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CHAPTER I

INTRODUCTION

1.1 Set-valued maps

In this section, we let X and Y be sets. A set-valued map is a map T from X to

the power set of Y and we denote such a map by T : X ⇒ Y . The concept of set-

valued maps is widely used in optimal control theory and mathematical economics

(see [1]).

For the rest of this section, let R be an ordered field, X ⊆ Rn, Y ⊆ Rm, and

T : X ⇒ Y be a set-valued map. The maximum R-norm ∥x∥ on Rn is defined by

∥x∥ := maxi=1,...,n{|xi|} where | | is the absolute value function on R. We equip

X and Y with maximum R-norms. Let x ∈ Rn, S ⊆ Rn, and ϵ > 0 (ϵ ∈ R).

We let Bn(x, ϵ) := {y ∈ Rn : ∥x− y∥ < ϵ} and Bn(S, ϵ) :=
∪

s∈S Bn(s, ϵ). We

say that T is lower semi-continuous if for each x0 ∈ X, y0 ∈ T (x0) and ϵ > 0,

there is δ > 0 such that for every x ∈ Bn(x0, δ)∩X, T (x)∩Bm(y0, ϵ) ̸= ∅; upper

semi-continuous if for each x0 ∈ X and ϵ > 0, there is δ > 0 such that for

all x ∈ Bn(x0, δ) ∩ X, T (x) ⊆ Bm(T (x0), ϵ); and continuous if it is both lower

semi-continuous and upper semi-continuous. Note that if f is a continuous map,

then f is continuous as a set-valued map.

..
R

.

R

..
R

.

R

Examples of a lower semi-continuous set-valued map (left)

and an upper semi-continuous set-valued map (right).
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A selection of T is a map f : X → Y such that f(x) ∈ T (x) for every x ∈ X.

In [19], E. Michael studied the existence of continuous selections of set-valued maps

and proved the following statement: if T : Rn → Rm is lower semi-continuous and

each T (x) is nonempty closed and convex, then T has a continuous selection. This

statement, which is known as Michael’s Selection Theorem, has applications in

various fields of mathematics (see [23], [25], and [17]).

In this dissertation, we make no distinction between set-valued maps and their

graphs.

..
R

.

R

.

T

.

f

An example of a selection f of a set-valued map T .

1.2 O-minimal structures

The beginning of the study of o-minimal structures arose from Tarski’s question

on the decidability of the theory of the real field with the exponential function,

called “the real exponential field.” While the quantifier eliminability of the real

field is obtained by Tarski’s Theorem, L. van den Dries showed that the theory of

the real exponential field does not admit quantifier elimination (see [5]). However,

he argued that the theory of the real field and the theory of the real exponential

field share many nice finiteness properties. Then he proved that these finiteness

properties can be deduced from a certain axiom, which he called “finite type”.

Later, this axiom is known as “o-minimality”. This term was introduced by A.

Pillay and C. Steinhorn in [22].

A. Grothendieck has an influence in this subject. One of his aims is to study

topological objects that satisfy finiteness properties and have tame behaviors (ex-
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cluding objects like the topologist’s sine curve, space-filling curves, fractals, etc.).

This field is known as tame topology (or topologie modérée in French). See [14] for

more details. It turns out that the o-minimality is the right framework for tame

topology.

1.2.1 Definitions

First, we introduce the concept of structures (cf. [7]). Let R be a set. Let

R := (Rn)n∈N and R′ := (R′
n)n∈N be sequences such that Rn,R

′
n are subsets of

the power set of Rn. We say that R ⊆ R′ if Rn ⊆ R′
n for each n ∈ N. Let {fi}i∈I

be a collection of functions fi : R
ni → R and {rj}j∈J be a collection of relations

rj ⊆ Rmj . A structure on R generated by {fi}i∈I , {rj}j∈J is the smallest

sequence R := (Rn)n∈N with respect to ⊆ such that for each natural number n:

1. Rn is a boolean algebra of subsets of Rn, that is, Rn is closed under finite

intersection and relative complement.

2. The diagonal sets ∆ij := {x ∈ Rn : xi = xj} ∈ Rn for 1 ≤ i < j ≤ n;

3. If A ∈ Rn+1, then πA ∈ Rn where π : Rn+1 → Rn is the projection map onto

the first n coordinates;

4. If A ∈ Rn, then A×R ∈ Rn+1 and R× A ∈ Rn+1;

5. The singleton {r} ∈ R1 for each r ∈ R;

6. For each i ∈ I, j ∈ J , there exist m, k ∈ N such that fi ∈ Rm, rj ∈ Rk.

We denote such a structure by (R; {fi}i∈I , {rj}j∈J) and let LR := {fi}i∈I ∪

{rj}j∈J be the “language” of this structure. We say that R is a structure on R

if there exist a collection of functions and a collection of relations such that R is a

structure on R generated by these collections. Let R := (R; {fi}i∈I , {rj}j∈J) be a

structure and {fα}α∈Λ be a collection of functions fα : Rkα → R. Then a structure

(R; {fi}i∈I ∪ {fα}α∈Λ, {rj}j∈J) is denoted by R ∪ {fα}α∈Λ.
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Next, let A be a subset of Rn. We say that A is definable in R or R defines A

if A ∈ Rn. We simply say A is definable if the structure is clear from the context.

A map f : A → Rm is definable in R if f ∈ Rn+m. Similarly, a set-valued map

T : A ⇒ Rm is definable in R if T ∈ Rn+m.

Moreover, let R and R′ be structures on R such that R ⊆ R′. We call R′ an

expansion of R and call R a reduct of R′. Note that the notion of structures is,

in fact, a geometric point of view of the collection of all sets which is “definable in

R with parameters” in first order logic. In other words, a definable set is a set that

can be described by a first-order LR-formula with parameters. We can prove that

if A is definable in R, then intA the interior, clA the closure, and frA := clArA

the frontier of A are also definable.

Now, we are ready to give the definition of o-minimal structures. Let R be an

expansion of (R;<) where < is a linear order on R. Then R is o-minimal if every

definable subset of R is a finite union of points and open intervals. Hence, every

definable subset of R is also definable in (R;<). In other words, every definable

subset of R can be described by a quantifier free formula in language {<} with

parameters from R. Intuitively, the letter “o” in “o-minimal” stands for “order”.

1.2.2 Examples of o-minimal structures

First, we give examples of o-minimal structures over the real field R.

Example 1.1. A subset of Rn is semialgebraic if it is a finite union of sets of

the form

{x ∈ Rn : f(x) = 0, g1(x) > 0, . . . , gk(x) > 0}

where f and g1 . . . , gk are real polynomials in n variables. Clearly, each semi-

algebraic set is definable in Ralg := (R;<,+, ·). In addition, Tarski–Seidenberg

Theorem implies that the projection of semialgebraic set is also semialgebraic.

Hence, each definable set in Ralg is semialgebraic. Moreover, Ralg is o-minimal

since each semialgebraic subset of R is a finite union of points and intervals. For

more details on the structure Ralg, see [7, Chapter 2].
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Example 1.2. A set E ⊆ Rn is called semianalytic if for every x ∈ Rn, there is

an open neighborhood U of x such that E ∩ U is a finite union of sets of the form

{x ∈ U : f(x) = 0, g1(x) > 0, . . . , gk(x) > 0}

where f and g1 . . . , gk are analytic functions on U . Note that the projections of

semianalytic sets need not be semianalytic. A set E ⊆ Rn is called subanalytic

in Rn if for every x ∈ Rn, there is an open neighborhood U of x and a bounded

semianalytic set S ⊆ Rn+m such that U ∩ E = πS, where π : Rn+m → Rn is the

projection on the first n coordinates. In [6], L. van den Dries introduced a notion

called finitely subanalytic sets. A set E ⊆ Rn is called finitely subanalytic (also

known as globally subanalytic) if its image under the analytic isomorphism map

from Rn to Rn:

(x1, . . . , xn) 7→ (x1/
√

1 + x2
1, . . . , xn/

√
1 + x2

n)

is subanalytic in Rn. Let Rn := {E ⊆ Rn : E is globally subanalytic} and R :=

(Rn)n∈N. Then L. van den Dries proved that R is an o-minimal structure.

Let f : Rn → R. Then f is restricted analytic if f vanishes outside [−1, 1]n

and there exist an open neighborhood U of [−1, 1]n and an analytic function g :

U → R such that f = g on [−1, 1]n. We denote the real field with restricted

analytic functions by

Ran := Ralg ∪ {f : Rn → R : f is restricted analytic and n ∈ N}.

Note that Ran = R and hence Ran is o-minimal.

Example 1.3. An exponential set in Rn is a set of the form:

{(x1, . . . , xn) : P (x1, . . . , xn, e
x1 , . . . , exn) = 0}

where P is a real polynomial in 2n variables; a subexponential set is the image
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of an exponential set under a coordinate projection. In 1991, A. J. Wilkie showed

in his preprint that the real exponential field is model complete (see [30]). Let

Rexp := Ralg ∪ {exp}.

Hence, every definable set in Rexp is a subexponential set. Since every exponen-

tial set has finitely many connected components (this fact is called Khovanskii’s

Theorem), Rexp is an o-minimal structure.

Example 1.4. Next, we consider an expansion of Ran and Rexp, called the real

exponential field with restricted analytic functions. Let

Ran,exp := Ran ∪ {exp}.

The o-minimality of this structure was first proved by L. van den Dries and C.

Miller in 1994 (see [9]) and a simpler proof was given by L. van den Dries, A.

Macintyre and D. Marker in [8].

Example 1.5. A pfaffian chain is a finite sequence of C1-functions g1(x), . . . , gk(x)

on an open set U ⊂ Rn such that for each i = 1, . . . , k, j = 1, . . . , n,

∂gi
∂xj

(x) = Pij(x, g1(x), . . . , gi(x))

where Pij is a real polynomial in n + i variables. A pfaffian function is a func-

tion which belongs to a pfaffian chain. Note that polynomials and exponential

functions are pfaffian while the sine function is not. Let g1(x), . . . , gk(x) be a

pfaffian chain on open set U containing [−1, 1]n and let f1(x), . . . , fk(x) be the

corresponding truncations to [−1, 1]n. In [29], A. Wilkie proved the model com-

pleteness of the structure (R;<,+, ·, f1, . . . , fk). Combining with the result of A.

