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Chapter I

Introduction

Nowadays, the physics of nonlinear composites has attracted much atten-

tion because of their applications in engineering and physics [1, 2, 3]. The opti-

cal composite materials, one type of nonlinear composites, play important roles

in developing photonic devices [4], laser [5], and optoelectronic technologies [6].

Therefore, it is useful to study the electric field response of strongly nonlinear

composite.

The effective response of nonlinear dielectric composites obey a local electric

displacement - field (
−→
D − −→

E ) relation of the form
−→
D = ε

−→
E + χ

∣∣∣−→E ∣∣∣2 −→E . The

strongly nonlinear behavior occurs when the second term (χ
∣∣∣−→E ∣∣∣2 −→E ) is much

larger than the first term (ε
−→
E ), then the electric displacement can be written

in terms of
−→
D = χ

∣∣∣−→E ∣∣∣2 −→E . Because the boundary-value problem of strongly

nonlinear media is extremely difficult to solve. As the nonlinearity appears as

the leading form of the behavior rather than correction to a predominant linear

response, the conventional perturbation method fail. Nevertheless, substantial

progress has been made with the aid of various approximate analytical methods

and numerical methods over the past few years [7-14].

Blumenfeld and Bergman [7, 8] developed a small contrast expansion for the

effective dielectric response of strongly nonlinear composites. Ponte Castaneda

[9, 10] proposed a general variational procedure for establishing optimal bounds

and estimates for the electric response of nonlinear composites in terms of the

effective behavior of linear composites with identical structure. In 1992, Yu and
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Gu [11] used the perturbation method to obtain the effective nonlinear coefficient

for a small concentration of spherical inclusions embedded in a host medium but

this method can not be used for strongly nonlinear composites.

The variational method (variational energy method) has been applied to

various fields in science and engineering, as examples, such method has been ap-

plied to boundary-value problems in electrostatics, magnetostatics, and electric

conduction. This method is suitable not only for weakly nonlinear composites but

also for strongly nonlinear composites. Moreover, in 1994-95, Yu and Gu [12, 13]

adopted a simple variational method to study the composite which consists of two

different nonlinear media. In an attempt to extend the validity of the dilute-limit

expression to larger volume fraction, Yu and Lee [14] used a self-consistency con-

dition and Bruggeman-type effective medium approximation (EMA) for strongly

nonlinear composites.

Recently, Janthon [15] applied the variational method to study the effective

response of linear and nonlinear dielectric composites of spherical inclusions in

the dilute limit. Next, Chaiprapa [16] applied the variational method to study

the effective response of linear and nonlinear cylindrical dielectric composites and

obtained the effective nonlinear coefficient (χe) for arbitrary inclusion packing

fractions.

Furthermore, Yu and Yuen [17] applied the decoupling technique to strongly

nonlinear composites of spherical inclusions in the dilute inclusion packing fraction

by using the single inclusion model. They obtained an approximate results for the

effective response which are compared with those of the variational approach.

However, their results have a limit on the practical application because the single

inclusion model is unsuitable in the determination on χe of the composites for

arbitrary inclusion packing fractions.

In this research, the work of Yu and Yuen [17] is extended to arbitrary inclu-

sion packing fractions. The effective medium theory (EMT) proposed by Hashin

[18] is applied for theoretical modeling and studying the electric field response of
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strongly nonlinear spherical dielectric composites. Then, the effective nonlinear

coefficients (χe) of the composites are determined for arbitrary inclusion packing

fractions by using the decoupling technique. Our results based on the EMT and

the work of Yu and Yuen are compared. Moreover, our results are also compared

with those obtained by the variational method of which the results are reliable

for arbitrary inclusion packing fractions, in order to determine the validity and

reliability of the decoupling technique.

In Chapter 2, the details of the variational method and the decoupling tech-

nique are presented. In Chapter 3, the effective medium theory (EMT) was pro-

posed by Hashin in studying of effective conductivities of two-phase composite

materials is reviewed. In Chapter 4, the simple variational method is applied in

solving electrostatic boundary value-problem of the strongly nonlinear composites

and the effective nonlinear coefficients (χe) are determined. In Chapter 5, the same

problems as calculated in chapter 4 are now determined by using the decoupling

technique. Then both results are compared, in order to determine the validity

and reliability of the decoupling technique. The last chapter is conclusions of this

research.



Chapter II

Theoretical Background

In this chapter, the response of dielectric composites in an external electric

field will be investigated. The methods which will be applied to study effective

dielectric properties of nonlinear composites are the variational method and the

decoupling technique. The details of both methods will be presented and applied to

determine the nonlinear coefficients of nonlinear dielectric composites in Chapters

4 and 5.

2.1 Polarization

When a dielectric material is placed in an electric field, a slight displacement of

the negative and positive charges of the dielectric’s atoms or molecules occur and

they behave like very small dipoles. The dielectric is said to be polarized when the

dipoles exist. For example, a polarized atom of a dielectric material is represented

by an electric dipole, i.e., a positive point charge (nucleus) and a negative charge

representing the electrons, the two charges being separated by a small distance.

When the atom is unpolarized, the cloud surrounds the nucleus symmetrically,

as in Fig. (2.1), and the dipole moment is zero. When an external electric field
−→
E is applied, the electron cloud becomes slightly displaced or asymmetrical, as

in Fig. (2.2), and the atom is polarized having a tiny dipole moment −→p , which

points in the same direction as
−→
E . Typically, this dipole moment is approximately

proportional to the field

−→p = α
−→
E , (2.1)
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where α is atomic polarizability. Therefore, when the dielectric is polarized, a con-

venient measure of this effect is called polarization
(−→

P
)

which is dipole moment

per unit volume [19].

+

_

_
_ _ Negatively

charged cloud

Positive
nucleus

Figure 2.1: An unpolarized atom.

+

_

_

_
_

E

Figure 2.2: A polarized atom.

2.2 Dielectric Media

2.2.1 Linear Dielectrics

Consider the relation between electric displacement (
−→
D) and polarization (

−→
P )

−→
D = ε0

−→
E +

−→
P , (2.2)

where ε0 is called the permittivity of free space.

Generally, the dielectric materials in which
−→
P is proportional (in magnitude)

and parallel (in direction) to
−→
E , are said to be linear and isotropic. In case of

−→
E

is not too strong, the dependence of
−→
P on

−→
E can be written as

−→
P = ε0χ

′−→E , (2.3)
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where χ′ is called the electric susceptibility which depends on the microscopic

structure of the medium.

If
−→
P and

−→
E are related by Eq. (2.3), then the relation between

−→
D and

−→
E

can be obtained by substituting Eq. (2.3) into Eq. (2.2) to give

−→
D = (1 + χ′) ε0

−→
E

= ε
−→
E , (2.4)

where ε ≡ ε0(1 + χ′) is called the permittivity of the material and

Therefore, the electric displacement is linearly proportional to the electric

field in linear dielectric media.

2.2.2 Nonlinear Dielectrics

At large field intensities of about 106 V/m or higher, deviation of relation (2.3)

becomes noticeable [20], the non-linear effects of the materials are occurred. They

arise from the interaction of the external electric fields
−→
E , with the molecular

dipole moment, which rotates those dipole and creates a polarization field
−→
P .

The polarization field is linearity dependant on the magnitude of the external

fields so long as they are small, this linearity eventually breaks down and higher

order terms are needed to describe the polarization field. The polarization in this

case are given by [21]

−→
P = ε0χ

′−→E + ε0χ
′(3)

∣∣∣−→E ∣∣∣2 −→E + ε0χ
′(5)

∣∣∣−→E ∣∣∣4 −→E + ..., (2.5)

where χ′, χ′(3) and χ′(5) are the nonlinear first, third and fifth order electric sus-

ceptibilities, respectively.

It must be noted that the series development of
−→
P contains only odd powers

of
−→
E , because a reversal of the direction of

−→
E lead to reversal of direction of

−→
P ,

−→
P (

−→
E ) = −−→

P (−−→
E ). (2.6)
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If the polarization is nonlinear in the field strength, the dependence of the

dielectric displacement
−→
D on the field strength will also be nonlinear,

−→
D = ε

−→
E + χ

∣∣∣−→E ∣∣∣2 −→E + ...,

where ε and χ are called the linear and nonlinear coefficients, respectively.

The electric displacement
−→
D and electric field

−→
E relation of the form

−→
D = ε

−→
E + χ

∣∣∣−→E ∣∣∣2 −→E , (2.7)

will be considered. From Eq. (2.7), χ
∣∣∣−→E ∣∣∣2 � ε is the case of weakly nonlinear

dielectrics and strongly nonlinear behavior occurs when χ
∣∣∣−→E ∣∣∣2 � ε in which the

electric displacement can be written as

−→
D = χ

∣∣∣−→E ∣∣∣2 −→E . (2.8)

This equation indicates that the electric displacement is proportional to the

electric field to the third power and will be used to describe strongly nonlinear

composites in this research

2.2.3 Strongly Nonlinear Dielectric Composites

Consider a two-phase composite [22] with strongly nonlinear property which con-

sists of two dielectrics with nonlinear coefficients χ1 and χ2, as shown in Fig.

2.4.

This composite is replaced by a homogeneous and isotropic medium of ef-

fective nonlinear coefficient (χe) , which is an unknown to be specified later. Fig.

2.4 shows the model, the composite that represents the original one and called the

effective strongly nonlinear composite.

The effective nonlinear coefficient (χe) is defined such that the energy in-

tegral of the original composite has to be equal to the energy of the effective
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÷
2

÷
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Figure 2.3: A two-phase of strongly nonlinear dielectric composite.

÷
e

Figure 2.4: The effective strongly nonlinear composite.

nonlinear composite. That is

χeE
4
0V =

∫
V

−→
D(x) · −→E (x)dV, (2.9)

where
−→
E 0 is a uniform applied electric field and V is the composite volume.

2.3 Basic Equations in Electrostatics

2.3.1 Laplace’s Equation

We now consider the Maxwell equations in electrostatics of dielectric media [23]:

−→∇ · −→D = ρf (2.10)

and
−→∇ ×−→

E = 0, or
−→
E = −−→∇ϕ, (2.11)
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where ρf , ϕ are free charge density and electric potential, respectively.

Replacing Eq. (2.4) into Eq. (2.10), gives

−→∇ · (ε−→E ) = ρf . (2.12)

Substituting
−→
E from Eq. (2.11), Eq. (2.12) is replaced by

−→∇2ϕ = −ρf

ε
. (2.13)

If ρf = 0 in some region of the media, then Eq. (2.13) becomes

−→∇2ϕ = 0. (2.14)

Eq. (2.14) is called Laplace’s equation and replaced the basic equations in

linear dielectric media.

