REFERENCES

B. Carnahan, H.A Luther, and J.O. Wilkes, Applied Numerical Methods. John Wiley and Sons, New York, 1969.
Stephen M. Pizer, and Victor L. Wallace, To Compute Numerically. Concepts and strategies. Little, Brown \& Company (Canada) Limited, Boston 1983.

Sanjay Kumar, Gas Production Engineering (Volume 4). Gulf Publishing Company, Houston, Texas, 1987.

James o. Wilkes, Macroscopic Fluid Mechanics for Mechanical Engineers. Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, 1995.
Robert W. Fox, and Alan T. Mcdonald, Introduction to Fluid Mechanics (Fourth Edition, SI Version). Purdue University, John Wiley \& Son, Inc. New York, 1994.

Richard S. H. Mah, Chemical Process Structures and Information Flows. Northwestern University, Butterworth-Heinemann, Stoneham, 1990.
Stoner, M. A., Steady State Analysis of Gas Production, Transmission and Distribution System. paper SPE 2554 presented at the SPE 44th Ann. Fall Meet., Denver, Colorado, 1969.

Stoner, M. A. Sensitivity Analysis Applied to a Steady State Model of Natural Gas Transportation Systems. Soc. Pet. Eng. J., 115-125, 1972.
R. E. Carlile, and B. E. Gillett, FORTRAN and Computer Mathematics for the Engineer and Scientist. The Petroleum Publishing Company, Tulsa, Oklahoma, 1973.

Microsoft Corporation, Microsoft FORTRAN Power Station. Professional Development System Version 1.0 for MS-Dos and Windows Operating Systems, Document No. DB38033-0293, 1993.

Chi U. Ikoku, Natural Gas Production Engineering. The Pennsylvania State University, John Wiley \& Sons, New York, 1984.
B. Coulbeck \& E. Evans, Pipeline Svstems. Fluid Mechanics Mechanics and Its Applications, Kluwer Academic Publishers, London, 1992.

Gordon J. Van Wylen \& Richard E. Sonntag, Fundamentals of Classical Thermodvnamics. SI Version, John Wiley \& Sons, New York, 1976.

APPENDIX A

FANNING FRICTION FACTOR

Fig. A. 1 Fanning friction factor for flow in pipelines.

APPENDIX B

BANDWIDTH SETTING

The computation of the half bandwidth of the coefficient matrix (the maximum difference between adjacent nodal numbers) from the nodal connections is specified to identify the non-zero coefficients in the banded matrix in order to accelerate solution of the simultaneous linear equations generated at each new iteration of the Newton-Raphson method. Mark off the lowest and highest column subscripts within the banded matrix as follows:

Bandwidth
Note:
There may be zeros within the band, but outside the band all the elements are zero.

1. Consider node i (row subscript) and node j (column subscript) which are joined by a pipeline for which $\mathrm{i}<\mathrm{j}$.
2. Evaluate the absolute value of $(\mathrm{i}-\mathrm{j})$ respectively for each non-zero element $\mathrm{C}_{i \mathrm{i}}$, and compare with each other to find out the maximum difference between adjacent nodes that are connected by a pipeline segment or item of equipment. The result is the half bandwidth of the coefficient matrix.
3. To illustrate how to determine the bandwidth as implemented above in items 1 and 2 respectively, a simple hypothetical network is given in Fig. B. 1

Fig. B. 1 Topological descriptions of a network whose bandwidth is to be computed.

The network, shown in Fig. B.1, consists of 12 nodes, and 20 nodal connections.

The topological representation as shown in Fig. B. 1 is used to determine the bandwidth as shown in Table B. 1

Table B. 1 Determination of bandwidth

* The maximum difference in adjacent nodal numbers is 4 , which is therefore the half bandwidth for the network shown in Fig. B.1.

APPENDIX C

GAS CODE

C PART I FOR A SINGLE GAS PHASE AT STEADY-STATE
C BY PATIKOM SAELEE - GP961016
C PETROCHEMICAL TECHNOLOGY PROGRAM
C PETROLEUM AND PETROCHEMICAL COLLEGE
C CHULALONGKORN UNIVERSITY
C This program analyses n-nodes networks of single gas at steady state C where nodes may be connected by pipeline segments or compressors.
C The simultaneous nonlinear equations generated from nodal material
C balance at every node i as functions of the unknown nodal pressures in

Here:

ZAVG = Average gas compressibility factor

C

C
C
C form a banded matrix, $\mathrm{F}(\mathrm{I}, \mathrm{J})$ as below:
C
C
C
C
C
C
C
C
C
C
C
C A special Gaussian elimination method for banded systems is
C implemented by the normalization and reduction scheme with partial
C pivot strategy to solve the simultaneous linear equations on the left
C hand side of coefficient matrix, $\mathrm{F}(\mathrm{I}, \mathrm{J})$. ITER is the iteration counter.
C Iteration from Newton-Raphson method is stopped when ITER exceeds
C ITMAX or all nodal pressures changes are lower than some criterion
C value. $\operatorname{QSC}(I, J)$ is the flow rate at standard conditions between node i
C and node j . $\mathrm{QSC}(\mathrm{I}, \mathrm{J})$ is a positive value for fluid flow from node i to C node j. Otherwise, reverse direction. Any others are described in the C program as C (comment).
C The output in the program consists of nodal pressures at each node in C the whole network and internodal flow rates in all pipeline segments.
C Nomenclature Units
C SF Stability Factor none
C C Nodal connection matrix noneC $\quad C(I, J): 0=$ No nodal connection between nodes i and jC $\quad C(I, J): 1=$ Pipeline connection between nodes i and jC $\quad \mathrm{C}(\mathrm{I}, \mathrm{J}): 3$ = Compressor compress from node i to node jC $\quad C(J, I): 3=$ Compressor that compresses from node j to node iC CP Average specific heat capacity at constant pressure (BTU)C $\quad\left(1 \mathrm{BTU}=778.2 \mathrm{ft}^{*} \mathrm{lbf}\right)$
C
C CV Average specific heat capacity at constant volume (BTU)C $\quad\left(1 \mathrm{BTU}=778.2 \mathrm{ft}^{*} \mathrm{lbf}\right)$C $\quad\left(1 \mathrm{BTU}=778.2 \mathrm{ft}{ }^{*} \mathrm{lbf}\right)$
C D Pipeline diameters matrixC DP The current vector of pressure changesC DPP The previous vector of pressure changes(lbm*Rankine)inchpsiapsia
C E Pipeline roughness matrix ft
C FF Fanning friction factor matrix none
C GC Gravitational acceleration ftC $\quad\left(1 \mathrm{lbf}=32.2 \mathrm{lbm} * \mathrm{ft} /(\mathrm{sec})^{* *} 2\right)$CC ITMAX Maximum number of iterations
$(\mathrm{sec})^{* *}{ }^{*}$
C L Pipeline lengths matrix ft
C MW Molecular weight (single component) lbm
C $\quad \mathrm{N} \quad$ Number of nodes none
C NBAND Half bandwidth of coefficient matrix none
C NPC Number of compressors needed none
C NC Number of nodal connections none
C NDL Number of pipeline connections none
C NT Number of node-types none
C NV Number of nodes with specified injection none
C or withdrawal rates
C $\quad \mathrm{P} \quad$ Nodal pressures [absolute pressure] psia
C PC Compression power matrix hp
C \quad QSC \quad Flow rates matrix (at standard conditions) MMscfd
$\mathrm{C} \quad$ (unit : million standard cubic ft per day)
C RG Universal gas constant(ft*lbf)
C $\quad\left[\left(1545.3\left(\mathrm{ft}^{*} \mathrm{lbf}\right) /(\mathrm{lbm} *\right.\right.$ Rankine $\left.)\right]$CC T Type of nodenone
C 0 : Pressure not specified
C 1 : Pressure specified
C
C
C
C V Node at which there is a specified injection or withdrawal rate
C $\quad \mathrm{V}(\mathrm{I})$: positive value $=$ injection rate
C $\quad \mathrm{V}(\mathrm{I}):$ negative value $=$ withdrawal rate
C VT Average gas viscosity Centipoise
C Z Nodal elevations ft
C ZAVG Average gas compressibility factor none
C Type declaration variables
REAL*8 ALPHA $(35,35), \operatorname{AREA}(35,35), \mathrm{D}(35,35), \mathrm{E}(35,35)$,
$+\operatorname{EPS}(35,35), \mathrm{F}(36,36), \operatorname{FF}(35,35), \operatorname{L}(35,35), \operatorname{LAMDA}(35,35)$,
$+\operatorname{PC}(35,35), \operatorname{PHI}(35,35), \operatorname{QSC}(35,35)$,
$+\mathrm{SF}(35), \mathrm{DP}(35), \mathrm{DPP}(35), \operatorname{FRIJ}(1225), \mathrm{P}(35), \mathrm{QIJ}(1225)$,

+ TINLET(35), V(35), Z(35),
+ SIGMA(35),
+ AL, CALPHA, CAREA, CEPS, CLAMDA, CP, CPHI, CTG, CTSC,
+ CV, DT, DTSC, DTSCZE, DTSCZN, EP, EPI, EPJ, IGEN, K, KK, LA,
+ MW, PSC, QADD, RG, RIJ, RIJK, RK1, TG, TP, TSC, W, ZAVG,
+ ZSC, ZZ
INTEGER*4 C(35,35), II(35), JJ(35), JLOW(35), JHIGH(35), T(35),
+ COUNT, I, ITER, ITMAX, J, M, TM
C Identify input file OPEN (5, FILE='GAS.DAT')