Khovanskii in [16], (R;<,+, ·, f1, . . . , fk) is o-minimal. Moreover, A. Wilkie proved

the o-minimality of

Rpfaff := Ralg ∪ {f : Rn → R : f is pfaffian and n ∈ N}
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in 1999 (see [30]). Since the exponential function is pfaffian, Rpfaff is an expansion

of Rexp.

From the above examples, we get the following diagram:

..

Ran (van den Dries)

.

Rexp (Wilkie)

.

Ralg (Tarski)

.

Ran,exp (van den Dries & Miller)

.

RPfaff (Wilkie)

.

Examples of o-minimal structures over the real field.

The reader may ask whether there is the largest o-minimal expansionM of the

real field. In 2003, J.-P. Rolin, P. Speissegger, and A. Wilkie introduced a new

construction of o-minimal expansions of the real field and proved the following:

Theorem 1.6 (J.-P. Rolin, P. Speissegger, and A. Wilkie [24, Theorem 2(1)]).

Let f : U → R be a C∞-function where U is an open neighborhood of [−1, 1]n.

Then there exist o-minimal expansions of the real field R1,R2 and functions f1, f2 :

[−1, 1]n → R such that for i = 1, 2, fi is definable in Ri and f = f1+f2 on [−1, 1]n.

Let f : R→ R be a function defined by

f(x) :=

e−
1
x2 sin(1/x), if x ̸= 0;

0, if x = 0.

Note that f is a C∞-function and {x ∈ [−1, 1] : f(x) = 0 and x ̸= 0} is an infinite

discrete set. By Theorem 1.6, if there is the largest o-minimal expansion of the

real field, then f�[−1, 1] and {x ∈ [−1, 1] : f(x) = 0 and x ̸= 0} are definable in

this structure, which is absurd.
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In [26], P. Speissegger introduced the pfaffian closure and proved that the pfaf-

fian closure of an o-minimal expansion of the real field is also o-minimal.

Example 1.7. Let R be an o-minimal expansion of (N;<) where < is a discrete

linear order on N. In [21], A. Pillay and C. Steinhorn proved that all definable

one-variable functions in R are translations. Therefore, the theory of R is well-

understood.

Example 1.8. Let R be a dense linearly ordered set without endpoints. The o-

minimality of (R;<) is obtained from the quantifier elimination property of the

theory of dense linear orderings without endpoints. See [7] for more details.

Next, we introduce more definitions. Let R be a field. We say that R is

formally real if −1 is not a sum of squares; and we say that R is a real closed

field if R is formally real and each polynomial over R with single variable has an

intermediate value property. Hence, by Intermediate Value Theorem, R is a real

closed field. Note that if R is a real closed field, then (R; +, ·) defines a linear order

< that makes R an ordered field. Hence, R is a dense linearly ordered set without

endpoints.

Example 1.9. Let R be a real close field. Since the theory of real closed fields

admits quantifier elimination, (R;<,+, ·) is o-minimal.

Theorem 1.10 (L. van den Dries [7, Chapter 1, Proposition 4.6]). If R is an

ordered ring and there exists an o-minimal expansion of (R;<,+, ·), then R is a

real closed field.

We say that a structure R is an expansion of a real closed field R if R is

an expansion of (R;<,+, ·). In this thesis, we only focus on o-minimal expansions

of a real closed field.

1.2.3 Geometry of definable sets

In this section, we recall important results in o-minimal structures, for example,

Monotonicity Theorem, Cell Decomposition Theorem, and Cm-Cell Decomposition



9

Theorem. These theorems tell us that definable sets in o-minimal structures can

be partitioned into finitely many “well-behaved” sets. We also state Definable

Choice, Triangulation Theorem, Definable Tietze’s Extension, and Trivialization

Theorem. For more details and proofs, see [7]. Throughtout, let R be an o-minimal

expansion of a real closed field R and E ⊆ Rn.

Monotonicity Theorem

Consider a polynomial in one variable f(x) over the real field. Observe that, as

a function, f is piecewise monotone and piecewise continuous. In fact, every one-

variable function definable in R has this property.

Theorem 1.11 (Monotonicity Theorem). Let a ∈ R∪{−∞} and b ∈ R∪{+∞}.

Let f : (a, b) → R be a definable function on the interval (a, b). Then there are

points a = a0 < · · · < ak+1 = b such that for each 0 < i < k + 1, the restriction of

f to (ai, ai+1) is either constant, or strictly monotone and continuous.

..
R

.a0 .a1 .a2 .
a3

.
a4

.
a5

.

f

An example of a partition of (a, b) that satisfies the above conditions.

Let a ∈ R∪{−∞}, b ∈ R∪{+∞}, c ∈ (a, b), and f : (a, b)→ R be a definable

function. By Monotonicity Theorem, limx→a+ f(x), limx→b− f(x), limx→c+ f(x),

and limx→c− f(x) exist in R ∪ {−∞,+∞}.
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Cell Decomposition Theorem

In this part, we introduce the concept of “cells” and state that each definable set

in o-minimal structures is a finite union of cells.

Let E be a definable subset of Rn. We define C(E) to be the collection of all

definable continuous functions f : E → R; and C∞(E) := C(E) ∪ {−∞,+∞}

where −∞ and +∞ are considered as constant functions on E. Let (i1, . . . , in) be

a sequence of zeroes and ones of length n. An (i1, . . . , in)-cell is a definable subset

of Rn defined inductively on n as follows:

(i) a (0)-cell is a singleton set {r} ⊆ R, a (1)-cell is an open interval (a, b) ⊆ R;

(ii) suppose (i1, . . . , in)- cells are already defined;

(a) an (i1, . . . , in, 0)-cell is a function in C(E) where E is an (i1, . . . , in)-cell;

(b) an (i1, . . . , in, 1)-cell is a set

(f, g)E :=
{
(x, y) ∈ Rn ×R : x ∈ E, f(x) < y < g(x)

}
where E is an (i1, . . . , in)-cell and f, g ∈ C∞(E) such that f < g.

We call such f and g defining functions.

..
R

.

R

.

← (1, 1)-cell

.

← (1, 0)-cell

.

(0, 0)-cell →

.

(0, 1)-cell →

.

Examples of cells in R2.
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A cell is an (i1, . . . , in)-cell, for some (i1, . . . , in) ∈ {0, 1}n. Note that a cell in Rn

is open if and only if it is a (1, . . . , 1)-cell. Moreover, the interior of non-open cells

is empty.

We say that a definable set A is definably connected if A is not a disjoint

union of two nonempty definable open subsets of A.

Proposition 1.12. Each cell is definably connected.

A cell decomposition of Rn is a special kind of partitions of Rn into finitely

many cells. We define cell decompositions of Rn inductively as follows:

(i) a cell decomposition of R is a collection

{(−∞, a1), (a1, a2), . . . , (ak,+∞), {a1}, . . . , {ak}}

where a1 < · · · < ak are points in R;

(ii) a cell decomposition of Rn+1 is a finite partition C of Rn+1 into cells such that

πC := {πC : C ∈ C} is also a cell decomposition of Rn where π : Rn+1 → Rn

is the projection to the first n coordinates.

..
R

.

R

.

An example of a cell decomposition of R2.

Let A ⊆ Rn and C be a cell decomposition of Rn. We say that C partitions A

if each cell C ∈ C is either C ⊆ A or C ∩ A = ∅. The next theorem tells us that

cells are the building blocks of definable sets in o-minimal structures.
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Theorem 1.13 (Cell Decomposition Theorem).

(I) Given definable sets A1, . . . , Ak ⊆ Rn, there is a cell decompostion C of Rn

such that for each i = 1, . . . , k, C partitions Ai.

(II) For each definable function f : A → R where A ⊆ Rn, there is a cell

decomposition C of Rn such that C partitions A and for each cell C ∈ C with

C ⊆ A, the restriction f�C : C → R is continuous.

This theorem provides more information on the geometry of definable sets. As a

consequence, each definable set has finitely many definably connected components

(a definably connected component of a definable set E is a maximal definably con-

nected subset of E) and each definable function is piecewise continuous. Moreover,

we get this result:

Theorem 1.14 (Uniform Finiteness Theorem). Let A be a definable subset of

Rn+m. If for each x ∈ Rn, {y ∈ Rm : (x, y) ∈ A} is finite, then there is N ∈ N

such that |{y ∈ Rm : (x, y) ∈ A}| ≤ N for all x ∈ Rn.

Cm-Decomposition Theorem

The concept of differentiablility makes sense in o-minimal context. Let m ∈ N

and f : E → Rk be definable. Then f is Cm if f is the restriction of a definable

Cm-map g : U → Rk where U is a definable open set containing E. For each

m ∈ N, let Cm(E) be the collection of all definable Cm-functions f : E → R and

Cm
∞(E) := Cm(E) ∪ {−∞,+∞}.

Now we can define Cm-cells and Cm-cell decompositions in the same manner

as the above, by replacing C(E) and C∞(E) by Cm(E) and Cm
∞(E), respectively.

Then we get this modified version of the Cell Decomposition Theorem:

Theorem 1.15 (Cm-Cell Decomposition Theorem). Let m ∈ N. Then

(I) Given definable sets A1, . . . , Ak ⊆ Rn, there is a Cm-cell decompostion C of

Rn such that for each i = 1, . . . , k, C partitions Ai.
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(II) For each definable function f : A → R where A ⊆ Rn, there is a Cm-cell

decomposition C of Rn such that C partitions A and for each cell C ∈ C with

C ⊆ A the restriction f�C : C → R is Cm.

Since the above theorem holds for every natural number m, the smooth version

of the Cell Decomposition Theorem (where smooth cells and smooth cell decom-

position are defined in the same fashion) looks promising. However, in [15], O. Le

Gal and J.-P. Rolin showed that there is an o-minimal expansion of a real closed

field that does not admit smooth cell decomposition.

Invariant properties

We introduce concepts of “dimension” and “Euler characteristic” of definable sets

and state that they are invariant under definable bijection. We define the dimen-

sion of a nonempty definable set A ⊆ Rn by

dim(A) := max{i1 + · · ·+ in : A contains an (i1, . . . , in)-cells}

(equvalently,

dim(A) := max{k ∈ N : there is a coordinate projection π : Rn → Rk such that

intπA ̸= ∅})

and assign the dimension of the empty set to be −∞. Then we have the following

theorem:

Theorem 1.16. Let A ⊆ Rn be nonempty and definable. Then dim(clA r A) <

dimA. In particular, dim clA = dimA.