2.3.2 Nonlinear Partial Differential Equations

In case of nonlinear dielectric media, Eq. (2.7) is substituted into the Maxwell

equation (2.10), for the case of ρf = 0, hence

−→∇ · (ε−→E + χ
∣∣∣−→E ∣∣∣2 −→E ) = 0. (2.15)

From
−→
E = −−→∇ϕ, we get

−→∇ · (ε−→∇ϕ + χ
∣∣∣−→∇ϕ

∣∣∣2 −→∇ϕ) = 0. (2.16)

For strongly nonlinear dielectric media (χ
∣∣∣−→E ∣∣∣2 � ε), then Eq. (2.16) be-

comes
−→∇ · (χ

∣∣∣−→∇ϕ
∣∣∣2 −→∇ϕ) = 0. (2.17)

Eqs. (2.16) and (2.17) are the basic equations in nonlinear dielectric me-

dia and they are nonlinear partial differential equations which can not be solved

exactly. According to the complication of these equations, several methods are

applied, these include Perturbation Method [11], Variational Method [12, 13, 14,

15, 16, 24, 25] and Decoupling Techniques [17, 26, 27], but the suitable methods

depend on the nature of each problem.
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2.3.3 Boundary conditions

The boundary conditions are essential to specify in solving for electric potentials

in the composite. The first boundary condition on
−→
E at the interface between dif-

ferent media, any surface separating two regions, is that the tangential component

of
−→
E at any surface is continuous [28],

−→
E 1t =

−→
E 2t, (2.18)

where
−→
E 1t and

−→
E 2t are the tangential components of

−→
E in media 1 and 2 eval-

uated at the interface, respectively. The second, the normal component of
−→
D is

continuous at the interface,
−→
D 1n =

−→
D 2n, (2.19)

where
−→
D 1n and

−→
D 2n are the normal components of

−→
D in media 1 and 2 evaluated

at the interface, respectively.

These boundary conditions will be used to determine ϕ and
−→
E in media 1

and 2 of the two-phase composite in Chapters 3 and 4.

2.4 Variational Method

Variational method (or variational energy method) has been applied to various

fields in science and engineering. As examples, such method has been applied to

boundary-value problems in electrostatics, magnetostatics, and electric conduc-

tion. In previous works, Janthon [15] applied the variational method to study the

bulk effective response of linear and nonlinear dielectric composites of spherical

inclusions in the dilute limit. Recently, Chaiprapa [16] applied the variational

method to study the bulk effective response of linear and nonlinear cylindrical

dielectric composites and obtained the effective nonlinear coefficient (χe) for ar-

bitrary inclusion packing fractions. According to the importance of variational

method; consequently, in this section, the variational method of nonlinear dielec-
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tric composites will be reviewed and applied to determine the effective nonlinear

coefficient in Chapter 4.

Consider a class of nonlinear dielectric composites that obey a displacement-

field response of the form
−→
D = ε

−→
E + χ

∣∣∣−→E ∣∣∣2 −→E where the linear and nonlinear

coefficients are ε and χ, respectively. The governing equations
−→∇ · −→D = 0 and

−→∇ ×−→
E = 0 lead to the following nonlinear partial differential equation,

−→∇ · [ε(x)
−→∇ϕ(x) + χ(x)

∣∣∣−→∇ϕ(x)
∣∣∣2 −→∇ϕ(x)] = 0, (2.20)

as shown in Eq. (2.20), where ϕ(x) is the electric potential and
−→
E = −−→∇ϕ. To-

gether with the boundary conditions of the continuity of the tangential component

of
−→
E and the normal component of

−→
D on the interface. Eq. (2.20) forms a nonlin-

ear partial differential equation that cannot be solved exactly. Nevertheless, one

can invoke the variational principle by minimizing the energy functional [15, 16],

W [ϕ] =
1

2

∫
V

ε(x)
∣∣∣−→∇ϕ(x)

∣∣∣2 dV +
1

4

∫
V

χ(x)
∣∣∣−→∇ϕ(x)

∣∣∣4 dV, (2.21)

with respect to an arbitrary variation δϕ(x) away from the solution of Eq. (2.20),

provide that δϕ vanishes at the interface. For convenience in subsequent discus-

sion, we denote the linear and nonlinear parts of the energy functional by W2[ϕ]

and W4[ϕ], respectively,

W2[ϕ] =

∫
V

ε(x)
∣∣∣−→∇ϕ(x)

∣∣∣2 dV, (2.22)

and

W4[ϕ] =

∫
V

χ(x)
∣∣∣−→∇ϕ(x)

∣∣∣4 dV, (2.23)

so that W [ϕ] = 1
2
W2[ϕ] + 1

4
W4[ϕ]. When the minimum condition is satisfied by

the solution ϕ̃, then the effective energy function Eq. (2.21) can be obtained,

W̃ =
1

2

∫
V

ε(x)
∣∣∣−→∇ϕ̃(x)

∣∣∣2 dV +
1

4

∫
V

χ(x)
∣∣∣−→∇ϕ̃(x)

∣∣∣4 dV. (2.24)

It is important to choose a proper trial potential function ϕ, evaluate the

integral in Eq. (2.21), minimize it with respect to ϕ, and generate explicit formulas

for the effective linear and nonlinear coefficients in Chapter 4.
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2.5 Decoupling Technique

In this section, the review of the decoupling technique originally developed by

Stroud and Wood [27] is presented and will be employed to study the effective re-

sponse of strongly nonlinear composites in Chapter 5. Consider a class of strongly

nonlinear composites which obeys electric displacement-field relation of the form
−→
D = χ

∣∣∣−→E ∣∣∣2 −→E . The nonlinear coefficient χ takes on different values in materials

1 and 2 described by χ1 and χ2, respectively. The governing equations for electric

displacement
−→∇·−→D = 0 and

−→∇×−→
E = 0 lead to the following differential equation,

−→∇ · [χ(x)
∣∣∣−→∇ϕ(x)

∣∣∣2 −→∇ϕ(x)] = 0, (2.25)

which is special case of Eq. (2.16) for the first term is negligible. It is convenient

to avoid the complication in solving Eq. (2.25) by using decoupling technique.

The effective strongly nonlinear dielectric composite which was defined in Fig. 2.4

with the effective nonlinear coefficient (χe) given by Eq. (2.9), will be considered.

When a trial electric field Ẽ(x) is used to generate an approximate formula

for the effective nonlinear coefficient (χe) of Eq. (2.9),

χeE
4
0V =

∫
V

χ(x)
∣∣∣Ẽ(x)

∣∣∣4 dV, (2.26)

or

χe =
1

E4
0V

[

∫
V1

χ1(x)
∣∣∣Ẽ1(x)

∣∣∣4 dV +

∫
V2

χ2(x)
∣∣∣Ẽ2(x)

∣∣∣4 dV ]

=
v1χ1

〈
Ẽ1

4
〉

E4
0

+
v2χ2

〈
Ẽ2

4
〉

E4
0

, (2.27)

where v1 = V1/V and v2 = V2/V are volume packing fractions of materials 1 and

2, respectively. Let
〈
Ẽ4

α

〉
represents the spatial average of trial electric fields to

the fourth power in materials α = 1 and 2,〈
Ẽ4

α

〉
=

1

Vα

∫
Vα

∣∣∣Ẽ(x)
∣∣∣4 dV, α = 1, 2. (2.28)

where Vα is the volume of αth component. Since Ẽ(x) can not be solved exactly,

Yu, Hui and Lee [26] used linear field
−→
E (x) to give an estimate of the effective
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nonlinear coefficient. From Eq. (2.27), we obtain

χe =
v1χ1

〈−→
E 4

1

〉
E4

0

+
v2χ2

〈−→
E 4

2

〉
E4

0

, (2.29)

where
−→
E α(x), α = 1, 2 is the solution of the linear composite satisfy the same

boundary conditions and the same microstructure. For the linear response

−→
D(x) = ε(x)

−→
E (x), (2.30)

where ε(x) is the linear coefficient described by ε1 and ε2 in materials 1 and 2,

respectively. The effective linear coefficient of the composite (εe) can be derived

in similar to Eq. (2.27). The result is

εe =
1

E2
0V

∫
V

ε(x)
∣∣∣−→E (x)

∣∣∣2 dV,

=
1

E2
0V

[

∫
V1

ε1(x)
∣∣∣−→E 1(x)

∣∣∣2 dV +

∫
V2

ε2(x)
∣∣∣−→E 2(x)

∣∣∣2 dV ],

=
v1ε1 〈E2

1〉
E2

0

+
v2ε2 〈E2

2〉
E2

0

, (2.31)

where E1 and E2 are electric fields in materials 1 and 2, respectively, and 〈 〉 is

the volume spatial average with 〈E2
α〉 =

1

vα

∫
vα

∣∣∣−→E α(x)
∣∣∣2 dV, α = 1, 2.

We invoke the decoupling approximation [27] by ignoring the fluctuations of

the local electric fields,

〈
(E2

α − 〈
E2

α

〉
)2
〉

=
〈
E4

α

〉− 〈
E2

α

〉2 ∼= 0 (2.32)

or 〈E4
α〉 is approximated by 〈

E4
1

〉
=
〈
E2

1

〉2
, (2.33)

and also 〈
E4

2

〉
=
〈
E2

2

〉2
. (2.34)

Now, Eq.(2.29) is replaced by using Eqs. (2.33) and (2.34), hence

χe =
v1χ1 〈E2

1〉2
E4

0

+
v2χ2 〈E2

2〉2
E4

0

. (2.35)
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To obtain the mean square of the electric field 〈E2
1〉 , the derivative of Eq.

(2.31) is evaluated for
∂εe

∂ε1

, which immediately gives

〈
E2

1

〉
=

1

v1

∂εe

∂ε1

E2
0 , (2.36)

Similarly for the derivative
∂εe

∂ε2

of Eq. (2.31), we obtain

〈
E2

2

〉
=

1

v2

∂εe

∂ε2

E2
0 . (2.37)

Comparing Eqs. (2.31) and (2.35), χe, χ2 and χ1 are written in terms of εe,

ε2 and ε1. We refer to the previous work of Yu, Hui and Lee [26]:

εe = χeE
2
0 , (2.38)

ε1 = χ1

〈
E2

1

〉
, (2.39)

ε2 = χ2

〈
E2

2

〉
, (2.40)

According to the microstructure of the linear dielectric composites, εe can

be written as a function of its constituent properties,

εe = F (ε1, ε2, v2), (2.41)

for strongly nonlinear composites, Yu et. al. [26] replaced the linear coefficients

from Eqs. (2.38), (2.39) and (2.40) into Eq. (2.41), then χe may be expressed in

the form

χe = F (χ1

〈
E2

1

〉
, χ2

〈
E2

2

〉
, v2)/E

2
0 . (2.42)

Note that the effective linear coefficient (εe) and effective nonlinear coeffi-

cient (χe) are independent of the external electric field
(−→

E 0

)
.

Eqs. (2.41) and (2.42) imply that with the established results from the linear

dielectric composite, the established effective linear coefficient χe is obtained. This

approach gives results with are in good agreement with numerical simulations [26].

Consequently, the deviation of effective linear coefficient will be given in Chapter

3 in order to determine the effective nonlinear coefficient in Chapter 5.



Chapter III

Effective Linear Coefficient

The effective medium theory (EMT) was proposed by Hashin [18] in studying

the effective conductivities of two-phase composite materials. In his work, the

lower and upper bounds of the effective linear conductivities are determined.

According to the similarities of basic equations for electric conduction and

electrostatics for dielectric media, Hashin theory can be applied to determine the

effective dielectric constants (or linear coefficient) of linear dielectric composites,

and therefore will be reviewed in this chapter. Then further studies extend to

nonlinear dielectric composites based on the EMT incorporation with the varia-

tional method and decoupling technique to obtain the effective nonlinear coefficient

which will be given in Chapters 4 and 5.

