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N ~ Metal films are frequently used as the active sensing elements
of silicon micromachined gas sensors.. UP to 500 sensors can be fabricated on
a single silicon wafer. The final step in the fabrication is the deposition of a
thin metal film which can be a(;compllshed using Chemical Vapor Deposition
(CVD) This CVD process utilizes the boron-doped silicon heater built into
each sensor to initiate the thermal decomposition of the metal film precursor
molecules. Since both the front and backside of the sensor %et hot durln% this
process, metal particles aie deP03|ted not only on the sensor Tront end, but also
on the backside. Consequently, the doped Silicon heater tends to short out
during the chemical vapor deposition process. One strategy to overcome, this
problem is to coat the heater on the backside of each sensing device with a
protective insulating polymer such as a polyimide film.

This prog_ect evaluated different gol imide films as candidates
for such protective coafings. The PI2610, PI2540 and P12579-commercial
polyamic acid (PAA) precdrsors of polyimide films were studied. Optimized
curing condition for cyclization of PAA showed full imidization above 250°c
based on FTIR and TGA data. Comparing the three Fpolgllmld_e films on silicon
substrates, It was found that the rigid, rod-like PI12610 film had the best
thermal stability and the lowest thermal expansion coefficient be_mq_closest t0
the value of the silicon substrate. However, the adhesion of this Tilm to the
silicon wafer was ;rj]oor due to the high thermal expansion in the z direction.
Thermal stability, thermal expansion, adhesion strength and smoothness of the
films were investigated as being important parameters for optimization.
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