This theorem implies that the topologist’s sine curve and space-filling curves

are not definable in o-minimal structures.

For each cell C of dimension d, we define the Euler characteristic of C to be
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E(C) := (−1)d. Let A ⊆ Rn. We define the Euler characteristic of A to be

E(A) :=
∑
C∈P

E(C)

where P is a finite partition of A into cells. Note that the Euler characteristic of

A does not depend on P . Moreover, we get this result:

Proposition 1.17. Let A ⊆ Rn and B ⊆ Rm be definable sets. Then there exists

a definable bijection from A to B if and only if dimA = dimB and E(A) = E(B).

For more details on properties of dimension and Euler characteristic, we refer

to [7, Chapter 3].

Definable Choice

Next is a definable analog of the Axiom of Choice in o-minimal context.

Theorem 1.18 (Definable Choice). If A ⊆ Rn+m is definable and π : A→ Rn is

the projection to the first n coordinates, then there is a definable map f : πA→ Rm

such that f ⊆ A. Moreover, if x, x′ ∈ πA such that {y ∈ Rm : (x, y) ∈ A} = {y ∈

Rm : (x′, y) ∈ A}, then f(x) = f(x′).

The following are consequences of the Definable Choice.

Corollary 1.19 (Curve Selection). Let X be a definable set and a ∈ clX r X.

Then there exist ϵ > 0 and a definable contiuous injective map γ : (0, ϵ)→ X such

that limt→0 γ(t) = a.

By the Definable Choice, we can show that closed bounded definable sets in

o-minimal structures have many properties resemble compact sets.

Proposition 1.20. Let f : E → Rm be a definable continuous map on a nonempty

closed bounded set E. Then

1. f(E) is closed and bounded in Rm.

2. f has a maximum and a minimum values.

3. f is uniformly continuous.
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Triangulation Theorem

In this part, we introduce the concept of “simplices” and “complexes”. We also

state that each definable set can be triangulated. Hence, the topology of definable

sets can be completely described via finite unions of simplices. For more details,

see [7, Chapter 6].

Let a0, . . . , ak ∈ Rn be affinely independent, that is, a1− a0, . . . , ak − a0 are

linearly independent. Then a k-simplex in Rn spanned by {a0, . . . , ak} is the set

(a0, . . . , ak) := {
n∑

i=0

tiai : ti > 0,
k∑

i=0

ti = 1}.

We say that a set S ⊆ Rn is a simplex if there exist k ∈ {0, . . . , n} and affinely

independent elements a0, . . . , ak in Rn such that S = (a0, . . . , ak). A face of

(a0, . . . , ak) is a simplex spanned by a nonempty subset of {a0, . . . , ak}. A complex

in Rn is a finite collection K of simplices in Rn such that for all σ1, σ2 ∈ K, either

clσ1 ∩ clσ2 = ∅, or there is a face σ of σ1 and σ2 such that clσ1 ∩ cl σ2 = cl σ.

Let K be a finite collection of simplices in Rn. Then we denote the union of the

simplices of K by |K|.

. .

An example of |K| where K is a complex in R3 (left) and

an example of |K| where K is not a complex in R3 (right).

Theorem 1.21 (Triangulation Theorem). Let A be a definable subset of Rn. Then

there is a complex K in Rn and a definable homeomorphism h : A→ |K|.

There are many useful consequences of this theorem. For example,
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Lemma 1.22. Let E0, E1 be disjoint definable closed subsets of a definable set E.

Then there exist disjoint definable open subsets U0, U1 of E with Ei ⊆ Ui, i = 0, 1.

Lemma 1.23. Let E0, E1 be disjoint definable closed subsets of a definable set E.

Then there is a definable continuous function f : E → [0, 1] such that f−1(0) = E0

and f−1(1) = E1.

Let A ⊆ E ⊆ Rn. We say that a map r : E → A is a retraction if r is

continuous and the restriction r�A is an identity map on A.

Corollary 1.24. Let A be a definable closed subset of a definable set E. Then

there are a definable open subset U of E containing A and a definable retraction

r : clU ∩ E → A.

Theorem 1.25 (Definable Tietze’s Extension). Let A be a closed subset of a

definable set E and f : A → Rm be a definable continuous map. Then there is a

definable continuous map g : E → Rm such that g = f on A.

Trivialization Theorem

Throughout the rest of this section, let A ⊆ Rm, S ⊆ Rn be definable sets and

f : S → A be a definable continuous map. A definable trivialization of f is a

pair (F, λ) consisting of a definable set F ⊆ RN and a definable map λ : S → F

such that (f, λ) : S → A×F is a homeomorphism. If f has a definable trivialization

(F, λ), then f behaves like a projection map A× F → A; more precisely, let π be

the projection on the first m coordinates, then the following diagram commutes:

.. A× F.S .

A

.

f

.(f, λ).

π

Note that for each a ∈ A, f−1(a) are homeomorphic to F . We call f definably

trivial if f has a definable trivialization. Given a definable subset A′ ⊆ A, we say

that f is definably trivial over A′ if the restriction f�f−1(A′) : f−1(A′)→ A′ is
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definably trivial. Note that if (F, λ) is a definable trivialization of f and A′ ⊆ A,

then (F, λ�f−1(A′)) is a definable trivialization of f�f−1(A′) : f−1(A′)→ A′.

Now we can state this theorem:

Theorem 1.26 (Triviailization Theorem [7, Chapter 9, Theorem 1.2]).

We can partition A into definable subsets A1, . . . , Ak, such that for each i = 1, . . . , k,

f is definably trivial over Ai.

1.3 Outline

In this dissertation, we mainly work on the selection problems in o-minimal ex-

pansion of a real closed field R. Fixed point problems and extension problems in

o-minimal context are also discussed.

In Chapter 2, we focus on the Definable Michael’s Selection Theorem. Let

E ⊆ Rn and T : E ⇒ Rm. In [19,20], E. Michael gave a sufficient condition for the

existence of continuous selections of T when R = R. In [2], A. Thamrongthanyalak

and M. Aschenbrenner proved a definable version of Michael’s Selection Theorem:

if E is a closed subset of Rn and T : E ⇒ Rm is a definable lower semi-continuous

set-valued map such that T (x) is nonempty, closed, and convex for each x ∈ E,

then T has a definable continuous selection. In addition, E. Michael showed that

the closedness of E and the closedness of T (x) are not necessary for the existence of

continuous selections. Hence, we want to improve the Definable Michael’s Selection

Theorem in the same manner. By using the Definable Michael’s Selection Theorem,

we first prove a special case and will use it to prove an improved version of the

Definable Michael’s Selection Theorem.

In Chapter 3, we introduce the concept of the Glaeser refinement. Roughly

speaking, the Glaeser refinement is a tool that we use to shave off “bad points” in

set-valued maps (in the sense that set-valued maps are not lower semi-continous

because of these points). We also prepare some results for Chapter 4. For instance,

we prove that if each value of a definable set-valued map is convex, then each value

of its Glaeser refinement is also convex. Moreover, we prove that definable set-
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valued maps will be stable after we apply Glaeser refinement finitely many times.

We finish this chapter by showing that the argument in the proof of stability is

sharp. More precisely, for each n ∈ N, we provide an example of a definable set-

valued map Tn such that the mth-refinement of Tn is stable if and only if m ≥ n.

Chapter 4 contains applications of the main theorem in Chapter 2. In Section

4.1, we ask this question: Let T be a definable set-valued map. Is the existence of

continuous selections a sufficent condition for the existence of definable continuous

selection of T? By using results in Chapter 3, we give a partial answer to this

question. Section 4.2 and 4.3 are consequences of Section 4.1. In section 4.2,

we want to characterize definable almost lower semicontinuous set-valued maps

by using the concept of definable ϵ-approximatie selections. In section 4.3, we

study the lower semi-continuous version of the Definable Kakutani’s Fixed Point

Theorem. In the last section, we give an example of a definable upper semi-

continuous set-valued map that does not have a continuous selection. Then we

prove the following statement: for each ϵ > 0, if T : E ⇒ Rm is a definable

upper semi-continuous set-valued map such that T (x) is nonempty and convex for

each x ∈ E, then there is a definable continuous map f : E → Rm such that

f ⊆ Bn+m(T, ϵ).

The content of Chapter 5 is independent from the rest of this dissertation. By

the Definable Tieze’s Extension, we know that each definable continous map on a

closed subset of Rn can be extended to the whole space. Hence, if T : E ⇒ Rm is

a definable continuous set-valued map and E is a closed subset of Rn, it is natural

to ask whether T has a definable continuous extension. We give a partial answer

to this question.

1.4 Conventions and notations

Throughout this dissertation, m,n and k will range over N = {0, 1, 2, 3, . . . }. We

let R be a real closed field and we equip Rn with the Euclidean R-norm ∥ ∥ defined

by ∥(x1, . . . , xn)∥ := the positive square root of
∑

i=1,...n x
2
i . We also equip Rn with
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the corresponding topology.

Let ϵ > 0, x ∈ Rn and S,K ⊆ Rn. Let d(x, S) := inf{∥x− y∥ : y ∈ S},

Bn(x, ϵ) := {y ∈ Rn : ∥x− y∥ < ϵ} and Bn(S, ϵ) :=
∪

s∈S Bn(s, ϵ). Also, we just

use B(x, ϵ) and B(S, ϵ) if its ambient space is clear from the context. Note that

{Bn(x, ϵ) : x ∈ Rn and ϵ > 0} is a topological basis of Rn.

Let AffS := {
∑n

i=0 αixi : xi ∈ S, αi ∈ R,
∑n

i=0 αi = 1} be the affine hull of S,

intK S be the relative interior of S in K, clK S be the relative closure of S in K,

and bdS be the boundary of S.



