
6.6.15	The muluctivities of the reactions of
	$\operatorname{CuCl}_{2}^{2H_{2}0} + (\operatorname{III}_{4})_{2} \operatorname{Cr}_{4}^{0}$
6.6.16	The conductivities of the reaction of
2 1	CoS0 ₄ 7H ₂ 0 + KSCN 190
6.6.17	The conductivities of the reaction of
- ÷	CoCl ₂ 6H ₂ 0 + K ₂ Cm ₂ at 200volts(1) and 300 volts(11)191
6.6.18	The comparison of conductances between products of
	cobalt comoound and alkali thiocyanate 192