THE EFFECT OF SIZING AGENTS ON THE SILANOL CONDENSATION OF SILANE IN SOLUTION

Mr. Bunyarit Rotchanarat

3.1

A Thesis Submitted in Partial Fulfillment of the Requirments for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma and Case Western Reserve University 1997 ISBN 974-636-129-5

Thesis Title	:	The Effect of Sizing Agents on the Silanol
		Condensation of Silane in Solution
Ву	•	Mr. Bunyarit Rotchanarat
Program	:	Polymer Science
Thesis Advisors	:	Prof. Hatsuo Ishida
		Dr. Nantaya Yanumet

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

(Prof. Somchai Osuwan)

Thesis Committee

(Prof. Hatsuo Ishida)

N. Yanuput.

(Dr. Nantaya Yanumet)

(Dr. Suwabun Chirachanchai)

ABSTRACT

##952003 : POLYMER SCIENCE PROGRAM KEY WORDS : SILANE, SIZING AGENT, SILANOL CONDENSATION BUNYARIT ROTCHANARAT: THE EFFECT OF SIZING AGENTS ON THE SILANOL CONDENSATION OF SILANE INSOLUTION. THESIS ADVISORS: PROF. HATSUO ISHIDA AND DR.NANTAYA YANUMET 67 pp.ISBN 974-636-129-5

The effect of antistatic sizing agent on the condensation reaction of the silanol groups of γ -methacryloxypropyltrimethoxysilane(γ -MPS) was studied by using Fourior transform infrared spectroscopy(FTIR) and size exclusion chromatography(SEC). The mixture system between y-MPS and vinyl trimethyl quaternary ammonium chloride (VTAC) sizing agent was used as the model treating system. It was found that VTAC influenced the silanol condensation of silane coupling agent through its effects on the pH of the treating solution and its interaction with the γ -MPS molecules. The silanol condensation of γ -MPS in the presence of a typical film-former and lubricant has also been studied. The model sizing system consisting of y-MPS, polyvinylacetate (PVAc) and polyethyleneglycol (PEG) has been investigated by using Fourior transform infrared spectroscopy(FTIR) and size exclusion chromatography (SEC). It was found that PVAc enhanced silanol condensation through its interaction with the methacryl group of γ -MPS. In the system with only γ -MPS and PEG, PEG was found to restrict silanol condensation. However, in the system with both PEG and PVAc, PEG was found to reinforce the enhancing effect of PVAc by exerting a 'neighboring' effect on the silanol condensation.

บทคัดย่อ

บุญญฤทธิ์ โรจนรัตน์ : ผลกระทบของสารเดิมแต่งต่อปฏิกิริยาควบแน่นของสารคู่จับไซ เลนในสารละลาย(The Effect of Sizing Agents on the Silanol Condensation of Silane in Solution) อาจารย์ที่ปรึกษา : ศ. คร. ฮัทสุโอะ อิชิคะ (Professor Hatsuo Ishida) และ คร. นันทยา ยานุเมศ 67 หน้า ISBN 974-636-129-5

ใด้มีการนำฟูเรียร์ทรานสฟอร์มอินฟราเรคสเปกโตรสโกปีและไซส์เอกกลูชั่นโครมาโตกราฟ ฟีมาใช้ศึกษาผลกระทบของสารกันไฟฟ้าสถิตย์ต่อปฏิกิริยาควบแน่นของสารคู่จับไซเลน ผลการ ศึกษาระบบที่ประกอบด้วยแกมมาเอ็มพีเอสกับไวนิลไตรเมททิลควอร์เตอนารี่แอมโมเนียมคลอไรด์ พบว่า สารกันไฟฟ้าสถิตย์มีผลต่อปฏิกิริยาควบแน่นของสารคู่จับไซเลน โดยอาศัยผลกระทบต่อค่า ความเป็นกรด-ค่างของสารละลายและการเกิดอันตรกิริยากับโมเลกูลของแกมมาเอ็มพีเอส