CHAPTER II

GENERRALIZATION OF DEFINABLE MICHAEL

SELECTION THEOREM

Throughout this chapter, let R be an o-minimal expansion of a real closed field R

and let E ⊆ Rn and T : E ⇒ Rm be definable. In 1956, E. Michael proved that:

([19, Theorem 3.1′′′]) if T is lower semi-continuous and each T (x) is nonempty

convex, then T has a continuous selection. However, the given construction may

produce a continuous selection that is far more complicated than how T arose

(see [28] for a discussion on this problem). Hence, we study this statement in the

o-minimal context. The main goal of this chapter is to prove the following theorem:

Theorem 2.1. Assume T is lower semi-continuous and T (x) is nonempty and

convex for every x ∈ E. Then T has a definable continuous selection.

2.1 Preliminaries

Now we begin working towards the proof of Theorem 2.1. First we prove the

following facts:

Lemma 2.2. Suppose that T is lower semi-continuous. Then the set-valued map

F : E ⇒ Rm defined by F (x) := clT (x) is definable and lower semi-continuous.

Proof. Obviously, F is definable. Let x0 ∈ E and y0 ∈ F (x0). Let ϵ > 0. Then

there is y ∈ Bm(y0, ϵ) ∩ T (x0). Since T is lower semi-continuous, there is δ > 0

such that for each x ∈ Bn(x0, δ)∩E, ∅ ̸= Bm(y, ϵ−∥y−y0∥)∩T (x) ⊆ Bm(y0, ϵ)∩

F (x).

Lemma 2.3. Let A be a definable closed subset of E and f : A→ Rm be a definable

selection of T �A. Suppose that T is lower semi-continuous set-valued map and f
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is continuous. Then the set-valued map F : E ⇒ Rm defined by

F (x) :=

T (x), if x ∈ E r A;

{f(x)}, if x ∈ A

is definable and lower semi-continuous.

Proof. It is clear that F is definable. Let x0 ∈ E, y ∈ F (x0) and ε > 0. Since

T is lower semi-continuous, there is δ1 > 0 such that for each x ∈ B(x0, δ1) ∩ E,

T (x) ∩ B(y, ε) ̸= ∅. Suppose that x0 ∈ E r A. Since E r A is open, there exists

δ2 > 0 such that for each B(x0, δ2) ⊆ E r A. Choose δ = min{δ1, δ2}. Then, for

each x ∈ B(x0, δ) ∩ E, F (x) ∩ B(y, ε) ̸= ∅. Next, we assume x0 ∈ A. Then y =

f(x0). Since f is continuous, there is δ2 > 0 such that for each x ∈ B(x0, δ2) ∩ A,

f(x) ∈ B(f(x0), ε). Choose δ = min{δ1, δ2}. Hence, for each x ∈ B(x0, δ) ∩ E,

F (x) ∩B(f(x0), ε) ̸= ∅.

Theorem 2.4 (Definable Michael Selection Theorem, M. Aschenbrenner and

A. Thamrongthanyalak [2, Theorem 2.2.1]). Let E be closed and T : E ⇒ Rm

be lower semi-continuous. Assume T (x) is nonempty, closed, and convex for each

x ∈ E. Then T has a definable continuous selection.

�We can prove that the closedness of E in the above theorem can be omitted.

Theorem 2.5. Suppose T is lower semi-continuous and T (x) is nonempty, closed

and convex for every x ∈ E. Then T has a definable continuous selection.

To prove this theorem, we recall these lemmas:

Lemma 2.6 (M. Aschenbrenner and A. Thamrongthanyalak [2, Theorem 2.1.4]).

There is a cell decomposition C of Rn such that C partitions E and for each C ∈ C,

T �C is lower semi-continuous and closed in C ×Rm.

Lemma 2.7 (M. Aschenbrenner and A. Thamrongthanyalak [2, Lemma 2.2.2]).

Let T : (0, 1) ⇒ Rm be a definable set-valued map. Let (0, y) ∈ clT . Then there

are ϵ ∈ (0, 1) and a definable continuous map f : (0, ϵ)→ Rm such that f(t) ∈ T (t)

for all t ∈ (0, ϵ) and limt→0+ f(t) = y.
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To prove Theorem 2.5, we follows the proof of the Definable Michael’s Selection

Theorem in [2].

Proof of Theorem 2.5. We proceed by induction on dimE. If dimE = 0, then E

is finite and the above statement is trivial. Suppose dimE > 0 and the result

holds for every set with dimension less than dimE. By Lemma 2.6, there is a

cell decomposition C partitions E such that for each C ∈ C, T �C is lower semi-

continuous and closed in C × Rm. By the Cell Decomposition Theorem, there is

a definable open subset S ⊆ E such that dimE r S < dimE and T �S is lower

semi-continuous and closed in S × Rm. By the induction hypothesis, there is a

definable continuous selection f : E r S → Rm. Since E r S is closed in E, by

the Definable Tietze’s Extension Theorem, there is a definable continuous function

g : E → Rm such that g = f on E r S. Since T (x) is closed and convex for all

x ∈ E, we can define h : E → Rm by

h(x) := the unique y ∈ T (x) such that ∥x− y∥ = d(x, T (x)).

Since T is definable, so is h. To show that h is continuous, let x0 ∈ E and

γ : (0, 1)→ E such that limt→0+ γ(t) = x0; we need to show that limt→0+ h(γ(t)) =

h(x0). First, we prove the following claim:

Claim. Let ϵ > 0. Then

∥g(x0)− h(γ(t))∥ ≤ ∥g(x0)− h(x0)∥+ ϵ as t→ 0+.

Proof of Claim. Since T is lower semi-continuous, by Lemma 2.7, there exist 0 <

ϵ < 1 and a definable continuous function ϕ : (0, ϵ)→ Rm such that ϕ(t) ∈ T (γ(t))

for each 0 < t < ϵ and limt→0+ ϕ(t) = h(x0). By continuity of g at x0, there is

δ > 0 such that for all x ∈ Bn(x0, δ) ∩ E, ∥g(x)− g(x0)∥ < 1
3
ϵ. Let t0 > 0 be

such that for each 0 < t ≤ t0, γ(t) ∈ Bn(x0, δ) and ∥ϕ(t)− h(x0)∥ < 1
3
ϵ. By the
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definition of h,

∥h(γ(t))− g(γ(t))∥ ≤ ∥ϕ(t)− g(γ(t))∥ for all t ∈ (0, 1).

Moreover, for 0 < t ≤ t0 we have

∥ϕ(t)− g(γ(t))∥ ≤ ∥ϕ(t)− h(γ(t))∥+ ∥h(γ(t))− g(x0)∥+ ∥g(x0)− g(γ(t))∥

≤ ∥g(x0)− h(γ(t))∥+ 2

3
ϵ

and therefore

∥g(x0)− h(γ(t))∥ ≤ ∥g(x0)− g(γ(t))∥+ ∥g(γ(t))− h(γ(t))∥

≤ 1

3
ϵ+ ∥g(γ(t))− ϕ(t)∥

≤ ∥g(x0)− h(γ(t))∥+ ϵ

as required. �
By the Monotonicity Theorem and this claim, y0 := limt→0+ h(γ(x)) exists in

Rm and ∥g(x0)− y0∥ ≤ ∥g(x0)− h(x0)∥+ϵ for every ϵ > 0. Hence, ∥g(x0)− y0∥ ≤

∥g(x0)− h(x0)∥. If x0 ∈ E r S, then g(x0) = h(x0) and hence y0 = g(x0) = h(x0).

Suppose x0 ∈ S. Since T �S is closed in S × Rm, we have y0 ∈ T (x0). By the

definition of h, y0 = h(x0). Therefore, h is continuous at x0.

2.2 Proof of Theorem 2.1

First, we will prove the following special case of Theorem 2.1.

Lemma 2.8. Suppose T is lower semi-continuous, and T (x) is a nonempty and

convex subset of Bm(0, 1) for every x ∈ E, then T has a definable continuous

selection.

Proof. We proceed by induction on the dimension of E. If dimE = 0, then E

is finite and the result holds trivially. Suppose dimE > 0 and the result holds
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for every set with dimension less than dimE. Define T0 : E ⇒ Rm by T0(x) :=

intAffT (x) T (x). Obviously, T0 is definable and T0(x) ⊆ T (x) for every x ∈ E. By

the Definable Choice and the Cell Decomposition Theorem, there exist S ⊆ E

open in E and a definable map f : E → Rm such that dimE r S < dimE, f�S is

continuous and f(x) ∈ T0(x) for every x ∈ T0(x). Inductively, let g0 : ErS → Rm

be a definable continuous selection of T �E r S. Define T1 : E ⇒ Rm by

T1(x) :=

clT (x), if x ∈ S;

{g0(x)}, if x ∈ E r S.

By Lemma 2.2 and 2.3, we have T1 is lower semi-continuous and definable, and

T1(x) is closed and convex for every x ∈ E. By Theorem 2.5, let g1 be a definable

continuous selection of T1.

By Lemma 1.22 and 1.23, there exist U ⊆ E definable open and t : E → [0, 1]

definable continuous such that ErS ⊆ U ( E, t−1(0) = ErS, and t−1(1) = ErU .

Next, we define h : E → Rm by

h(x) := (1− t(x))g1(x) + t(x)f(x).

Obviously, h is definable. To prove that h is a selection of T , it suffices to prove

the following claim:

Claim. If C ⊆ Rm is convex, a ∈ intAffC C, b ∈ clC, and 0 < t < 1, then

(1− t)a+ tb ∈ intAffC C.

Proof of Claim. Let c = (1 − t)a + tb. First, assume b ∈ intAffC C. Since a, b ∈

intAffC C, there is ϵ > 0 such that Bm(a, ϵ)∩AffC ⊆ C and Bm(b, ϵ)∩AffC ⊆ C.

We will show that Bm(c, ϵ)∩AffC ⊆ C. Let d ∈ Bm(c, ϵ)∩AffC. Then a+d−c ∈

Bm(a, ϵ)∩AffC and b+d−c ∈ Bm(b, ϵ)∩AffC. Therefore, a+d−c, b+d−c ∈ C.

Since C is convex and d = (1− t)(a+ d− c) + t(b+ d− c), d ∈ C.