3.1 Effective Medium Model

To consider the response of a linear dielectric composite when a uniform exter-

nal electric field
(−→

E 0

)
is applied. Let the composite be composed of spherical

inclusions randomly distributed in a dielectric medium with different linear coef-

ficients. The theoretical model proposed by Hashin called effective medium treat-

ment (EMT) [18] will be applied to determine the effective dielectric constant.

In the EMT, the composite is considered to be composed of spherical cells.

Each cell contains only one of the inclusions which is surrounded by the medium.

The linear coefficients of the inclusion and the medium are ε2 and ε1, respectively.
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The ratio of the inclusion volume to the cell volume is
a3

b3
. In this model, only a

representative cell is considered (see Fig. 3.1), while the other cells are replaced by

a homogeneous medium which has the effective linear coefficient εe to be specified.

x

z

y

0

E =E z0 0

�2

a
b

�

r

�1

�e

Figure 3.1: A representative cell is composed of a spherical inclusion of radius

a having linear coefficient ε2 surrounded by a concentric shell of radius b having

nonlinear coefficient ε1.

3.2 Electric Potentials

To determine the electric potentials in the cell, according to Eq. (2.14), the basic

equation of linear dielectric media is Laplace equation in spherical coordinate,

which is
−→∇2ϕ = 0, (3.1)

where ϕ is the electric potential.

In general, the solution of Eq. (3.1) depends on variables r, θ and φ. In

this theoretical model as shown in Fig. 3.1, the external uniform electric field is

applied in the z − axis, then the potential has azimuthal symmetry depending on

variables r and θ.

The solution of Laplace equation in this case is [28]

ϕ(r, θ) =
∞∑

n=0

[Anrn + Bnr
−(n+1)]Pn(cos θ), (3.2)
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where Pn(cos θ) is called Legendre polynomials.

From the boundary conditions:

• At the inclusion center (r = 0), the electric potential is finite, then Bn = 0.

• Very long distance from the inclusion (r → ∞) , the electric potential of

Eq. (3.2) becomes −E0r cos θ.

In cooperation between the boundary conditions and the Legendre polyno-

mials n = 1, the electric potentials have the simple forms

ϕ2(r, θ) = Ar cos θ, 0 ≤ r ≤ a (3.3)

ϕ1(r, θ) = (Br +
C

r2
) cos θ, a ≤ r ≤ b (3.4)

ϕe(r, θ) = (−E0r +
D

r2
) cos θ, b ≤ r ≤ ∞ (3.5)

where ϕ2 and ϕ1 are the electric potentials in the inclusion and the shell region,

respectively. ϕe is the electric potential in effective medium.

The constants A, B, C and D in Eqs. (3.3)-(3.5) can be determined by using

this boundary conditions at the inclusion and the outer cell surfaces:

• the tangential component of
−→
E is continuous (E1t = E2t), then the electric

potential is also continuous,

ϕ2(r = a, θ) = ϕ1(r = a, θ)

A = B +
C

a3
, (3.6)

and

ϕ1(r = b, θ) = ϕe(r = b, θ)

B +
C

b3
= −E0 +

D

b3
, (3.7)

• the normal component of
−→
D is continuous (D1n = D2n or ε2E2n = ε1E1n),

hence

ε2
∂ϕ2

∂r
|r=a= ε1

∂ϕ1

∂r
|r=a,
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ε2A = ε1(B − 2C

a3
), (3.8)

and

ε1
∂ϕ1

∂r
|r=b= εe

∂ϕe

∂r
|r=b .

ε1(B − 2C

b3
) = −εe(E0 +

2D

b3
). (3.9)

Replacing Eq. (3.6) in Eq. (3.8), we obtain

B =
−xC

a3
, (3.10)

where x =
ε2 + 2ε1

ε2 − ε1

.

Substituting Eq. (3.10) into Eqs. (3.7) and (3.9), then we obtain

(
1

b3
− x

a3
)C = −E0 +

D

b3
, (3.11)

−ε1(
2

b3
+

x

a3
)C = −εeE0 − 2εeD

b3
. (3.12)

From Eqs. (3.11)-(3.12), the constants C, and D are obtained, which are

usable in solving for another constants:

A =
−9κE0

[2(1 − c′) + β(2c′ + 1)] + 2κ[(2 + c′) + β(1 − c′)]
, (3.13)

B =
−3κ(β + 2)E0

[2(1 − c′) + β(2c′ + 1)] + 2κ[(2 + c′) + β(1 − c′)]
, (3.14)

C =
3κ(β − 1)a3E0

[2(1 − c′) + β(2c′ + 1)] + 2κ[(2 + c′) + β(1 − c′)]
, (3.15)

where c′ =
a3

b3
, β =

ε2

ε1

and κ =
εe

ε1

.

From Eqs. (3.13)-(3.15), A, B, and C are still given in terms of κ =
εe

ε1

called relative effective linear coefficient which is the unknown has to be specified.

The effective linear coefficient (εe) is defined as [18]〈−→
D
〉

= εe

〈−→
E
〉

, (3.16)

where 〈 〉 is the volume average.
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The effective linear coefficient term
〈−→

D
〉

of Eq. (3.16) may be written as

the sum over inclusion and host medium, so Eq. (3.16) becomes

εe 〈Ez〉 = v2ε2

〈
E(2)

z

〉
+ v1ε1

〈
E(1)

z

〉
, (3.17)

where the subscript z represents the electric field component in z − axis,
〈
E

(1)
z

〉
is the volume average of the electric field in the host medium only, and

〈
E

(2)
z

〉
is the volume average of the electric field over the inclusion, v2 is the inclusion

packing fraction and v1 = 1 − v2.

With the boundary condition
−→
E =

−→
E 0 = E0ẑ, it is true that [31]

〈Ez〉 = E0, (3.18)

hence

v2

〈
E(2)

z

〉
+ v1

〈
E(1)

z

〉
= E0. (3.19)〈

E
(1)
z

〉
in Eq. (3.17) is eliminated by using Eq. (3.19), then

εeE0 = ε1E0 + v2(ε2 − ε1)
〈
E(2)

z

〉
. (3.20)

This equation indicates that if we know
〈
E

(2)
z

〉
, εe can be calculated.

Calculating
〈
E

(2)
z

〉
for this problem, we get〈

E(2)
z

〉
= −A. (3.21)

From Eqs. (3.13), (3.20) and (3.21), the solution κ is given by

κ = 1 +
9v2(β − 1)κ

[2(1 − c′) + β(2c′ + 1)] + 2κ[(2 + c′) + β(1 − c′)]
, (3.22)

where κ =
εe

ε1

, β =
ε2

ε1

and c′ =
a3

b3
.

The relative effective linear coefficient

(
κ =

εe

ε1

)
is a function of parameter

c′ =
a3

b3
which is the ratio of the inclusion volume to cell volume in Fig. 3.1. The

restriction of c′ is

c ≤ c′ ≤ 1, (3.23)



20

where c is the inclusion packing fraction limiting the maximum cell volume. c′ = 1

is for b = a or the case of inclusion embedded in the effective medium without

surrounding host medium phase 1.

In this research, the effective linear coefficient (εe) will be determined for

special cases of c′ = 1 and c′ = c (inclusion packing fraction).

3.3 Effective Linear Coefficient

The composite is categorized into three cases. First, inclusions of material 2

embedded in material 1. Second, inclusions of material 1 embedded in material 2.

The last, two interdispersed materials.

3.3.1 Inclusions of Material 2 Embedded in Material 1

Refer to Fig. 3.1, it shows the theoretical model for the composite with dielectric

inclusions of phase 2 of linear coefficient ε2 embedded in phase 1 material of linear

coefficient ε1. We now determine the effective linear coefficient for c′ =
a3

b3
which

is equal to the packing fraction of inclusions (c′ = v2).

From Eq. (3.22), we replace c′ = v2,

2[(2+v2)+β(1−v2)]κ
2−[(2−5)v2+β(1+5v2)]κ−[2(1−v2)+β(1+2v2)] = 0. (3.24)

The solution of κ has two real roots of opposite sign, a negative root gives a

negative εe which is physically meaningless. Only a positive root is considered,

which is

κ =
εe

ε1

=
(2 + β) + 2(β − 1)v2

(2 + β) + 2(1 − β)v2

, (3.25)

where β =
ε2

ε1

.

The effective linear coefficient can now be determined by rearranging Eq.
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(3.25), which gives

εe = ε1

⎡⎢⎣1 +
v2

ε1

ε2 − ε1

+
v1

3

⎤⎥⎦ . (3.26)

3.3.2 Inclusions of Material 1 Embedded in Material 2

In contrary to subsection 3.3.1, we consider inclusions of material 1 with linear

coefficient ε1 embedded in medium of linear coefficient ε2 . In this case, εe is

similar to that of Eq. (3.22) with interchanging between ε2 and ε1, v2 and v1,

hence

κ = 1 +
9v1(β − 1)κ

[2(1 − c′) + β(2c′ + 1)] + 2κ[(2 + c′) + β(1 − c′)]
, (3.27)

where κ =
εe

ε2

, β =
ε1

ε2

and c′ =
a3

b3
. For c′ is minimum equal to the volume packing

fraction of inclusion (c′ = v1), then Eq. (3.27) becomes

εe = ε2

⎡⎢⎣1 +
v1

ε2

ε1 − ε2

+
v2

3

⎤⎥⎦ . (3.28)

3.3.3 Two Interdispersed Materials

Now we consider composites consisting of two interdispersed materials phases 1

and 2. The theoretical model is that an inclusion with linear coefficient ε2 (or ε1)

is embedded in an effective medium with effective linear coefficient εe. This is the

case c′ = 1 in Fig. 3.1.

For c′ = 1, Eq. (3.22) becomes

κ = 1 +
9v2(β − 1)κ

3(β + 2κ)
. (3.29)

Substituting κ =
εe

ε1

and β =
ε2

ε1

, we get

−2ε2
e + 2εeε1 − εeε2 − 2v2εeε1 − v2εeε1 + 2v2εeε2 + v2εeε2 + εeε1 = 0. (3.30)
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By using the relation between the packing fraction of inclusion (v2) and the

packing fraction of host medium (v1) with v1 + v2 = 1, then Eq. (3.30) becomes

−2(v1+v2)ε
2
e+2εeε1−εeε2−2(1−v1)εeε1−v2εeε1+2v2εeε2+(1−v2)εeε2+(v1+v2)ε1ε2 = 0,

(3.31)

v2(
ε2 − εe

ε2 + 2εe

) + v1(
ε1 − εe

ε1 + 2εe

) = 0. (3.32)

Symmetrically, we may consider the phase 1 material is embedded in the

effective medium.

For c′ = 1, Eq. (3.27) becomes

v1(
ε1 − εe

ε1 + 2εe

) + v2(
ε2 − εe

ε2 + 2εe

) = 0. (3.33)

It is observed that Eq. (3.32) is exactly the same as Eq. (3.33) which

explains the symmetrically dispersed of materials 1 and 2.

3.4 Results

The schematic plot of the effective linear coefficients (εe) calculated from Eqs.