การศึกษาผลของสารเคลือบและสารหล่อลื่นต่อปฏิกิริยาการควบแน่นของสารคู่จับไซเลน โดยใช้ ฟูเรียร์ทรานสฟอร์มอินฟราเรคสเปคโตรสโคปีและไซค์เฮกคลูชั่นโครมาโตกราฟฟี พบว่า พอลิไวนิลอะซีเตต ช่วยเสริมปฏิกิริยาควบแน่นของสารคู่จับไซเลนโดยอาศัยการเกิดอันตรกิริยากับ หมู่เมททาคริลของสารไซเลน ในระบบที่มีสารไซเลนกับพอลิเอทธิลินไกลคอลๆ จะไปขัดขวางการ เกิดปฏิกิริยาควบแน่นของสารคู่จับไซเลน อย่างไรก็ตามในระบบที่มีทั้งพอลิเอทธิลินไกลคอลและ พอลิไวนิลอะซีเตต พอลิเอทธิลินไกลคอลจะช่วยเสริมผลของสารพอลิไวนิลอะซิเตตโดยทำให้ ปฏิกิริยาควบแน่นของสารคู่จับไซเลนเกิดได้มากขึ้น

ACKNOWLEDGMENTS

I would like to give special thanks to TOA GROUP Co.,Ltd. for providing a scholarship for the 2-year Master degree program at the College.

I would like to express my sincere thanks to my research advisors, Prof. Hatsuo Ishida and Dr. Nantaya Yanumet, for all their help and guidance during my research.

I would like to thank all faculty and staff members at the Petroluem and Petrochemical College, Chulalongkorn University.

I would also like to thank Asia Glass Fiber Co., Ltd. for providing the materials used in this work.

Finally, I would like to give my special thanks to my parents for giving me their support throughout my graduate studies. I would like to thank Mr. Apichart Suttichairattana for his computer support. Thanks also go to all my classmates for their help throughout this study.

TABLE OF CONTENTS

CHAPTER

PAGE

Title page	د i
Abstract	iii
Acknowledgments	v
Table of Contents	vi
List of Tables	ix
List of Figures	x

I INTRODUCTION

1.1 Silane coupling agent	1
1.2 Nature of silane in solution	4
1.3 Sizing agents	7
1.2.1 Antistatic sizing agent	8
1.2.2 Film forming sizing agent	8
1.2.3 Lubricating sizing agent	10
1.4 Objective	· 11

II EXPERIMENTAL SECTION

2.1	Materials	12	
2.2	Equipment	12	Ш.

1.6

III

2.3 Preparation of model treating system consisting		
of antistatic sizing agent	13	
2.3.1 Preparation of the mixture system to		
measure pH	13	
2.3.2 Preparation of system with γ -MPS and		
VTAC	13	
2.3.3 Preparation of model treating system with		
VTAC at fixed pH	14	
2.4 Preparation of model treating system consisting		
of lubricant and film forming sizing agent	14	
2.5 Measurements	15	
2.5.1 Fourior transform infrared spectroscopy		
(FTIR)	15	
2.5.2 Size exclusion chromatography (SEC)	16	
2.5.3 pH measurements	16	
RESULTS AND DISCUSSION		
3.1 Antistatic sizing agent	17	
3.1.1 pH of the model treating system	17	
3.1.2 Characterization of the silanol condensation		
products by SEC	18	
3.1.3 Characterization of the silanol condensation		
products by FTIR	35	
3.2 Film former and lubricant sizing agent	40	
3.2.1 Characterization of the silanol condensation		
products by SEC	40	÷

CHAPTER		PAGE
	3.2.2 Characterization of the silanol condensation products by FTIR	57
IV	CONCLUSIONS	64
	REFERENCES	65
	CURRICULUM VITAE	67