Now let b ∈ clC. Then there is u ∈ Bm(b, (1 − t)ϵ/t) ∩ intAffC C. Since

a ∈ intAffC C, there is ϵ > 0 such that Bm(a, ϵ)∩AffC ⊆ C. Let v := t(b−u)/(1−

t) + a ∈ AffC. Then ∥v − a∥ < ϵ. Hence, v ∈ intAffC C. Since u, v ∈ intAffC C
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and tu+ (1− t)v = ta+ (1− t)b = c, by the above case, c ∈ intAffC C. �
Therefore, it remains to prove that h is continuous. Since E r S is closed in

E, it suffices to show that h is continuous at x0 ∈ E r S. Let x0 ∈ E r S and

ϵ > 0. Since g1 is continuous at x0, there is δ > 0 such that for all x ∈ Bn(x0, δ),

∥g1(x0)− g1(x)∥ < ϵ/2 and ∥t(x)∥ = ∥t(x0)− t(x)∥ < ϵ/4. Let x ∈ Bn(x0, δ).

Hence,

∥h(x0)− h(x)∥ ≤ ∥g1(x0)− g1(x)∥+ ∥t(x)∥ · ∥g1(x)∥+ ∥t(x)∥ · ∥f(x)∥

<
ϵ

2
+

2ϵ

4

= ϵ.

Therefore, h is continuous at x0.

Now that we have the above result, one of the most intuitive ideas to finish the

proof of Theorem 2.1 is to apply semialgebraic homeomorphisms from Bm(0, 1)

to Rm to reduce to the bounded case. However, such homeomorphisms do not

preserve the convexity. Therefore, we propose the following:

Proof of Theorem 2.1. We proceed by induction on dimE. The case dimE = 0

is trivial. Suppose that dimE > 0 and the result holds for sets with dimension

less than dimE. Suppose T is lower semi-continuous such that T (x) is nonempty

and convex for every x ∈ E. Similar to the proof of Lemma 2.8, there exists a

definable selection f of T and S ⊆ E definable such that E r S is closed in E,

dimE r S < dimE, and f�S is continuous. By the inductive hypothesis and

Lemma 1.25, let g : E → Rm be definable and continuous such that g(x) ∈ T (x)

for every x ∈ E r S. Define T − g : E ⇒ Rm by

T − g(x) := {y − g(x) : y ∈ T (x)}.

Observe that T−g is definable and lower semi-continuous, and T−g(x) is nonempty

and convex for every x ∈ E. Note that if h is a definable continuous selection of
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T − g, then h + g is a definable continuous selection of T . Hence, it suffices to

assume that g = 0.

Let W = {x ∈ E : Bm(0, 1)∩T (x) ̸= ∅}. Then W is open in E and ErS ⊆ W .

By Lemma 1.22, there are definable U, V ⊆ E such that U, V are open in E and

E r S ⊆ V ⊆ clE V ⊆ U ⊆ clE U ⊆ W .

Define T0 : clE U ⇒ Rm by T0(x) = Bm(0, 1) ∩ T (x). It is routine to check

that T0 is definable and lower semi-continuous. By Lemma 2.8 and Lemma 1.25,

let s : E → Rm be a definable and continuous such that s(x) ∈ T0(x) for every

x ∈ clE U . Since clE V ⊆ U , there is a definable continuous function t : E → [0, 1]

such that t−1(0) = clE V and t−1(1) = E r U . Define h : E → Rn by

h(x) := (1− t(x))s(x) + t(x)f(x).

Note that h is definable, h�V = s�V and h�E r U = f�E r U . Since s(x), f(x) ∈

T (x) for every x ∈ U r V , h is a selection of T . It remains to show that h

is continuous. Since s, f and t are continuous on S, h�S is continuous. The

restriction h�V is continuous because h�V = s�V . Since V,E r A are open and

V ∩ (E r A) ̸= ∅, h is continuous.

In Chapter 4, we will show some applications of Theorem 2.1.



CHAPTER III

GLAESER REFINEMENT

In this chapter, we study the concept of the Glaeser refinement which is introduced

in [13] (this concept is also called derived mapping in [3]). This concept plays

an important role in Chapter 4. Throughout this chapter, assume that R is an

o-minimal expansion of a real closed field R and let E ⊆ Rn and T : E ⇒ Rm be

definable.

The Glaeser refinement of T is a set-valued map T ′ : E ⇒ Rm given by for

each x0 ∈ E,

T ′(x0) := {y ∈ T (x0) : ∀ϵ > 0 ∃δ > 0 ∀x ∈ Bn(x0, δ) ∩ E,Bm(y, ϵ) ∩ T (x) ̸= ∅}

(equivalently,

T ′(x0) := {y ∈ T (x0) : d(y, T (x))→ 0 as x→ x0 where x ∈ E}).

Readers may think that the Glaeser refinement is a tool that we use to shave

off “bad points” in T . Obviously, if T is definable, then so is T ′. Since T ′ ⊆ T ,

selections of T ′ are also selections of T .

..
R

.

R

.

T

..
R

.

R

.

T ′

An example of the Glaeser refinement T ′ of a set-valued map T .

The following lemmas follow immediately from the definitions of lower semi-
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continuity and the Glaeser refinement.

Lemma 3.1. If T is lower semi-continuous, then T ′ = T .

Proof. Let (x0, y0) ∈ T and ϵ > 0. Since T is lower semi-continuous, there is δ > 0

such that for each x ∈ Bn(x0, δ), Bm(y0, ϵ) ∩ T (x) ̸= ∅. Hence, (x0, y0) ∈ T ′.

Lemma 3.2. If U ⊆ E is open in E, then T ′�U = (T �U)′.

Proof. Let (x0, y0) ∈ T ′�U and ϵ > 0. Then there is δ > 0 such that for all

x ∈ Bn(x0, δ), Bm(y0, ϵ)∩ T (x) ̸= ∅. Hence, (x0, y0) ∈ (T �U)′. Next, let (x0, y0) ∈

(T �U)′ and ϵ > 0. Then there is δ > 0 such that Bn(x0, δ) ⊆ U and for all x ∈

Bn(x0, δ), Bm(y0, ϵ)∩T (x) = Bm(y0, ϵ)∩T �U(x) ̸= ∅. Hence, (x0, y0) ∈ T ′�U .

Moreover,

Lemma 3.3. Suppose T (x0) is convex for every x0 ∈ E. Then T ′(x0) is convex

for every x0 ∈ E.

Proof. Let x0 ∈ E. If T ′(x0) = ∅, then we are done. Suppose T ′(x0) ̸= ∅.

Let a, b ∈ T ′(x0), and t ∈ [0, 1]. We will show that c = (1 − t)a + tb ∈ T ′(x0).

Let ϵ > 0. Then there is δ > 0 such that for each x ∈ Bn(x0, δ) there exist

ax ∈ Bm(a, ϵ/2)∩ T (x) and bx ∈ Bm(b, ϵ/2)∩ T (x). Hence, for each x ∈ Bn(x0, δ),

∥((1− t)a+ tb)− ((1− t)ax + tbx)∥ = ∥(1− t)(a− ax) + t(b− bx)∥

≤ (1− t)∥(a− ax)∥+ t∥(b− bx)∥

<
(1− t)ϵ

2
+

tϵ

2

= ϵ.

Hence, ta+ (1− t)b ∈ T ′(x0).

We inductively define a sequence (T (l))l∈N of set-valued maps by T (0) := T and

T (l+1) = (T (l))′ for every l ∈ N. We say that T is stable (under the Glaeser

refinement) if T ′ = T . It is natural to ask whether there exists a natural number

l such that T (l) is stable.
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Lemma 3.4. For all l ≥ dimE, T (l) = T (dimE).

Proof of Lemma 3.4. It is enough to prove that for each d ≤ dimE, there exists

a definable open subset U of E such that dim(E r U) < dimE − d and T (d)�U
is lower semi-continuous. We proceed by induction on d. The case d = 0 is

immediate from Lemma 2.6. Suppose the result holds for d. Let V ⊆ E be

definable and open in E such that dim(E r V ) < dimE − d and T (d)�V is lower

semi-continuous. Then T (d)(x) = T (d+1)(x) for every x ∈ V . By Lemma 2.6 and

the Cell Decomposition Theorem, let C be a cell decomposition of E r V such

that for each C ∈ C, T (d+1)�C is lower semi-continuous and frC is a finite union

of cells in C. Let U = V ∪
∪
{C ∈ C : dimC = dim(E r V )}. It is routine

to check that U is definable and open in E, and dim(E r U) < dimE − d − 1.

It remains to prove that T (d+1)�U is lower semi-continuous. Note that T (d)�V is

lower semi-continuous. Let x0 ∈ U r V and y0 ∈ T (d+1)(x). Let ϵ > 0. Then there

exists δ1 > 0 such that for every x ∈ Bn(x0, δ1)∩U , Bm(y0, ϵ)∩T (d)(x) ̸= ∅. Since

T (d)(x) = T (d+1)(x) for every x ∈ Bn(x0, δ1)∩V , we have Bm(y0, ϵ)∩T (d+1)(x) ̸= ∅

for every x ∈ Bn(x0, δ1)∩ V . Observe that T (d+1)�U r V is lower semi-conitnuous.

Hence, there exists a box 0 < δ2 < δ1 such that Bm(y0, ϵ)∩T (d+1)(x) ̸= ∅ for every

x ∈ Bn(x0, δ2) ∩ (U r V ). Thus, T (d+1)�U is lower semi-continuous.

As a consequence of Lemma 3.4, we have T (dimE) is stable. For convenience,

we write T (∗) = T (dimE). Note that, by the definition of the Glaeser refinement,

T (∗) is lower semi-continuous.

Next, we will show that the stabilization method in Lemma 3.4 is sharp. Let

n ∈ Nr {0} and x = (x1, . . . , xn) ∈ Rn. For i ∈ {1, . . . , n− 1}, let

yij(x) :=


1, if j = i;

xixi+1/ |xi+1| , if j = i+ 1 and xi+1 ̸= 0;

0, otherwise.

and let vni (x) = (yi1(x), . . . , yin(x)).
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Let U := (−1, 0)∪(0, 1). A sequence (En)n∈N is recursively defined by E0 := R0

and En+1 := Un+1 ∪ (En × {0}) ⊆ Rn+1.

Example 3.5. For each n ∈ Nr {0}, define Tn : En ⇒ Rn by

Tn(x) :=

span{vn1 (x), . . . , vnn−1(x)}, if x ∈ Un;

Rn, otherwise.

.. R.

R

.
1

.
−1

.