(3.26), (3.28), (3.32) and (3.33) against the packing fraction of inclusion (v2), are

shown in Fig. 3.2 for the case of ε2 〉 ε1.
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Figure 3.2: Bounds of the effective nonlinear coefficients.

Figure 3.2 shows the lower and upper bounds of the effective linear coeffi-

cients obtained from Eqs. (3.26) and (3.28), respectively. The curves representing

Eqs. (3.32) and (3.33) coincide and lie between the two bounds.



Chapter IV

Effective Nonlinear Coefficient by

Variational Method

In this Chapter, the studying has been extended to strongly nonlinear di-

electric composites by employing the effective medium treatment (EMT) and the

variational method in solving the electrostatic boundary value problem. Then

the effective nonlinear coefficient (χe) including the lower and upper bounds are

determined.

4.1 Effective Medium Model

To consider the response of a nonlinear dielectric composite when a uniform ex-

ternal electric field
(−→

E 0

)
is applied. We assume that the composite is composed

of two components: inclusions and dielectric medium, which exhibit different non-

linear coefficients. The inclusions are randomly distributed in dielectric medium.

By using EMT, the composite is considered to be composed of spherical

cells. Each cell contains only one of the inclusions which is surrounded by the

medium. The nonlinear coefficients of the inclusion and the medium are χ2 and

χ1, respectively. The ratio of the inclusion volume to the cell volume is
a3

b3
. In

this model, only a representative cell is considered (see Fig. 4.1), while the other

cells are replaced by a homogeneous medium which has the effective nonlinear

coefficient χe to be specified.
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Figure 4.1: A representative cell is composed of a spherical inclusion of radius a

having linear coefficient χ2 surrounded by a concentric shell of radius b having

nonlinear coefficient χ1.

4.2 Effective Nonlinear Coefficient

To obtain the effective nonlinear coefficient of strongly nonlinear composite, three

cases of composite materials are considered. First, inclusions of material 2 embed-

ded in material 1. Second, inclusions of material 1 embedded in material 2. The

last, two interdispersed materials.

4.2.1 Inclusions of Material 2 Embedded in Material 1

First, we consider the material with inclusions of strongly nonlinear of material

2 embedded in material 1. The theoretical model is shown in Fig. 4.1. To

determine the electric potentials in the cell and the effective medium which obey

the complicated nonlinear differential Eq. (2.16), the variational method which is

explained in section 2.4 will be applied.

We use simple trial potentials:

ϕ2(r, θ) = −cE0r cos θ, 0 ≤ r ≤ a (4.1)

ϕ1(r, θ) = −E0(fr − g
a3

r2
) cos θ, a ≤ r ≤ b (4.2)

ϕe(r, θ) = −E0(r − d
b3

r2
) cos θ, b ≤ r ≤ ∞ (4.3)
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which were chosen by Yu [24] to predict the strongly nonlinear response of dilute

composites with reasonably good results.

The continuity of the potentials at the inclusion and the outer cell surface

(r = b) are used to determine the relation of constants c, f, g and d in Eqs. (4.1)-

(4.3). We get

c = f − g, (4.4)

d = 1 − f + gc′, (4.5)

where c′ =
a3

b3
.

We reduce four constants into two variational parameters which are f and

g. The other parameters c and d, are related to f and g as shown in Eqs. (4.4)

and (4.5).

To determine the two variational parameters f and g with the trial potentials

in Eqs. (4.1)-(4.3), the energy functional of Eq. (2.21) is used. For strongly

nonlinear composites, the first term of Eq. (2.21) is neglected. Therefore, the

energy functional is

W [ϕ] =
1

4
[

∫
v1

χ1(x)
∣∣∣−→∇ϕ1(x)

∣∣∣4 dV +

∫
v2

χ2(x)
∣∣∣−→∇ϕ2(x)

∣∣∣4 dV +

∫
ve

χe(x)
∣∣∣−→∇ϕe(x)

∣∣∣4 dV ]+Ws,

(4.6)

where Ws is the surface energy term which is

Ws = χed
b3

R3
E4

0 , (4.7)

as pointed out by Bergman [1].

In order to obtain the energy functional W [ϕ], we first determine the poten-

tial gradients from Eqs. (4.1)-(4.3),

−→∇ϕ2 = −cE0[cos θr̂ − sin θθ̂], (4.8)

−→∇ϕ1 = −E0[(f +
2ga3

r3
) cos θr̂ − (f − ga3

r3
) sin θθ̂], (4.9)

−→∇ϕe = −E0[(1 +
2db3

r3
) cos θr − (1 − db3

r3
) sin θθ̂]. (4.10)
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Then Eqs. (4.8)-(4.10) are substituted into Eq. (4.6), we obtain

W [ϕ] =
1

4
E4

0 [(−
a3

R3
f 4 +

b3

R3
f 4 +

36

5

a3

R3
f 2g2 − 36a6f 2g2

5b3R3
+

8

5

a3

R3
fg3

−8a9fg3

5b6R3
+

8

5

a3

R3
g4 − 8a12g4

5b9R3
)χ1 +

a3

R3
c4χ2 + (1 − 8b12d4

5R12

−8b9d3

5R9
− 36b6d2

5R6
− b3

R3
+

36b3d2

5R3
+

8b3d3

5R3
+

8b3d4

5R3
)χe]

+
b3

R3
dχeE

4
0 , (4.11)

where the composite volume is assumed to be
4

3
πR3. For R � b, Eq. (4.11) is

reduced to

W [ϕ] =
1

4
E4

0 [(−
a3

R3
f 4 +

b3

R3
f 4 +

36

5

a3

R3
f 2g2 − 36a6f 2g2

5b3R3
+

8

5

a3

R3
fg3

−8a9fg3

5b6R3
+

8

5

a3

R3
g4 − 8a12g4

5b9R3
)χ1 +

a3

R3
c4χ2 + (1 − b3

R3

+
36b3d2

5R3
+

8b3d3

5R3
+

8b3d4

5R3
)χe] +

b3

R3
dχeE

4
0 . (4.12)

Without loss of generality, E0 is set equal to 1, Eq. (4.12) with v2 =
a3

b3
is

W [ϕ] =
1

4

b3

R3
[(f4 − f4v2 +

36

5
f 2g2v2 +

8

5
fg3v2 +

8

5
g4v2 − 36

5
f 2g2v2

2

−8

5
fg3v3

2 −
8

5
g4v4

2)χ1 + c4v2χ2 + (1 + 4d +
36

5
d2 +

8

5
d3

+
8

5
d4)χe] +

1

4
χe. (4.13)

The constants c and d from Eq. (4.13) are eliminated by using Eqs. (4.4)

and (4.5). Minimization of W [ϕ] with respect to the variational parameters f and

g gives the following equations:

∂W

∂f
= f 3 − x − f3v2 +

18

5
fg2v2 +

2g3v2

5
+ (f − g)3yv2 − 18

5
fg2v2

2

−2

5
g3v3

2 −
18

5
x(1 − f + gv2) − 6

5
x(1 − f + gv2)

2 − 8

5
x(1 − f + gv2)

3

= 0, (4.14)

and

∂W

∂g
=

18

5
f 2gv2 +

6

5
fg2v2 +

8

5
g3v2 + xv2 − (f − g)3yv2 − 18

5
f 2gv3

2 −
6

5
fg2v3

2

−8

5
g3v4

2 +
18

5
xv2(1 − f + gv2) +

6

5
xv2(1 − f + gv2)

2 +
8

5
xv2(1 − f + gv2)

3

= 0, (4.15)
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where x =
χe

χ1

and y =
χ2

χ1

.

In fact, the functions of
∂W

∂f
= 0 and

∂W

∂g
= 0 in Eqs. (4.14) and (4.15)

have three roots of f and g which yield the functions extremum. Two roots are

complex number which give physically meaningless χe. Only real root of f and g

will be used.

To solve Eqs. (4.14) and (4.15) for f and g, c′ =
a3

b3
or inclusion to cell

volume is set equal to the inclusion packing fraction. One more condition is given

to specify the unknown χe. This is the self-consistency condition [18] given by〈
E(e)

z

〉
= v1

〈
E(1)

z

〉
+ v2

〈
E(2)

z

〉
, (4.16)

where subscript z is the electric field component in z-axis.
〈
E

(2)
z

〉
and

〈
E

(1)
z

〉
are the volume average of the electric field within the inclusion and host medium,

respectively.

Eqs. (4.8)-(4.10) are used to calculate
〈
E

(1)
z

〉
,
〈
E

(2)
z

〉
and

〈
E

(e)
z

〉
. We get〈

E(1)
z

〉
= fE0, (4.17)〈

E(2)
z

〉
= cE0, (4.18)〈

E(e)
z

〉
= E0. (4.19)

By substituting Eqs. (4.17)-(4.19) into Eq. (4.16), we obtain

f = 1 + v2g. (4.20)

From Eqs. (4.14), (4.15) and (4.20), we can solve for f, g and χe as in terms of

y =
χ2

χ1

and v2 which are parameters to specify the effective nonlinear coefficient

χe. Because of the complication χe can not be solved in a closed form. To keep off

the complication, χe is determined for specific values of y =
χ2

χ1

and v2. So, the

relative effective nonlinear coefficient

(
χe

χ1

)
as a function of the inclusion packing

fraction (v2) and the relative nonlinear coefficient

(
χ2

χ1

)
is obtained:

χe

χ1

= F (v2,
χ2

χ1

). (4.21)
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In this work, the inclusion packing fraction (v2) is varied from the dilute limit

(v2 = 0) to the ideal maximum packing fraction v2 = 1. The parameter
χ2

χ1

has

been set equal to 10, 100, 1000, 0.1, 0.01, and 0.001. The relative effective nonlinear

coefficients

(
χe

χ1

)
are determined for arbitrary inclusion packing fractions by using

a Mathematica program (see appendix C).

4.2.2 Inclusions of Material 1 Embedded in Material 2

In contrary to subsection 4.2.1 with the theoretical model Fig. 4.1, we now con-

sider the strongly nonlinear dielectric inclusions having nonlinear coefficient χ1

embedded in the medium of strongly nonlinear coefficient χ2. The calculation of

relative nonlinear coefficient

(
χe

χ1

)
is resemblant to the mathematical process in

subsection 4.2.1

The relative effective nonlinear coefficient

(
χe

χ2

)
is obtained as a function

of inclusion packing fraction v1 and the relative nonlinear coefficient
χ1

χ2

. For the

purpose of reporting in the same figure of those given in subsection 4.2.1, we write

the relative effective nonlinear coefficient as these results

χe

χ1

= F ′(v2,
χ2

χ1

), (4.22)

where v1 is replaced by v2 = 1 − v1.

The parameter y =
χ2

χ1

has been set equal to 10, 100, 1000, 0.1, 0.01, and

0.001. The relative effective nonlinear coefficients

(
χe

χ1

)
are determined for ar-

bitrary packing fractions v2 by using the Mathematica program (see appendix

C).

4.2.3 Two Interdispersed Materials

Now we consider composites consisting of two interdispersed materials phases 1

and 2. The theoretical model is that an inclusion with nonlinear coefficient χ2 (or

χ1) is embedded in an effective medium with effective nonlinear coefficient χe.
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In fact, this model is the special case of the EMT with c′ = 1, it is called the

effective medium approximation (EMA). For the case of the composite can not be

specified clearly which phase 1 (or 2) is the inclusions as shown in Fig. 4.2.