LIST OF TABLES

TABLE

PAGE

1. Typical composition of glass fiber sizing agents

LIST OF FIGURES

FIGURE

PAGE

	1.1	Structure formular of silanol hydrolyzate and	
		polysilsesquioxane	2
	1.2	Conceptual drawing of interphase and interface	
		in fiber reinforced composites	3
	3.1	pH values of the model sizing systems containing	
		VTAC at concentration range of 0-4.0 % by weight	17
	3.2	SEC chromatograms of γ -MPS hydrolyzate	19
	3.3	SEC chromatograms of the model system consisting	
		of 5% by wt VTAC	20
	3.4	SEC chromatograms of the model system consisting	
		of 10% by wt VTAC	21
1	3.5	SEC chromatograms of the model system consisting	
		of 20% by wt VTAC	22
	3.6	SEC chromatograms of the model system consisting	
		of 50% by wt VTAC	23
	3.7	SEC chromatograms of the model system consisting	
		of 80% by wt VTAC	24
	3.8	Elution time of model sizing system consisting of	
		different concentrations of VTAC	25
	3.9	Elution time of model sizing system containing	
		VTAC at different drying times	27
	3.10	SEC chromatograms of γ -MPS hydrolyzate at pH=7.0	28

FIGURE

PAGE

3.11	SEC chromatograms of the model system consisting	
	of 5% by wt VTAC at pH=7.0	29
3.12	SEC chromatograms of the model system consisting	
	of 10% by wt VTAC at pH=7.0	30
3.13	SEC chromatograms of the model system consisting	
	of 20% by wt VTAC at pH=7.0	31
3.14	SEC chromatograms of the model system consisting	
	of 50% by wt VTAC at pH=7.0	32
3.15	Elution time of model sizing system consisting of	
	different concentrations of VTAC at pH=7.0	33
3.16	Elution time of model sizing system containing	
	different concentration of VTAC at pH=7.0	
	with different drying times	34
3.17	FTIR spectra of VTAC	35
3.18	FTIR spectra of the model sizing system containing	
	VTAC different % wt at the drying time of 1.5 h	36
3.19	FTIR spectra of the siloxane stretching region of the	
	model system containing VTAC at drying time 1.5, 3.5,	
	7.5, 22.5, 44 and 110 h. respectively	38
3.20	Postulated micelle-like structure morphology of	
	the system containing γ-MPS and VTAC	39

FIGURE

3.21	SEC chromatograms of γ -MPS oligomers at different	
	drying times	41
3.22	SEC chromatograms of γ -MPS oligomers in the	
	presence of 40% by wt of PEG at different drying	
	times	42
3.23	SEC chromatograms of y-MPS oligomers in the	
	presence of 40% by wt of PVAc at different drying	
	times	43
3.24	Elution time of the model treating systems as a function	
	of the drying time	44
3.25	SEC chromatograms of γ -MPS oligomers in 5% by	
	wt of PVAc with PEG in the mixture system at	
	different drying times	46
3.26	SEC chromatograms of γ -MPS oligomers in 10% by	
	wt of PVAc with PEG in the mixture system at	
	different drying times	47
3.27	SEC chromatograms of γ -MPS oligomers in 20% by	
	wt of PVAc with PEG in the mixture system at	
	different drying times	48
3.28	SEC chromatograms of γ -MPS oligomers in 50% by	
	wt of PVAc with PEG in the mixture system at	
	different drying times	49
3.29	SEC chromatograms of γ -MPS oligomers in 80% by	
	wt of PVAc with PEG in the mixture system at	
	different drying times	50

÷.

FIGURE

3.30	Relationship between the elution time of the	
	mixture system containing PEG and different % wt	
	of PVAc at different drying times	51
3.31	Comparison of the elution time of the model systems	
	with and without PEG	52
3.32	Condensation between neighboring silane molecules	
	through the 'neighboring' effect of PEG	54
3.33	Postulated micelle-like structure morphology of the	
	model sizing system containing γ-MPS, PVAc and PEG	55
3.34	Relationship between the elution time of the mixture	
	system and drying time at different % wt of PVAc	56
3.35	FTIR spectra of the model system containing PVAc at	
	different %wt with PEG in the mixture system	58
3.36	FTIR spectra of the model system containing PVAc at	
	different %wt without PEG in the mixture system	58
3.37	Ratio of H-bonded C=O in PVAc as a	
	function of % wt PVAc in the mixture system	60
3.38	Ratio of H-bonded C=O in γ -MPS	
	molecules as a function of %wt PVAc and PEG	61
3.39	Relative absorbance of Si-OH at 904 cm-1 / 1635 cm-1	
	as a function of % wt PVAc in the mixture system	62

xiii