T1

The graph of T1.

.. y1.

y2

.

x1

Examples of T2(x1, x2) when (x1, x2) ∈ E2 and x2 < 0.
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.. y1.

y2

.

x1

Examples of T2(x1, 0) when (x1, 0) ∈ E2.

.. y1.

y2

.

x1

Examples of T2(x1, x2) when (x1, x2) ∈ E2 and x2 > 0.

Let n ∈ Nr {0} and k ∈ N. Then for every x ∈ En, T (k)
n (x) = T

(k+1)
n (x) if and

only if k ≥ n.

Proof. We proceed by induction on n ≥ 1. It is easy to see that T ′
1(0) = {0} ̸=

R = T1(0). Assume for every x ∈ En, T (k)
n (x) = T

(k+1)
n (x) if and only if k ≥ n. It

suffices to show that for every x ∈ En+1,

T ′
n+1(x) =


Tn+1(x), if x ∈ Un+1;

span{vn+1
1 (x), . . . , vn+1

n−1(x)}, if x ∈ Un × {0};

Rn × {0}, otherwise.

Note that for each i, vn+1
i is continuous on Un+1; therefore, Tn+1 is lower semi-

continuous on Un+1. If x ∈ Un+1, then T ′
n+1(x) = Tn+1(x). Suppose x =
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(x1, . . . , xn, 0) ∈ Un×{0}. We will prove that T ′
n+1(x) = span{vn+1

1 (x), . . . , vn+1
n−1(x)}.

Since limUn+1∋z→x v
n+1
i (z) = vn+1

i (x) for each i ∈ {1, . . . , n− 1},

span{vn+1
1 (x), . . . , vn+1

n−1(x)} ⊆ T ′
n+1(x).

Let y ∈ T ′
n+1(x). Let v1 = vn+1

n (x1, . . . , xn, 1/2) and v2 = vn+1
n (x1, . . . , xn,−1/2).

Note that for every t ∈ (0, 1) and i ∈ {1, . . . , n− 1}, we have

vn+1
i (x1, . . . , xn, t) = vn+1

i (x) = vn+1
i (x1, . . . , xn,−t),

vn+1
n (x1, . . . , xn, t) = v1,

vn+1
n (x1, . . . , xn,−t) = v2.

Then for every ϵ > 0,

d(y, span{vn+1
1 (x), . . . , vn+1

n−1(x), v1}) < ϵ,

d(y, span{vn+1
1 (x), . . . , vn+1

n−1(x), v2}) < ϵ.

Therefore,

y ∈ span{vn+1
1 (x), . . . , vn+1

n−1(x), v1} ∩ span{vn+1
1 (x), . . . , vn+1

n−1(x), v2}

= span{vn+1
1 (x), . . . , vn+1

n−1(x)}.

Let x ∈ En−1 × {0}2. Then there is an integer k ≤ n − 1 such that x ∈

Uk × {0}n+1−k. Since dimT ′
n+1(x) ≤ lim infz→x dimTn+1(z), it suffices to prove

that vn+1
i (x) ∈ T ′

n+1(x) for every i ∈ {1, . . . , n}. Observe that

lim
Un+1∋z→x

vn+1
i (z) = vn+1

i (x)

for every i ∈ {1, . . . , n} r {k}. For each z = (z1, . . . , zn+1) ∈ Un+1, let Cz :=
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zkzk+1/ |zk+1|. Therefore,

lim
Un+1∋z→x

(vn+1
k (z)− Czv

n+1
k+1 (z)) = vn+1

k (x).

Hence, T ′
n+1(x) = Rn × {0}.

Note that, for each n ∈ N, Tn is definable in the real field (R;<,+, ·). Hence, the

stabilization method in Lemma 3.4 is sharp. Moreover, as far as we are concerned,

T3 is the first example of a set-valued map which is not stable after applying the

Glaeser refinement twice.



CHAPTER IV

APPLICATIONS

Unless indicated otherwise, let R be an o-minimal expansion of a real closed field

R. Let E ⊆ Rn and T : E ⇒ Rm be a set-valued map. In this chapter, we study

applications of Theorem 2.1 in various problems.

4.1 Existence of selections and definable selections

In this section, we study the correspondence between the existence of selections

and definable selections in R. Obviously, the existence of definable continuous

selections implies the existence of continuous selections. Hence, this question arises:

If T has a continuous selection, is there a continuous selection of T definable

in (R;<,+, ·, T )?

Roughly speaking, if T has a continuous selection, is there a continuous selection

of T that can be defined by only +, · and T?

However, the answer is “no”.

Example 4.1. Let R be the set of real algebraic numbers and M := (R;<,+, ·).

Let T : R ⇒ R be defined by

T (x) :=


{0}, if x < 0;

{0, 1}, if 0 ≤ x ≤ 4;

{1}, if x > 4.

The structure M is o-minimal and T is definable in M. Observe that f : R → R
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defined by

f(x) :=

0, if x < π;

1, if x > π,

is a continuous selection of T . However, by o-minimality, T has no continuous

selection definable in M.

The problem is that definably connected sets need not be connected. Therefore,

it is natural to ask this question in structures that definably connected sets are

connected. Note that definably connected sets in o-minimal expansion of the real

field are connected. Moreover, let us consider the following examples:

1. If (R;<,+, ·, T ) defines Z, then every Borel set is definable in (R;<,+, ·, T )

(see [18, Exercise 37.6]). Therefore, if E is Borel and (R;<,+, ·, T ) defines

Z, then every continuous selection of T is definable.

2. Let M be the double helix defined in [12] and define T : R ⇒ R2 by T (z) =

{(x, y) ∈ R2 : (x, y, z) ∈ M}. Then (R;<,+, ·, T ) is not o-minimal and a

continuous selection of T must be interdefinable with a connected component

of M , which is not definable in (R;<,+, ·, T ).

These give rise to the following question:

If T has a continuous selection and (R;<,+, ·, T ) is o-minimal, is there a

continuous selection of T definable in (R;<,+, ·, T )?

Throughout this section, let R be an o-minimal expansion of the real field,

E ⊆ Rn and T : E ⇒ Rm be definable in R. Here, we will give a partial answer to

the above question:

Theorem 4.2. Suppose that n = 1 or m = 1. Then T has a continuous selection

if and only if T has a definable continuous selection.

Now, we work towards the proof of Theorem 4.2. First, we prove this useful

theorem:
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Theorem 4.3. Suppose for each x ∈ E, each connected component of T (x) is

convex, and T has a continuous selection. Then T has a definable continuous

selection.

Proof. Let T : E ⇒ Rn be definable such that for each x ∈ E, connected compo-

nents of T (x) are convex, and f : E → Rn be a continuous selection of T . By the

Trivialization Theorem and the Cell Decomposition Theorem, there exists a cell

decomposition C of E, (AC)C∈C and (hC)C∈C such that for each C ∈ C, AC ⊆ Rn

is definable and hC : T �C → C × AC is a definable homeomorphism, and for each

x ∈ C, hC({x} × T (x)) = {x} × AC . Let C ∈ C. Note that f�C is connected.

Therefore, hC(f�C) is contained in a unique connected component of C × AC .

Observe that every connected component of C × AC is the set C ×X where X is

a connected component of AC . For each C ∈ C, let XC be a connected component

of AC such that hC(f�C) ⊆ C ×XC .

Let T0 =
∪
{h−1

C (C×XC) : C ∈ C}. Then T0 ⊆ T is a definable set-valued map

E ⇒ Rn such that T0(x) is convex for every x ∈ E.

Note that f is a continuous selection of T0. Hence, T
(∗)
0 (x) is nonempty for

every x ∈ E. Moreover, by Lemma 3.3, each T
(∗)
0 (x) is convex. Since T

(∗)
0 is

stable, T (∗)
0 is lower semi-continuous. Hence, by Theorem 2.1, T (∗)

0 has a definable

continuous selection, which is also a selection of T0. Therefore, T has a definable

continuous selection.

Note that the last part of this proof is also valid in an o-minimal expansion of

a real closed field. Therefore, we have:

Corollary 4.4. Let R be an o-minimal expansion of a real closed field R and

E ⊆ Rn. Let T : E ⇒ Rm be definable. Suppose for each x ∈ E, T (x) is convex.

If T has a continuous selection, then T has a definable continuous selection.

Let T : E ⇒ R be definable. Since every connected subset of R is convex, T

has a continuous selection if and only if T has a definable continuous selection. To

finish the proof of Theorem 4.2, it suffices to consider the case n = 1.

In [4], M. Czapla and W. Pawłucki proved the following theorem:



37

Theorem 4.5 (M. Czapla and W. Pawłucki [4]). Let T : E ⇒ Rm be a definable

and lower semi-continuous set-valued map with nonempty connected values and

dimE = 1. Then T has a definable continuous selection.

We are now ready to prove a slight modification of the case n = 1.

Theorem 4.6. Suppose dimE = 1. If T has a continuous selection, then T has a

definable continuous selection.

Proof. Let f : E → Rm be a continuous selection of T . By the same argument as

in the Proof of Theorem 4.3, there exists a definable set-valued map T0 : E ⇒ Rm

such that f ⊆ T0 and for every x ∈ E, T0(x) is connected. By Lemma 2.6, let

C be a cell decomposition of E such that T0�C is lower semi-continuous for every

C ∈ C. Let E0 =
∪
{C ∈ C : dimC = 0}. Then E0 is finite. Define T1 : E ⇒ Rm

by

T1(x) :=

{f(x)}, if x ∈ E0;

T0(x), if x /∈ E0.

By Lemma 2.3, T1 is lower semi-continuous. By Theorem 4.5, this completes the

proof.

4.2 Existence of definable ϵ-approximate selections

In this section, we assume that R is an o-minimal expansion of a real closed field

R.

We say that T is almost lower semi-continuous if for every x0 ∈ E and

ϵ > 0 there is δ > 0 such that
∩

x∈Bn(x0,δ)∩E Bm(T (x), ϵ) ̸= ∅; for each ϵ > 0, a

map f : E → Rm is an ϵ-approximate selection of T if f(x) ∈ Bm(T (x), ϵ),

for each x ∈ E. In [10], F. Deutsch and P. Kenderov studied the concepts of

almost lower semi-continuous and ϵ-approximate selections, and showed a relation

between these two concepts.
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Examples of an almost lower semi-continuous set-valued map (left) and

an ϵ-approximate selection f of a set-valued map T (right).