÷
2

÷
2

÷
2

÷
2

÷
2

÷
2 ÷

2

÷
2

÷
1

÷
1

÷
1

÷
1

÷
1÷

1

÷
1

Figure 4.2: Two interdispersed materials.

So the representative cell presented in Fig. 4.1 is replaced by a single particle

of phase 1 or 2 having nonlinear coefficient χα (α = 1, 2) , it is surrounded by a

homogeneous medium of effective nonlinear coefficient χe (see Fig. 4.3).

x

z

y

0

E =E z0 0

a

�

r

�e

��

Figure 4.3: A spherical inclusion of radius a with nonlinear coefficient χα (α = 1, 2)

is surrounded by an effective medium having nonlinear coefficient χe.

To determine the electric potentials in the inclusion and the effective medium

which obey the complicated nonlinear differential Eq. (2.17), the variational

method which is explained in section 2.4 will be applied.
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We use simple trial potentials:

ϕα(r, θ) = −cαE0r cos θ, 0 ≤ r ≤ a (4.23)

ϕe(r, θ) = −E0(r − bα
a3

r3
) cos θ, r ≥ a (4.24)

where ϕα and ϕe are the electric potentials in the inclusion of material type α

(α = 1, 2) and the effective medium, respectively. bα is a variational parameter as

yet to be determined.

The continuity of the potentials at the inclusion surface is used in order

to determine the relation between parameters cα and bα. From Eqs. (4.23) and

(4.24), evaluated at r = a, we obtain

cα = 1 − bα. (4.25)

To determine the variational parameter bα with the trial electric potentials,

Eqs. (4.23) and (4.24), the energy functional of Eq. (2.21) with the first term is

neglected,

W [ϕ] =
1

4
[

∫
vα

χα(x)
∣∣∣−→∇ϕα(x)

∣∣∣4 dV +

∫
ve

χe(x)
∣∣∣−→∇ϕe(x)

∣∣∣4 dV ] + Ws, (4.26)

is determined and minimized with respect to the parameter bα. In this case, the

surface energy term (Ws) is [16]

Ws = χebα
a3

R3
E4

0 . (4.27)

From Eqs. (4.23) and (4.24), we get

−→∇ϕα = −cαE0[cos θr̂ − sin θθ̂], (4.28)

−→∇ϕe = −E0[(1 +
2bαa3

r3
) cos θr̂ − (1 − bαa3

r3
) sin θθ̂]. (4.29)

Eqs. (4.27)-(4.29) are substituted into Eq. (4.26), hence

W [ϕ] =
1

4
E4

0 [(1 − a3

R3
− 36a6b2

α

5R6
+

36a3b2
α

5R3
− 8a9b3

α

5R9
+

8a3b3
α

5R3

−8a12b4
α

5R12
+

8a3b4
α

5R3
)χe +

a3c4
αχα

R3
] +

a3bα

R3
χeE

4
0 , (4.30)
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where the composite volume is assumed to be
4

3
πR3. For R � a, Eq. (4.30) is

reduced to

W [ϕ] =
1

4
E4

0 [(1 − a3

R3
+

36a3b2
α

5R3
+

8a3b3
α

5R3
+

8a3b4
α

5R3
)χe

+
a3

R3
c4
αχα] + χebα

a3

R3
E4

0 . (4.31)

Without loss of generality, E0 is set equal to 1, Eq. (4.31) with vα =
a3

R3

and cα = 1 − bα is

W [ϕ] =
1

4
[(1−vα +

36

5
vαb2

α +
8

5
vαb3

α +
8

5
vαb4

α +4vαbα)χe +
1

4
vα(1−bα)4χα]. (4.32)

A dimensionless contrast parameter between the αth component and the

effective medium is defined as yα =
χα

χe

(α = 1, 2) and cα is eliminated from Eq.

(4.32) by using Eqs. (4.25). Minimization of W [ϕ] with respect to the variational

parameter bα gives

∂W

∂bα

= vα

(
1 +

18bα

5
+

6b2
α

5
+

8b3
α

5
− (1 − bα)3yα

)
,

= 0. (4.33)

Eq. (4.33) is solved analytically for bα, we obtain three bα with different roots.

Two complex roots give physically meaningless χe. Only real root is considered,

which is

bα = −2+5yα

8+5yα
−

21/3(396+810yα)

3(8+5yα)(−1296−7020yα−24975y2
α+27

√
5(8+5yα)

√
1072+5272yα+6845y2

α)1/3
+

(−1296−7020yα−24975y2
α+27

√
5(8+5yα)

√
1072+5272yα+6845y2

α)1/3

3 21/3(8+5yα)
. (4.34)

From Eq. (4.34), we note that the parameter bα is a function of yα =
χα

χe

(α = 1, 2). The volume average of local electric field within the spherical inclusion(〈
E

(α)
z

〉)
is calculated by using Eq. (4.28), we get〈

E(α)
z

〉
= cαE0

= (1 − bα)E0. (4.35)
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Hence, an approximate expression for
〈
E

(α)
z

〉
is obtained by using the so-

lution of bα calculated in Eq. (4.34). For convenience, we define new parameters

which are dimensionless as

y2 =
χ2

χe

=
χ2

χ1

χ1

χe

=
y

x
and y1 =

χ1

χe

=
1

x
,

where x =
χe

χ1

and y =
χ2

χ1

.

According to the self-consistency condition of Eq. (4.16), the volume average

of local electric field within the spherical material α calculated by Eq. (4.35) is

replaced into Eq. (4.16), we get

v2b(y2) + (1 − v2)b(y1) = 0, (4.36)

where b(y1) and b(y2) are the solutions of Eq. (4.34) evaluated at χα = χ1 and

χα = χ2, respectively.

By solving Eq. (4.36), then the relative effective nonlinear coefficient is

obtained as a function of v2 and y =
χ2

χ1

:

χe

χ1

= F (v2,
χ2

χ1

, b(y1), b(y2)). (4.37)

In this work, the inclusion packing fraction (v2) is varied from the dilute limit

(v2 = 0) to the ideal maximum packing fraction v2 = 1. The parameter
χ2

χ1

has

been set equal to 10, 100, 1000, 0.1, 0.01, and 0.001. The relative effective nonlinear

coefficients

(
χe

χ1

)
are determined for arbitrary inclusion packing fractions by using

a Mathematica program (see appendix C).

4.3 Results and Discussion

The relative effective nonlinear coefficients are plotted in terms of log(
χe

χ1

) against

the packing fraction of material 2 (v2) for various values of relative nonlinear

coefficients

(
y =

χ2

χ1

)
, as shown in Fig. 4.4 for

χ2

χ1

= 10, 100, and 1000, Fig. 4.5

for
χ2

χ1

= 0.1, 0.01, and 0.01.
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Figure 4.4: Bounds of the effective nonlinear coefficient by the variational method

(
χ2

χ1

= 10, 100 and 1000).
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Figure 4.5: Bounds of the effective nonlinear coefficient by the variational method

(
χ2

χ1

= 0.1, 0.01 and 0.001).
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Fig. 4.4 and Fig. 4.5 shows the lower (- - -) and upper (· · ·) bounds of the

effective nonlinear coefficient calculated by Eqs. (4.21 ) and (4.22), respectively.

They are the best possible lower and upper bounds for a statistically homogeneous

and isotropic two-phase composite materials, when the only geometrical informa-

tion available is inclusion packing fractions. In addition, a remainder middle (—–)

presented for log(
χe

χ1

) calculated by Eq. (4.37).



Chapter V

Effective Nonlinear Coefficient by

Decoupling Technique

In this chapter, the decoupling technique presented in chapter 2 will be

applied to determine the effective nonlinear coefficient (χe) of strongly nonlinear

dielectric composites. We first begin to investigate the linear response in the range

of dilute inclusion packing fractions, then extend to the case of arbitrary inclusion

packing fractions. Next, by using the decoupling technique, χe including the lower

and upper bounds are determined for arbitrary inclusion packing fractions.

5.1 Effective Linear Coefficient

To determine the effective linear coefficient (εe) of the composite which contains

dilute inclusions, a single inclusion model was assumed [15]. As shown in Fig. 5.1,

an inclusion of radius a with linear coefficient ε2 is embedded in a host medium

with linear coefficient ε1 and an external uniform electric field
(−→

E 0

)
is applied to

study the dielectric response.

To determine the electric potentials, according to Eq. (2.14), the Laplace

equation in spherical coordinate is used:

−→∇2ϕ = 0. (5.1)

The electric potentials satisfying the boundary conditions at r = 0 and
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Figure 5.1: The single inclusion model.

r → α are

ϕ2(r, θ) = −cE0r cos θ, 0 ≤ r ≤ a (5.2)

ϕ1(r, θ) = −E0(r − b

r2
) cos θ, r ≥ a (5.3)

where ϕ2 and ϕ1 are the electric potentials in the inclusion and the host medium,

respectively.

The constants c and b in Eqs. (5.2) and (5.3) are determined by using the

continuities of the tangential component of
−→
E and the normal component of

−→
D

at the inclusion surface, hence

b =
ε2 − ε1

ε2 + 2ε1

and c =
3ε1

ε2 + 2ε1

. (5.4)

In order to determine εe, the energy integral is used [15, 3], which is

εe =
1

E2
0V

∫
V

εα

∣∣∣−→E α

∣∣∣2 dV, α = 1, 2, (5.5)

where the subscripts 1, and 2 are referred to the host medium and the inclusion,

respectively.

From
−→
E α = −−→∇ϕα and using Eqs. (5.2)-(5.4), Eq. (5.5) gives

εe = ε1 + v2
3ε1(ε2 − ε1)

ε2 + 2ε1

, (5.6)

where v2 is the inclusion packing fraction.
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Eq. (5.6) is a well know result which is obtained by assuming that the

inclusion volume is much less than the composite volume. Hence, it has a limit

on the practical application.

As presentation in Chapter 3, the more general EMT model was used to

determined the effective linear coefficient (εe) and the result is given by Eq. (

3.26) which is valid for composites having arbitrary inclusion packing fractions,

εe = ε1

⎡⎢⎣1 +
v2

ε1

ε2 − ε1

+
v1

3

⎤⎥⎦ , (5.7)

where v1 = 1 − v2.

The relative effective linear coefficients

(
εe

ε1

)
, calculated from Eqs. (5.6)

and (5.7), are plotted against the relative linear coefficient

(
ε2

ε1

)
for various in-

clusion packing fractions (v2) in Fig. 5.2.

From Fig. 5.2, the relative effective nonlinear coefficients
εe

ε1

calculated by

using the single inclusion model with Eq. (5.6) and the EMT model with Eq.

(5.7), are presented as dash (- - -) and solid lines (—–), respectively. The more

inclusion packing fraction (v2) increases, the greater distinction of
εe

ε1

calculated

from Eqs. (5.6) and (5.7) are observed. However, for v2 is less than 0.1, the
εe

ε1

values obtained by using both models are approximately corespondent. Therefore,

the single inclusion model is for inclusion packing fraction less than 0.1.
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Figure 5.2: Comparison of relative effective linear coefficients

(
εe

ε1

)
obtained by

using the single inclusion model and the EMT model for varying inclusion packing

fractions (v2 = 0.01, 0.08, 0.1 and 0.2) .
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5.2 Effective Nonlinear Coefficient

Next, extending to a strongly nonlinear dielectric composite, the effective nonlin-

ear coefficient (χe) of the composite has been evaluated by using the decoupling

technique.

In 1996, Yu and Yuen [17] applied the decoupling technique to strongly

nonlinear dielectric composite having dilute inclusion packing fractions. In their

work, the single inclusion model was assumed, so the obtained results have limits

on practical applications.

To generalize the decoupling technique in determining χe for arbitrary in-

clusion packing fractions, the calculation begins with an estimation of χe from Eq.

(2.29):

χe =
v1χ1 〈E4

1〉
E4

0

+
v2χ2 〈E4

2〉
E4

0

, (5.8)

where 〈E4〉 is the volume average of electric field to the fourth power, and sub-

scripts 1, 2 are referred to the host medium and the inclusion, respectively.

We invoke the decoupling technique [26] by ignoring the fluctuations of the

local electric field,〈
(E2

α − 〈
E2

α

〉
)2
〉

=
〈
E4

α

〉− 〈
E2

α

〉2
= 0, α = 1, 2,

or 〈E4
α〉 is approximated by 〈

E4
1

〉
=
〈
E2

1

〉2
, (5.9)

and also 〈
E4

2

〉
=
〈
E2

2

〉2
. (5.10)

Now, Eq. (5.8) is replaced by using Eqs. (5.9) and (5.10), hence

χe =
v1χ1 〈E2

1〉2
E4

0

+
v2χ2 〈E2

2〉2
E4

0

, (5.11)

where E2
2 and E2

1 are the mean square of electric fields within the inclusion and

host medium, respectively. v2 and v1 are the packing fractions of inclusion and

host medium, respectively.



42

Eq. (5.11) implies that if we know 〈E2
1〉 and 〈E2

2〉, the effective nonlinear

coefficient χe is obtained.

To obtain the mean square of electric fields 〈E2
1〉 and 〈E2

2〉, the derivatives

of Eq. (5.7) are evaluated for
∂εe

∂ε1

and
∂εe

∂ε2

, then substituted into Eqs. (2.36) and

(2.37), which give

〈
E2

1

〉
=

1

1 − v2

∂εe

∂ε1

E2
0 ,

=

⎡⎢⎣1 −
v2ε1

(
ε1

(ε2−ε1)2
+ 1

ε2−ε1

)
(

ε1

ε2−ε1
+ 1−v2

3

)2 +
v2

ε1

ε2−ε1
− 1−v2

3

⎤⎥⎦E2
0 , (5.12)

and also

〈
E2

2

〉
=

1

v2

∂εe

∂ε2

E2
0 ,

=

⎡⎢⎣ ε2
1

(ε2 − ε1)
2
(

ε1

ε2−ε1
+ 1−v2

3

)2E2
0

⎤⎥⎦ . (5.13)

By using the decoupling technique, the relations between the linear and

nonlinear coefficients from Eq. (2.39) with ε1 = χ1 〈E2
1〉 = χ1β and Eq. (2.40)

with ε2 = χ2 〈E2
2〉 = χ2α, thus the Eqs. (5.12) and (5.13) are modified to be

α =
β2

(β − αy)2
(

β
αy−β

+ 1−v2

3

)2 , (5.14)

β =

⎛⎜⎝ 1

1 − v2

1 −
v2β

(
1

αy−β
+ β

(αy−β)2

)
(

β
αy−β

+ 1−v2

3

)2 +
v2

β
αy−β

+ 1−v2

3

⎞⎟⎠ , (5.15)

where α = 〈E2
2〉, β = 〈E2

1〉, y =
χ2

χ1

and v2 is the inclusion packing fraction.

Now, Eqs. (5.14) and (5.15) can be solved self-consistently for α = 〈E2
2〉 and

β = 〈E2
1〉. We have to determine the unknowns α and β in terms of parameters

y and v2. Because of the complication, α and β can not be solved in closed form.

To keep off complication of the determination on α and β in explicit analytical

forms, specific values of y and v2 will be given first, then Eqs. (5.14) and (5.15)
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are solved numerically for α and β. Let

α∗ = α(v2, y), (5.16)

β∗ = β(v2, y), (5.17)

a∗ and β∗ represent the numerical solutions of α and β evaluated at given values

of v2 and y.

Without loss of generality, we set E0 = 1 and replace α and β into Eq. (5.11)

by a∗ and β∗, then the relative effective nonlinear coefficient
χe

χ1

as a function of

v2 and y is obtained:

χe

χ1

= F (v2, y) = (1 − v2)χ1 (β∗)2 + v2χ2 (α∗)2 . (5.18)

In general, the range of parameter y =
χ2

χ1

may varies from very low contrast

to vary high contrast, that is from y equal to zero up to thousands. In this work,

because at high contrast

(
χ2

χ1

> 100

)
, the increase of

χ2

χ1

rarely effect the
χe

χ1

value, so we vary
χ2

χ1

from 0 to 100. In addition, v2 is set equal to 0.01, 0.08, 0.1

and 0.2, then the relative effective nonlinear coefficient
χe

χ1

for specific inclusion

packing fractions are obtained by using the Mathematica program (see appendix

C).

To determine the distinction between the results of the EMT and the work

of Yu and Yuen, the relative effective nonlinear coefficients

(
χe

χ1

)
calculated by

using the EMT and the results of Yu and Yuen [17] are plotted against the relative

nonlinear coefficients

(
χ2

χ1

)
for various values of inclusion packing fraction (v2) .

As shown in Fig. 5.3, v2 is set equal to 0.01, 0.08, 0.1 and 0.2
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Figure 5.3: Comparison of relative effective nonlinear coefficient for various inclu-

sion packing fractions determined by using the decoupling technique.
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From Fig. 5.3, the relative effective nonlinear coefficients

(
χe

χ1

)
, calculated

by Yu and Yuen and the EMT, are presented as dash (- - -) and solid lines (—–),

respectively.
χe

χ1

increases rapidly with increasing
χ2

χ1

, however a higher values of

χ2

χ1

, the increase of
χ2

χ1

rarely affects the
χe

χ1

values. The distinction of
χe

χ1

obtained

by Yu and Yuen and the EMT increases with increasing of the inclusion packing

fractions (v2) . However, for v2 is less than 0.1, the
χe

χ1

values obtained by both

results are corespondent which confirms our results using the EMT model and also

shows the validity of the single inclusion model if v2 < 0.1.

Further, the calculation is separated into three cases based on different kinds

of composite microstructure geometry. First, the inclusions of material 2 are

embedded in material 1. Second, in contrary, inclusions of material 1 are embedded

in material 2 and the last case of two interdispersed materials.

5.2.1 Inclusions of Material 2 Embedded in Material 1

In fact, we has already considered this case in section 5.2. The effective nonlinear

coefficient (χe) was given by Eq. (5.18) for arbitrary inclusion packing fractions

(v2),
χe

χ1

= F (v2,
χ2

χ1

) = (1 − v2)χ1 (β∗)2 + v2χ2 (α∗)2 . (5.19)

where v2 is the inclusion packing fraction with α∗ and β∗ given by Eqs. (5.16) and

(5.17).

5.2.2 Inclusions of Material 1 Embedded in Material 2

This case is opposite to the case considered in subsection 5.2.1. To obtain
χe

χ1

, the

process of calculations are similar to previous case. As explained in section 4.2.2,

we report the results in terms of parameters v2 and
χ2

χ1

. We note that in this case

v2 is the packing fraction of material 2 which is the host medium,

χe

χ1

= F ′(v2,
χ2

χ1

). (5.20)
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The effective nonlinear coefficients (χe) are calculated for arbitrary values

of v2 by using the Mathematica program (see appendix C).

5.2.3 Two Interdispersed Materials

For two interdispersed materials, inclusions of phase 1 and 2 are randomly mixed

together. The composite can not be clearly specified which phase is the inclu-

sion (or host medium). The theoretical model is assumed that an inclusion with

nonlinear coefficient χ2 (or χ1) is embedded in an effective medium with effective

nonlinear coefficient χe. This is equivalent to the EMT model with c′ = 1. To

obtain the 〈E2
1〉 and 〈E2

2〉 , we have to know εe which was derived in Chapter 3.

From Eqs. (3.32) or (3.33),

v1(
ε1 − εe

ε1 + 2εe

) + v2(
ε2 − εe

ε2 + 2εe

) = 0, (5.21)

where v1 and v2 are the packing fractions of materials 1 and 2, respectively.

Eq. (5.21) is solved analytically for εe. The solution has two real roots of

opposite signs, a negative root gives a negative εe which is physically meaningless.

Only the positive root is considered, which is

εe =
1

4

[
2ε1 − 3v2ε1 − ε2 + 3v2ε2 +

√
8ε1ε2 + (2ε1 − 3v2ε1 − ε2 + 3v2ε2)2

]
.

(5.22)

To obtain the mean square of electric fields 〈E2
1〉 and 〈E2

2〉. The Mathematica

Program is used to determine the derivatives of Eq. (5.22) for
∂εe

∂ε1

and
∂εe

∂ε2

, then

substituted into Eqs. (2.36) and (2.37). We obtain

〈
E2

1

〉
=

1

4 (1 − v2)

[
2 − 3v2 +

8ε2 + 2(2 − 3v2)(2ε1 − 3v2ε1 − ε2 + 3v2ε2)

2
√

8ε1ε2 + (2ε1 − 3v2ε1 − ε2 + 3v2ε2)2

]
,

(5.23)〈
E2

2

〉
=

1

4v2

[
−1 + 3v2 +

8ε1 + 2(−1 + 3v2)(2ε1 − 3v2ε1 − ε2 + 3v2ε2)

2
√

8ε1ε2 + (2ε1 − 3v2ε1 − ε2 + 3v2ε2)2

]
. (5.24)

By using the decoupling technique, the relations between the linear and

nonlinear coefficients from Eq. (2.39) and (2.40), with ε1 = χ1 〈E2
1〉 = χ1β, and
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ε2 = χ2 〈E2
2〉 = χ2α, thus Eqs. (5.23) and (5.24) become

α =
1

4v2

[
−1 + 3v2 +

8ε1 + 2(−1 + 3v2) (2β − 3v2β − yα + 3v2αy)

2
√

8yαβ + (2β − 3v2β − yα + 3v2αy)2

]
, (5.25)

β =
1

4(1 − v2)

[
2 − 3v2 +

8ε1 + 2(2 − 3v2) (2β − 3v2β − yα + 3v2αy)

2
√

8yαβ + (2β − 3v2β − yα + 3v2αy)2

]
. (5.26)

where α = 〈E2
2〉, β = 〈E2

1〉, y =
χ2

χ1

and v2 is the packing fraction of material 2.