Theorem 4.7 (F. Deutsch and P. Kenderov [10, Theorem 2.4]). Suppose that T (x)

is nonempty and convex for each x ∈ E. Then T is almost lower semi-continuous

iff T admits a continuous ϵ-approximate selection for each ϵ > 0.

If each T (x) is nonempty and convex, then this theorem provides an alternative

definition of almost lower semi-continuity of T . Hence, this question arises:

Let T be definable such that each T (x) is nonempty and convex. Is the almost

lower semi-continuity of T equivalent to the existence of definable ϵ-approximate

selections?

The answer is yes. Next, we prove a definable version of Theorem 4.7 in o-

minimal context.

Theorem 4.8. Suppose that T is definable and T (x) is nonempty and convex for

each x ∈ E. Then the following are equivalent:

(a) T is almost lower semi-continuous;

(b) T admits a continuous ϵ-approximate selection for each ϵ > 0;

(c) T admits a definable continuous ϵ-approximate selection for each ϵ > 0.

Proof. By Theorem 4.7, (a) and (b) are equivalent. To show that (b) and (c) are

equivalent, by Corollary 4.4, it suffices to show that if C is a convex subset of Rm,

then B(C, ϵ) is convex. Let a, b ∈ B(C, ϵ) and t ∈ [0, 1]. Let c := ta+(1−t)b. Then
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there exist a′, b′ ∈ C such that ∥a − a′∥, ∥b − b′∥ < ϵ. Define c′ := ta′ + (1 − t)b′,

then

∥c− c′∥ ≤ t∥a− a′∥+ (1− t)∥b− b′∥ < ϵ.

Hence, c ∈ B(C, ϵ).

4.3 Existence of fixed points of definable set-valued maps

In this section, we assume that R is an o-minimal expansion of a real closed field

R.

Let X ⊆ Rn. We say that a function f : X → X has a fixed point x0 ∈ X if

x0 = f(x0). Moreover, a set-valued map T : X ⇒ X has a fixed point x0 ∈ X if

x0 ∈ T (x0). The main result of this section is a lower semi-continuous version of

the Definable Kakutani’s Fixed Point Theorem:

Theorem 4.9. Let X ⊆ Rn be closed bounded convex and definable. Let T : X ⇒
X be a definable lower semi-continuous set-valued map such that T (x) is nonempty

and convex for each x ∈ X. Then T has a fixed point.

We will prove the above theorem by using the following results:

Theorem 4.10 (M. J. Edmundo [11, Corollary 3.6]). Let X ⊆ Rn be definable

closed and bounded and f : X → X be definable and continuous. If the Euler

characteristic E(X) ̸= 0 and there exists a definable continuous function h : X ×

[0, 1]→ X such that h(x, 0) = f(x) and h(x, 1) = x for each x ∈ X, then f has a

fixed point.

Lemma 4.11. Let S be a simplex. Then E(clS) = 1.

Proof. Let S be a k-simplex and S be the collection of faces of S. By the definition

of the Euler characteristic of simplices, we have

E(clS) =
∑
σ∈S

E(σ) =
k+1∑
i=1

(−1)i+1

(
k + 1

i

)
.
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By the Binomial Theorem,
∑k+1

i=0 (−1)i
(
k+1
i

)
= 0. Therefore,

E(clS) =
k+1∑
i=1

(−1)i+1

(
k + 1

i

)
= 1 +

k+1∑
i=0

(−1)i+1

(
k + 1

i

)
= 1.

This completes the proof.

We are ready to prove Theorem 4.9.

Proof of Theorem 4.9. Define F : X × [0, 1] ⇒ X by

F (x, t) :=


T (x), if t = 0;

{x}, if t = 1;

X, otherwise.

Clearly, F is definable. Since X and T (x) are convex for each x ∈ X, F (x, t) is

convex for each x ∈ X and t ∈ [0, 1]. Moreover, F is lower semi-continuous because

T is lower semi-continuous. By Theorem 2.1, F has a definable continuous selection

f . Define g : X → X by g(x) := f(x, 0). If g has a fixed point, so is T . Hence, by

Theorem 4.10, it suffices to show that E(X) = 1. By the Triangulation Theorem,

there exists a complex K in Rn such that X is definably homeomorphic to |K|.

Since X is closed, bounded, and definably connected, |K| is closed and definably

connected. Note that, by the Cell Decomposition Theorem, for all definable sets

A and B, E(A ∪ B) = E(A) + E(B) − E(A ∩ B). Hence, we reduce to the case

where |K| is the closure of a simplex. By Lemma 4.11, E(|K|) = 1. Since the

Euler characteristic is preserved under definable bijection, E(X) = 1.

The convex condition of X in this theorem is necessery. Consider this example,

let S := {x ∈ Rn : ∥x∥ = 1} and T : S ⇒ S be defined by T (x) := {−x}. Then T

has no fixed points and T is definable and continuous.
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4.4 Approximation of upper semi-continuous set-valued

maps by using Cp-maps

Note that upper semi-continuous set-valued maps do not necessarily have contin-

uous selections even their values are closed, bounded, and convex;

Example 4.12. Let T : R ⇒ R be a set-valued map defined by

T (x) :=


{0}, if x < 0;

[0, 1], if x = 0;

{1}, if x > 0.

Then T does not have continuous selections.

However, in [1, Chapter 9], we have this result: let ϵ > 0 and T : E → Rm

be an upper semi-continuous set-valued map such that for each x ∈ E, T (x) is

nonempty and convex. Then there exists a continuous function f : E → Rm such

that f ⊆ Bn+m(T, ϵ).

Hence, this question arises:

Let ϵ > 0. If T : E ⇒ Rm is a definable upper semi-continuous set-valued

map and T (x) is nonempty convex for each x ∈ E, is there a definable continuous

function f : E → Rm such that f ⊆ Bn+m(T, ϵ)?

The answer is yes.

Theorem 4.13. Suppose T is upper semi-continuous and definable such that T (x)

is nonempty and convex for each x ∈ E. Then for each ϵ > 0, there is a definable

continuous map f : E → Rm such that f ⊆ Bn+m(T, ϵ).

Proof. Let ϵ > 0. We proceed by induction on dimE. The case dimE = 0 is trivial.

Suppose the theorem holds for all set-valued maps whose domain has dimension

less than dimE. By Lemma 2.6, there is a definable set S open in E such that

T �S is lower semi-continuous and dimE r S < dimE. Then there is a definable

continuous function g0 : E r S → Rm such that g0 ⊆ Bn+m(T �E r S, ϵ/4). By
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the Definable Tietze’s Extension Theorem, there is a definable continuous function

g : E → Rm such that g�ErS = g0. Next, by Theorem 2.1, there exists a definable

continuous selection h of T �S. Define r : E r S → R by

r(x) := sup{r′ ∈ (0,
ϵ

2
] : ∀x′ ∈ Bn(x, r

′) ∩ E, T (x′) ⊆ Bm(T (x),
ϵ

4
) and

g(x′) ∈ Bm(g(x),
ϵ

4
)}.

Obviously, r is definable. Since T is upper semi-continuous and g is continuous,

r(x) > 0 for every x ∈ ErS. Let U :=
∪

x∈ErS Bn(x, r(x)). Then U is a definable

open subset of E containing E rS. By Lemma 1.22, there exists a definable open

subset V of E such that E r S ⊆ V ⊆ clE V ⊆ U ⊆ E. By Lemma 1.23, there

exists a definable continuous function t : E → [0, 1] such that t−1(0) = clE V and

t−1(1) = E r U . Define f : E → Rn by

f(x) :=

(1− t(x))g(x) + t(x)h(x), if x ∈ S;

g(x), if x ∈ E r S.

Clearly, f is definable. To show that f is continuous, let x0 ∈ E. Since S is open in

E and g(x), h(x), and t(x) are continuous on S, f is continuous on E. Therefore,

we may assume x0 ∈ E r S. Since t−1(0) = clE V , f(x) = g(x) for every x ∈ V .

Since g is continuous on V and x0 ∈ V , f is continuous at x0.

Next, we will show that f ⊆ Bn+m(T, ϵ). Let x0 ∈ E. If x0 ∈ E r U , then

f(x0) = h(x0) ∈ T (x0). Suppose that x0 ∈ U . Then there is x ∈ E r S such

that x0 ∈ Bn(x, r(x)), T (x0) ⊆ Bm(T (x), ϵ/4), and g(x0) ∈ Bm(g(x), ϵ/4). Since

Bm(T (x), ϵ/2) is a convex set containing g(x0) and h(x0), Bm(T (x), ϵ/2) also con-

tains f(x0). Hence, there is y ∈ T (x) such that ∥y − f(x0))∥ < ϵ/2. Therefore,

∥(x, y)− (x0, f(x0))∥ ≤ ∥x− x0∥+ ∥y − f(x0)∥ < ϵ/2 + ϵ/2 = ϵ.

This completes the proof.
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In fact, if E is open, then for each ϵ > 0 and p ∈ N, there exists a definable

Cp-map f : E → Rm satisfies f ⊆ Bn+m(T, ϵ).

Corollary 4.14. Suppose T is upper semi-continuous and definable such that T (x)

is nonempty and convex for each x ∈ E. If E is open, then for each ϵ > 0 and

p ∈ N, there is a definable Cp-map f : E → Rm such that f ⊆ Bn+m(T, ϵ).

To prove this result we recall:

Theorem 4.15 (A. Thamrongthanyalak [27, Corollary 4.1]). Let E be open and

f : E → Rm be a definable continuous map. Let ϵ > 0 and p ∈ N. Then there

exists a definable Cp-map g : E → Rm such that ∥g(x)− f(x)∥ < ϵ for each x ∈ E.

This theorem tells us that we can approximate definable continuous maps by

definable Cp-maps.

Proof of Corollary 4.14. Suppose that E is open. Let ϵ > 0 and p ∈ N. By

Theorem 4.13, we obtain a definable continuous map f : E → Rm such that

f ⊆ Bn+m(T, ϵ/2). By Theorem 4.15, there is a Cp-map g : E → Rm such that

∥g(x)− f(x)∥ < ϵ/2 for each x ∈ E. Hence, g ⊆ Bn+m(T, ϵ).



CHAPTER V

DEFINABLE EXTENSION OF CONTINUOUS

SET-VALUED MAPS

Throughout this chapter, assume that R is an o-minimal expansion of a real closed

field R and let E ⊆ Rn and T : E ⇒ Rm be definable. We say a set-valued map

F : Rn ⇒ Rm is an extension of T if F (x) = T (x) for each x ∈ E. By the

Definable Tietze’s Extension Theorem, we know that definable continuous maps

on closed sets have definable continuous extensions. Hence, we are interested in

this question:

Does a definable continuous set-valued map on a closed domain have a definable

continuous extension?

Recall that a set-valued map is continuous if it is lower semi-continuous and

upper semi-continuous. In this chapter, we partially answer this question. First,

we prove these lemmas.

Lemma 5.1. Let Y ⊆ Rm. If f : E → Y is definable and continuous and T : Y ⇒
Rk is definable and continuous, then T ◦f : E ⇒ Rk defined by T ◦f(x) := T (f(x))

is definable and continuous.

Proof. Obviously, T ◦ f is definable. To show that T ◦ f is lower semi-continuous,

let x0 ∈ E, z0 ∈ T ◦ f(x0) and ϵ > 0. Since T is lower semi-continuous, there

is δ1 > 0 such that for each y ∈ Bm(f(x0), δ1) ∩ Y , T (y) ∩ Bk(z0, ϵ) ̸= ∅. Since

f is continuous, there is δ > 0 such that for each x ∈ Bn(x0, δ) ∩ E, f(x) ∈

Bm(f(x0), δ1). Hence, for each x ∈ Bn(x0, δ) ∩ E, T ◦ f(x) ∩Bk(z0, ϵ) ̸= ∅.

To prove that T ◦ f is upper semi-continuous, let x0 ∈ E and ϵ > 0. Since

T is upper semi-continuous, there is δ1 > 0 such that T (y) ⊆ Bk(T ◦ f(x0), ϵ)

for all y ∈ Bm(f(x0), δ1) ∩ Y . Since f is continuous, there is δ > 0 such that
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for each x ∈ Bn(x0, δ) ∩ E, f(x) ∈ Bm(f(x0), δ1). Hence, for each x ∈ Bn(x0, δ),

T ◦ f(x) ⊆ Bk(T ◦ f(x0), ϵ).

Next, we show that the Cartesian product of two continuous set-valued maps

is continuous:

Lemma 5.2. Let T : E ⇒ Rm and T ′ : E ′ ⇒ Rk be definable continuous set-valued

maps where E,E ′ ⊆ Rn. Define T × T ′ : E × E ′ ⇒ Rm+k by T × T ′(x, x′) :=

T (x)× T ′(x′). Then T × T ′ is definable and continuous.

Proof. Obviously, T × T ′ is definable. We will show that T × T ′ is lower semi-

continuous. Let (x0, x
′
0) ∈ E × E ′, (y0, y

′
0) ∈ T × T ′(x0, x

′
0) and V be an open

neighborhood of (y0, y′0). Then there is ϵ > 0 such that Bm(y0, ϵ)×Bk(y
′
0, ϵ) ⊆ V .

Since T and T ′ are lower semi-continuous, there exists δ > 0 such that for each

x ∈ Bn(x0, δ) and x′ ∈ Bn(x
′
0, δ), T (x)∩Bm(y0, ϵ) ̸= ∅ and T ′(x′)∩Bk(y

′
0, ϵ) ̸= ∅.

Hence, for each (x, x′) ∈ B2n((x0, x
′
0), δ), T × T ′(x, x′) ∩ V ̸= ∅.

To prove that T × T ′ is upper semi-continuous, let (x0, x
′
0) ∈ E × E ′ and

ϵ > 0. Then there is ϵ′ > 0 such that Bm(T × T ′(x0), ϵ
′) × Bk(T × T ′(x′

0), ϵ
′) ⊆

Bm+k(T × T ′(x0, x
′
0), ϵ). Since T and T ′ are upper semi-continuous, there exists

δ > 0 such that for each x ∈ Bn(x0, δ) and x′ ∈ Bn(x
′
0, δ), T (x) ⊆ Bm(T (x0), ϵ

′)

and T ′(x′) ⊆ Bk(T (x
′
0), ϵ

′). Therefore, for each (x, x′) ∈ B2n((x0, x
′
0), δ),

T × T ′(x, x′) ⊆ Bm(T × T ′(x0), ϵ
′)×Bk(T × T ′(x′

0), ϵ
′) ⊆ Bm+k(T × T ′(x0, x

′
0), ϵ).

This completes the proof.

Next is a version of the Pasting Lemma for definable set-valued maps.

Lemma 5.3. Let E,E ′ be closed subsets of Rn. Let T : E ⇒ Rm and T ′ : E ′ ⇒ Rm

be definable continuous set-valued maps such that T = T ′ on E ∩ E ′. Define

F : E ∪ E ′ ⇒ Rm by

F (x) :=

T (x), if x ∈ E;

T ′(x), if x ∈ E ′.
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Then F is definable and continuous.

Proof. Obviously, F is definable. Next, we will prove that F is continuous. Let

x0 ∈ E ∪ E ′. Since E ∩ E ′ is closed, (E ∪ E ′)r (E ∩ E ′) is open in E ∪ E ′. Since

F = T on ErE ′ and F = T ′ on E ′rE, F is continuous on (E∪E ′)r(E∩E ′). We

may assume x0 ∈ E∩E ′. Let y0 ∈ F (x0) and ϵ > 0. Since T and T ′ are continuous,

there is δ > 0 such that for each x ∈ Bn(x0, δ) ∩ (E ∪ E ′), F (x) ∩ Bm(y0, ϵ) ̸= ∅

and F (x) ⊆ Bm(F (x0), ϵ). Therefore, F is continuous.

Now, we ready to prove the main theorem of this chapter:

Theorem 5.4. Let E be a closed subset of Rn. If T : E ⇒ Rm is a definable

continuous set-valued map such that for each x ∈ bdE, T (x) is bounded, then T

has a definable continuous extension.

Proof. Let T : E ⇒ Rm be a definable continuous set-valued map where E is a

closed subset of Rn. By Corollary 1.24, there is a definable open set U containing

bdE and a definable retraction r : clU → bdE. Define r′ : clU ∪ E → E by

r′(x) :=

x, if x ∈ E;

r(x), otherwise.

Clearly, r′ is a definable continuous map such that for each x ∈ clUrintE, r′(x) ∈

bdE . Let V = U ∪E. Since U ∪E = U ∪ intE, V is an open neighborhood of E.

By Lemma 1.22, there is a definable continuous function t : Rn → [0, 1] such that

t−1(1) = E and t−1(0) = Rn r V . Note that every function can be considered as a

set-valued map. Define ϕ : Rm× [0, 1]→ Rm by ϕ(x1, . . . , xm, s) := (sx1, . . . , sxm)

and define F : Rn ⇒ Rm by

F (x) :=

ϕ(T ◦ r′ × t(x)), if x ∈ clV ;

{0}, otherwise.

We claim that F is a definable continuous extension of T . Obviously, F is definable.

Next, we will show that F is continuous. Clearly, F �Rn r V is continuous. By
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Lemma 5.3, it suffices to show that F is continuous on clV . Since r′ and t are

continuous and T is a continuous set-valued map, by Lemma 5.1 and 5.2, T ◦r′×t is

continuous on clV . To show that F is lower semi-continuous on clV , let x0 ∈ clV ,

z0 ∈ F (x0) and ϵ > 0. Then there is y0 ∈ T ◦ r′(x0) such that ϕ(y0, t(x0)) = z0.

Since ϕ is continuous, there exists ϵ1 > 0 such that ϕ(Bm+1((y0, t(x0)), ϵ1)) ⊆

Bm(z0, ϵ). Since T ◦ r′× t is lower semi-continuous on clV , there is δ > 0 such that

for each x ∈ Bn(x0, δ) ∩ clV ,

F (x) ∩Bm(z0, ϵ) ⊇ ϕ(T ◦ r′ × t(x)) ∩Bm(z0, ϵ)

⊇ ϕ(T ◦ r′ × t(x) ∩Bm+1((y0, t(x0)), ϵ1))

̸= ∅.

Hence, F is lower semi-continuous on clV . To show that F is upper semi-continuous

on clV , let ϵ > 0 and x0 ∈ clV . Since F (x) = T ◦ r′(x) for each x ∈ intE, F

is upper semi-continuous on intE. We may assume x0 ∈ clV r intE. Since

r′(x0) ∈ E, T ◦ r′(x0) is bounded. Then there is M > 1 such that T ◦ r′(x0) ⊆

Bm(0,M). We claim that ϕ(Bm+1(T ◦ r′ × t(x0), ϵ/2M)) ⊆ Bm(F (x0), ϵ). Let

(y, s) ∈ Bm+1(T ◦ r′ × t(x0), ϵ/2M). Then there is y′ ∈ T ◦ r′(x0) such that

∥y − y′∥ < ϵ/2M . Since T ◦ r′(x0) ⊆ Bm(0,M), we have

∥ϕ(y, s)− ϕ(y′, t(x0))∥ ≤ ∥ϕ(y, s)− ϕ(y′, s)∥+ ∥ϕ(y′, s)− ϕ(y′, t(x0))∥

≤ ∥s · (y − y′)∥+ ∥(s− t(x0)) · y′∥

≤ ∥y − y′∥+ ϵ

2M
· ∥y′∥

<
ϵ

2
+

ϵ

2
= ϵ.

Since T ◦ r′× t is upper semi-continuous on clV , there is δ > 0 such that for every

x ∈ Bn(x0, δ) ∩ clV , T ◦ r′ × t(x) ⊆ Bm+1(T ◦ r′ × t(x0), ϵ/2M). Hence,

F (x) ⊆ ϕ(Bm+1(T ◦ r′ × t(x0), ϵ/2M)) ⊆ Bm(F (x0), ϵ).
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Therefore, F is upper semi continuous on clV . To show that F is an extension

of T , let x ∈ E. Then F (x) = ϕ(T ◦ r′(x) × {t(x)}) = ϕ(T (x) × {1}) = T (x).

Therefore, F is a definable continuous extension of T as desired.
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