Now, Eqs. (5.25) and (5.26) can be solved self-consistently for α = 〈E2
2〉

and β = 〈E2
1〉. We have to determine the unknowns α and β in terms of

χ2

χ1

and

v2. Because of the complication, α and β can not be solved in closed form. To

keep off complication of the determination of α and β in explicit analytical forms,

specific values of
χ2

χ1

and v2 will be given first, then Eqs. (5.25) and (5.26) are

solved numerically for α and β. Let a∗ and β∗ be the numerical solutions of α and

β evaluated at given values of v2 and
χ2

χ1

. We replace a∗ and β∗ into Eq. (5.11),

then the relative effective nonlinear coefficient

(
χe

χ1

)
is obtained as a function of

packing fraction of material 2 (v2) and the relative nonlinear coefficient
χ2

χ1

:

χe

χ1

= F (v2,
χ2

χ1

, α∗, β∗). (5.27)

To determine the bounds of χe, the relative effective nonlinear coefficients

are plotted as log(
χe

χ1

) against the packing fractions of material 2 (v2) for various

values of
χ2

χ1

. As shown in Fig. 5.4 and 5.5,
χ2

χ1

is set equal to 10, 100, 1000, 0.1,

0.01, and 0.001.
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Figure 5.4: Bounds of the effective nonlinear coefficient by the decoupling tech-

nique (
χ2

χ1

= 10, 100 and 1000).
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Figure 5.5: Bounds of the effective nonlinear coefficient by the decoupling tech-

nique (
χ2

χ1

= 0.1, 0.01 and 0.001).
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Figs. 5.4 and 5.5 show the lower (- - -) and upper (· · ·) bounds of χe

calculated from Eqs. (5.19) and (5.20), respectively. They are the best possible

lower and upper bounds for a statistically homogeneous and isotropic two-phase

composite materials, when the only geometrical information available is inclusion

packing fractions. The remainder middle (—–) calculated from Eq. (5.27), which

represents the effective medium approximation. These are similar to the work of

Yu, Hui and Lee [26]. The more the difference between the nonlinear coefficients

of the materials 1 and 2, the more distinction between two bounds are observed.

These results will be compared with those of the variational method for their

verification and reliability of the decoupling technique results in the next section.

For detail explanation, we consider the bounds of χe for
χ2

χ1

= 100. As shown

in Fig. 5.6, log(
χe

χ1

) increases with increasing v2 because χ2 is larger than χ1. For

v2 = 0, all curves coincide at log(
χe

χ1

) equal to 0 because χe becomes χ1. On

the other hand, for v2 = 1, all curves coincide at log(
χe

χ1

) equal to 2 because χe

becomes χ2 (log(
χe

χ1

) = log(
χ2

χ1

) = log100 = 2). For v2 = 0.4, the volume ratio of

material 2 to material 1 is 4 : 6, log(
χe

χ1

) calculated from Eqs. (5.19) and (5.20)

are 0.74, and 1.39, respectively.
χe

χ1

calculated from Eq. (5.20) are obtained by

assuming that particles or inclusions of material 1 are randomly dispersed in the

host medium of material 2. While Eq. (5.19) explains the material with opposite

microstructure which is composed of material 2 are randomly dispersed in the host

medium of material 1. For the same ratio of materials 1 and 2, and χ2 > χ1, the

effective nonlinear coefficient (χe) of the composite with material 2 being the host

medium is larger than χe of the composite case with material 2 being inclusions.

The ratio between χe of the former to the latter case is about 5.6 for
χ2

χ1

= 100

and v2 = 0.4.
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Figure 5.6: Bounds of the effective nonlinear coefficient for
χ2

χ1

= 100.



52

5.3 Reliability and Utilization of Decoupling Tech-

nique

In order to determine the validity or reliability of the decoupling technique, log(
χe

χ1

)

calculated by using the decoupling technique are compared with those calculated

by using the variational method as shown in Figs. 5.7 - 5.14.

Figs. 5.7 - 5.9 are presented for
χ2

χ1

= 10, 100, and 1000, respectively. It

is found that log(
χe

χ1

) calculated by using both methods significantly differ as

increasing
χ2

χ1

. From Fig. 5.9 with
χ2

χ1

= 1000, the maximum difference reaches

to about 30%. Figs. 5.10 - 5.12 are presented for
χ2

χ1

= 0.1, 0.01 and 0.001,

respectively. From Fig. 5.12 with
χ2

χ1

= 0.001, the maximum difference reaches

to about 12%. Therefore, it is concluded that results of decoupling technique are

comparable to those of the variational method at only small values of
χ2

χ1

.

Now, we consider own intersections between log(
χe

χ1

) obtained by using the

variational method and the decoupling technique of two interdispersed materials

in Fig. 5.7-5.12. Before the intersections, log(
χe

χ1

) from the variational method

are less than those from the decoupling technique, after that log(
χe

χ1

) from the

variational method are larger than those from the decoupling technique. The

intersections in terms of v2 are approximately v2 = 0.5, 0.3 and 0.2 for
χ2

χ1

= 10,

100 and 1000, respectively. Therefore, the intersections of
χ2

χ1

> 1 decrease with

increasing
χ2

χ1

. For
χ2

χ1

= 0.1, 0.01 and 0.001, the intersections are approximately

v2 = 0.5, 0.75 and 0.8, respectively. So, the intersections of 0 <
χ2

χ1

< 1 increase

with decreasing
χ2

χ1

. We expect that the intersections may be caused from the

determination on χe by using the variational method, which also occur in the

work of Jitrin [16].

For material 2 embedded in material 1, we report
χe

χ1

by varying
χ2

χ1

for lower

values of v2 in Figs. 5.13. From Fig. 5.13,
χe

χ1

calculated by using the variational

method (Eq. (4.21)), and the decoupling technique (Eq. (5.19)) are compared
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for inclusion packing fractions v2 = 0.01, 0.08, 0.1 and 0.2. It is found that
χe

χ1

calculated by using both methods are in good agreement only at very dilute

packing fractions and lower values of
χ2

χ1

. It is concluded that the decoupling

technique is reliable for v2 ≤ 0.1 with
χ2

χ1

less than about 10 and also for v2 = 0.2

with
χ2

χ1

less than about 5 because these are observed that the difference is about

5%.

For inclusions of material 2 embedded in material 1 and inclusions of material

1 embedded in material 2, Figs. 5.7 - 5.13 show χe predicted by using the decou-

pling techniques are all less than those using the variational method. These con-

firm the theoretical prediction reported by Yu and Yuen [17] that χe(decoupling)≤
χe(exact)≤ χe(variational). It is clear that both methods are indispensable for es-

timating χe of intractable boundary value-problems. If both results coincide, they

both give the exact result. On the other hand, if both results are tight, the esti-

mations are good.

Next, we consider the gap between χe(decoupling) and χe(variational) in

Fig. 5.13. By using the data of Fig. 5.13, we now report the data on a loga-

rithmic scale in Fig. 5.14. From Fig. 5.14, the gap between χe(decoupling) and

χe(variational) depends on v2 and
χ2

χ1

. For the range of log(
χ2

χ1

) < 0 or 0 ≤ χ2

χ1

< 1,

the gap decreases with decreasing the contrast between χ2 and χ1 (
χ2

χ1

approaches

1) and becomes zero at
χ2

χ1

= 1. Similarly, for the range of log(
χ2

χ1

) > 0 or
χ2

χ1

> 1,

the gap also decreases with decreasing the contrast
χ2

χ1

.

The gap between χe(decoupling) and χe(variational) increases with increas-

ing v2. These may be explained by considering the approximation 〈E4
1〉 ≈ 〈E2

1〉2

used in Eqs. (5.9) and (5.10). Therefore, we calculate the percentage of dis-

crepancy between 〈E4
1〉 and 〈E2

1〉2
(

Δ% =

[〈E4
1〉−〈E2

1〉2

〈E4
1〉

]
× 100

)
of the field in

the medium
(−→

E 1

)
from the variational method results. Δ% are plotted against

log(
χ2

χ1

) for v2 = 0.01, 0.08, 0.1 and 0.2 in Fig. 5.15. From Fig. 5.15, Δ% depend

on
χ2

χ1

and v2 similar relation with these of Figs. 5.13 and 5.14.
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It is found that Δ% ≥ 0 or 〈E4
1〉 ≥ 〈E2

1〉2 for the whole ranges of
χ2

χ1

and

for all values of v2. Because χe(decoupling) depends on 〈E4
1〉 (see Eq. (5.8)), we

therefore expect our results are less than the expect values satisfying the theoret-

ical relation between χe(exact) and χe(decoupling) as shown in Appendix B that

χe(exact) ≥ χe(decoupling).
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Figure 5.7: Comparison of bounds of log(
χe

χ1

) obtained by using the variational

method (black lines) and the decoupling technique (red lines) for
χ2

χ1

= 10.
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Figure 5.8: Comparison of bounds of log(
χe

χ1

) obtained by using the variational

method (black lines)and the decoupling technique (red lines) for
χ2

χ1

= 100.
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Figure 5.9: Comparison of bounds of log(
χe

χ1

) obtained by using the variational

method (black lines)and the decoupling technique (red lines) for
χ2

χ1

= 1000.
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Figure 5.10: Comparison of bounds of log(
χe

χ1

) obtained by using the variational

method (black lines)and the decoupling technique (red lines) for
χ2

χ1

= 0.1.
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Figure 5.11: Comparison of bounds of log(
χe

χ1

) obtained by using the variational

method (black lines)and the decoupling technique (red lines) for
χ2

χ1

= 0.01.
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Figure 5.12: Comparison of bounds of log(
χe

χ1

) obtained by using the variational

method (black lines)and the decoupling technique (red lines) for
χ2

χ1

= 0.001.
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Figure 5.13: Comparison of
χe

χ1

obtained by using the variational method and the

decoupling technique for v2 = 0.01, 0.08, 0.1 and 0.2.
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Figure 5.14: Comparison of log(
χe

χ1

) obtained by using the variational method and

the decoupling technique for v2 = 0.01, 0.08, 0.1 and 0.2.
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Figure 5.15: The percentage of discrepancy (Δ%) between 〈E4
1〉 and 〈E2

1〉2.
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5.4 Experimental Effective Nonlinear Coefficients

To test our programs in sections 4.2.3 and 5.2.3, which are used in determination

on the effective nonlinear coefficients of the composites, our results are compared

with the experimental results of Gehl, Fisher and Boyd in 1997 [32]. In their

work, the nonlinear-optical responses of the porous-glass-based composite ones

are studied as experimental samples. The samples have two parts: silica glass

(72%) and spaces (28%), then the spaces in the sample were saturated and re-

placed with various nonlinear fluids, such as methanol, carbon tetrachloride and

diiodomethane. The ratios between the nonlinear coefficients of the glass and var-

ious fluids

(
χglass

χfluid

)
are 0.62, 0.32 and 0.03, respectively. By using Mach-Zehnder

interferometer and analytical process, the relative effective nonlinear coefficients(
χe

χfluid

)
were determined.

In comparison, our results which predict the effective nonlinear coefficient

of two interdispersed materials and the experimental results are plotted in Fig.

5.16. Our results using the variational method and the decoupling technique

agree very well with the experimental results, while the discrepancies of
χe

χfluid

between the experiment and our result are about 15% for methanol, 13% for carbon

tetrachloride and 5% for diiodomethane. Moreover,
χe

χfluid

of carbon tetrachloride

and diiodomethane lie between our variational and decoupling results satisfying

the theoretical prediction that χe(decoupling) ≤ χe(exact) ≤ χe(variational);

which confirms that our results are reliable.
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Figure 5.16: Comparison of the relative effective nonlinear coefficient
χe

χfluid

, the

experimental results are compared with those calculated by using the variational

method and the decoupling technique (vfluid = 0.28).



Chapter VI

Conclusions

This research is an extension of the work of Yu and Yuen [17] in study-

ing the electric field response of strongly nonlinear dielectric composites. These

composites consist of spherical strongly nonlinear dielectric inclusions randomly

embedded in a strongly nonlinear dielectric host medium of different nonlinear

coefficient. In their work, they assumed that the inclusion volume is much less

than the composite volume, then the effective nonlinear coefficient (χe) of the

composite is determined by using the decoupling technique. Hence, their work

has limits on practical applications.

In this research, the effective response of strongly nonlinear dielectric com-

posites has been investigated by using the decoupling technique. The reliability of

χe in dilute inclusion packing fraction is now extended to arbitrary inclusion pack-

ing fractions. The effective medium theory (EMT) originally proposed by Hashin

[18] is applied for theoretical modeling and studying the electric field response of

these composites.

We consider the composite which is composed of two components, material

1 and material 2, and exhibits nonlinear coefficients χ1 and χ2, respectively and

determine the bounds of χe. The results show the lower and upper bounds in

Figs. 5.4 - 5.12 and the higher the contrast between χ1 and χ2, the larger the gap

between the two bounds are observed. Moreover, if the composite has material of

higher nonlinear coefficient being the host medium instead of the inclusions, the

higher χe is obtained, for the composite of the same packing fraction, as seen in

Fig. 5.6, the ratio of χe is about 5.6.
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In order to confirm the reliability of χe based on the EMT, the calculated

χe is compared to those of the single inclusion model of Yu and Yuen’s work. It

is found that χe based on the EMT is comparable to the result of Yu and Yuen at

inclusion packing fraction less than 0.1.

Moreover, in this research, we also apply the simple variational method to

calculate χe in order to confirm all decoupling technique results. Comparing χe

calculated by the decoupling technique and χe calculated by the simple variational

method, we found that both results agree quite well, especially at inclusion packing

fraction less than 0.1 for the contrast less than 10 which is the range of the work

of Yu and Yuen.

Our results of χe calculated by using the decoupling technique are less than

those calculated by using the variational method which satisfies the theoretical pre-

diction that χe(decoupling) ≤ χe(exact) ≤ χe(variational) [17]. Our theoretical

results which are obtained by using the decoupling technique and the variational

method also agree with the experimental results of Gehl, Fisher and Boyd [32] in

the determination on χe of the porous-glass-based composite materials.

At the end of this research, we would like to propose that there is a recent

method which is applicable to determine χe called the effective energy approxima-

tion [33]. This approximation is accomplished by the Ponte Castaneda variational

principle [34] and Torquato approximation [35]. Moreover, the addition of vari-

ational parameters is interested for improvement in χe. Therefore, the effective

energy approximation and the addition of variational parameters are suggested

for further studies.
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Appendices
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Appendix A

Energy Functional

In this appendix, we have to show that the determination of the extremum

condition of the energy functional as in Eq. (2.22), is Laplace equation (Eq.

(2.14)) for linear dielectric media, and nonlinear partial differential equation Eq.

(2.16) for nonlinear dielectric media.

A.1 Energy Functional of Linear Media

Consider the relation between the electric displacement
−→
D and electric field

−→
E of

linear dielectric media:
−→
D = ε

−→
E . (A.1)

By using
−→
E = −−→∇ϕ, the energy functional of linear dielectric media having

volume Ω can be written as

W =
1

2

∫∫∫
Ω

ε
∣∣∣−→∇ϕ

∣∣∣2 dxdydz, (A.2)

hence

W =
1

2

∫∫∫
Ω

ε
[
ϕ2

x + ϕ2
y + ϕ2

z

]
dxdydz, (A.3)

where ϕx =
∂ϕ

∂x
, ϕy =

∂ϕ

∂y
and ϕz =

∂ϕ

∂z
.

From the variational principle [36] of which

I =

∫∫∫
Ω

F (u, ux, uy, uz, x, y, z)dxdydz (A.4)
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is the functional of variations with u(x, y, z) being a trial function and ux =
∂u

∂x
.

Then F satisfying

∂F

∂u
− ∂

∂x
(
∂F

∂ux

) − ∂

∂y
(
∂F

∂uy

) − ∂

∂z
(
∂F

∂uz

) = 0, (A.5)

which is Euler-Lagrange’s equation for several variables. The solution of Eq. (A.5)

yields u(x, y, z) satisfying the functional I has an extremum.

Comparing our functional in Eq. (A.3) with the functional I in Eq. (A.4),

we obtain

F ≡ 1

2
ε(ϕ2

x + ϕ2
y + ϕ2

z). (A.6)

Replacing Eq. (A.6) into Eq. (A.5) to obtain

−ε(ϕxx + ϕyy + ϕzz) = 0, (A.7)

where ϕxx =
∂ϕx

∂x
, ϕyy =

∂ϕy

∂y
and ϕzz =

∂ϕz

∂z
.

Rearranging Eq. (A.7), thus we obtain

−ε
−→∇2ϕ(x, y, z) = 0,

or
−→∇2ϕ(x, y, z) = 0. (A.8)

This is Laplace’s equation for linear dielectric media. It implies that the ex-

tremum condition of the energy functional in Eq. (A.2) gives the solution ϕ(x, y, z)

which is also the solution of Laplace’s equation in Eq. (A.8).

A.2 Energy Functional of Nonlinear Media

For nonlinear dielectric media with the relation between the electric displacement
−→
D and electric field

−→
E is

−→
D = ε

−→
E + χ

∣∣∣−→E ∣∣∣2 −→E . (A.9)
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In this case

W =
1

2

∫∫∫
Ω

ε
∣∣∣−→∇ϕ

∣∣∣2 dV +
1

4

∫∫∫
Ω

χ
∣∣∣−→∇ϕ

∣∣∣4 dV (A.10)

describes the energy functional. Replacement of Eq. (A.10), we obtain

W =
1

2

∫∫∫
Ω

ε

[(
∂ϕ
∂x

)2
+
(

∂ϕ
∂y

)2

+
(

∂ϕ
∂y

)2
]

dxdydz (A.11)

+
1

4

∫∫∫
Ω

χ

[((
∂ϕ
∂x

)2
+
(

∂ϕ
∂y

)2

+
(

∂ϕ
∂y

)2
)((

∂ϕ
∂x

)2
+
(

∂ϕ
∂y

)2

+
(

∂ϕ
∂y

)2
)]

dxdydz,

or

W =
1

2

∫∫∫
Ω

ε
[
ϕ2

x + ϕ2
y + ϕ2

z

]
dxdydz

+
1

4

∫∫∫
Ω

χ
[(

ϕ2
x + ϕ2

y + ϕ2
z

) (
ϕ2

x + ϕ2
y + ϕ2

z

)]
dxdydz. (A.12)

Similar to previous section, we define

F ≡ 1

2
ε(ϕ2

x + ϕ2
y + ϕ2

z) +
1

4
χ
(
ϕ2

x + ϕ2
y + ϕ2

z

) (
ϕ2

x + ϕ2
y + ϕ2

z

)
, (A.13)

where ϕ (x, y, z) is the functional. Substituting Eq. (A.13) into the Euler-Lagrange’s

equation Eq. (A.5), we obtain

−
[

∂

∂x
(εϕx) +

∂

∂y
(εϕy) +

∂

∂y
(εϕy)

]
−
[

∂

∂x
(χϕx) (ϕ2

x + ϕ2
y + ϕ2

z) +
∂

∂y
(χϕy) (ϕ2

x + ϕ2
y + ϕ2

z) +
∂

∂z
(χϕz) (ϕ2

x + ϕ2
y + ϕ2

z)

]
= 0, (A.14)

−
[
∇ ·

(
ε
−→∇ϕ

)]
−
[−→∇ · χ

∣∣∣−→∇ϕ
∣∣∣2 −→∇ϕ

]
= 0,

or [−→∇ ·
(

ε
−→∇ϕ + χ

∣∣∣−→∇ϕ
∣∣∣2 −→∇ϕ

)]
= 0. (A.15)

This is a nonlinear partial differential equation describing the potential of the

nonlinear media as shown in Eq. (2.21). It implies that the extremum condition

of the energy functional in Eq. (A.10) gives the solution ϕ(x, y, z) which is also

the solution of the nonlinear partial differential equation in Eq. (A.15).



Appendix B

Theoretical Relation Between

χe(exact) and χe(decoupling)

In order to show the theoretical relation between χe(exact) and χe(decoupling),

the works of Ponte Castaneda [9, 10] are considered. In his work, the theoretical

relation between χe(exact) and the composite parameters was derived; as a result,

χe(exact) ≥ 1

E4
0

(
2ε0E

2
0 −

v1ε
2
1

χ1

− v2ε
2
2

χ2

)
. (B.1)

From the previous work of Yu et. al. [30], there are the relations ε1 = χ1 〈E2
1〉

and ε2 = χ2 〈E2
2〉, which give 〈

E2
1

〉
=

ε1

χ1

, (B.2)

and 〈
E2

2

〉
=

ε2

χ2

. (B.3)

According to Eq. (2.31), εe can be written as

εe =
v1 〈E2

1〉
E2

0

+
v2 〈E2

2〉
E2

0

. (B.4)

Then, 〈E2
1〉 and 〈E2

2〉 in Eqs. (B.2) and (B.3) are substituted into Eq. (B.4), hence

εe =
1

E2
0

(
v1ε

2
1

χ1

+
v2ε

2
2

χ2

)
. (B.5)

Replacing the left-hand side of Eq. (B.5) into Eq. (B.1), we obtain

χe(exact) ≥ εe

E2
0

,

and by using the relation εe = χeE
2
0 , we also obtain

χe(exact) ≥ χe(decoupling). (B.6)
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Mathematica Program
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(* This flow chart is for the determination on eχ  by using the variational 
method with the Mathematica Program *) 
 
 
 Define trial electric potentials in the composite which 

depend on the effective medium model
 
 
 
 Calculate gradient of 

electric potentials 
 

Find the total energy functional (W) 
in each medium 

Use the inclusion packing fraction 2
3)( v

b
a

=  

Use the relation of any parameters from the 
boundary conditions 

Use the self-consistency condition 

Minimize W with respect to 
variational parameter 

Substitute ?2 =v  and ?
1

2 =
χ
χ  

Obtain ),(
1

2
2

1 χ
χ

χ
χ ve  
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(* This flow chart is for the determination on eχ  by using the decoupling 
technique with the Mathematica Program *) 
 
 
 Define the effective linear coefficients which obtained in 

chapter 3 and depend on the effective medium model 
 
 
 
 
 

Replace the linear terms 
with the nonlinear terms 

Find the volume average of electric field 
to the second power in inclusion )( 2

2E  
and host medium )(  2

1E

Substitute ?2 =v  and ?
1

2 =
χ
χ  

Replace 2
2E and 2

1E  to find the 
effective nonlinear coefficients eχ  

Obtain ),(
1

2
2

1 χ
χ

χ
χ ve  
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