C Identify output file OPEN (6, FILE='GAS.OUT')

C Read input data of network and gas property READ $(5,100)$ N, MW, RG, TG, ZAVG, VT, CP, CV, PSC, TSC, + ZSC, NPC, NC, NDL, NT, NV, ITMAX

C Print input data of network and gas property WRITE $(6,300) \mathrm{N}, \mathrm{MW}, \mathrm{RG}, \mathrm{TG}, \mathrm{ZAVG}, \mathrm{VT}, \mathrm{CP}, \mathrm{CV}, \mathrm{PSC}, \mathrm{TSC}$, + ZSC

WRITE $(6,310)$ NPC, NC, NDL, NT, NV, ITMAX
WRITE $(6,500)$
C All parameters are initial as zero
DO $4 \mathrm{I}=1,35$
$\mathrm{P}(\mathrm{I})=0$.
$\mathrm{T}(\mathrm{I})=0$
$V(I)=0$.
$Z(I)=0$.
$\mathrm{DP}(\mathrm{I})=0$.
$\operatorname{DPP}(\mathrm{I})=0$.

$$
\operatorname{TINLET}(\mathrm{I})=0
$$

DO $5 \mathrm{~J}=1,35$

$$
\begin{aligned}
& \mathrm{C}(\mathrm{I}, \mathrm{~J})=0 \\
& \mathrm{D}(\mathrm{I}, \mathrm{~J})=0 . \\
& \mathrm{E}(\mathrm{I}, \mathrm{~J})=0 . \\
& \mathrm{L}(\mathrm{I}, \mathrm{~J})=0 . \\
& \operatorname{PC}(\mathrm{I}, \mathrm{~J})=0 . \\
& \operatorname{FF}(\mathrm{I}, \mathrm{~J})=0 . \\
& \operatorname{AREA}(\mathrm{I}, \mathrm{~J})=0 . \\
& \operatorname{ALPHA}(\mathrm{I}, \mathrm{~J})=0 . \\
& \operatorname{EPS}(\mathrm{I}, \mathrm{~J})=0 . \\
& \operatorname{LAMDA(I,~J)=0.} \\
& \operatorname{PHI}(\mathrm{I}, \mathrm{~J})=0 .
\end{aligned}
$$

5 CONTINUE

4 CONTINUE
C Read inlet temperature and compression power of compressor (if any)
$\operatorname{READ}(5,200)$
DO 6 COUNT = 1, NPC
$\operatorname{READ}\left(5,{ }^{*}\right) \mathrm{I}, \mathrm{J}, \operatorname{TINLET}(\mathrm{I}), \operatorname{PC}(\mathrm{I}, \mathrm{J})$
6 CONTINUE
C Read nonzero nodal connection matrix
$\operatorname{READ}(5,200)$
DO 7 COUNT $=1, \mathrm{NC}$
$\operatorname{READ}(5, *) \mathrm{I}, \mathrm{J}, \mathrm{C}(\mathrm{I}, \mathrm{J})$
7 CONTINUE
C Read pipeline diameters, lengths, initial Fanning friction factors
C and pipeline roughnesses matrix respectively joining node i and node j $\operatorname{READ}(5,200)$

DO 8 COUNT = 1, NDL
READ (5,*) I, J, D(I , J), L(I , J), FF(I, J), E(I , J)
8 CONTINUE
C Read nodal estimated and specified pressures
$\operatorname{READ}(5,200)$
$\operatorname{READ}\left(5,{ }^{*}\right)(\mathrm{P}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N})$
C Read type of node
$\operatorname{READ}(5,200)$
DO 9 COUNT = 1, NT
READ (5,*) I, T(I)
9 CONTINUE
C Read nodal injection or withdrawal rates
$\operatorname{READ}(5,200)$
DO 10 COUNT = 1, NV
READ (5,*) I, V(I)
10 CONTINUE
C Read nodal elevations
$\operatorname{READ}(5,200)$
$\operatorname{READ}\left(5,{ }^{*}\right)(\mathrm{Z}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N})$
C Compute constant conversion unit from the flow rate equations:
C The flow rate of nodal connection in all pipeline segments:
C Inclined flow:
C $\quad \operatorname{QSC}(\mathrm{J}, \mathrm{I})=+/-\operatorname{LAMDA}(\mathrm{J}, \mathrm{I}) * \operatorname{SQRT}$ +/-W

C
C
DTSC
ALPHA(J , I)*(PHI(J , I)-1)
C Here:
C $\quad \mathrm{W}=\mathrm{P}(\mathrm{J}) * * 2-\mathrm{PHI}(\mathrm{J}, \mathrm{I})^{*} \mathrm{P}(\mathrm{I})^{* *} 2$

C \quad DTSC $=\quad$ PSC* ${ }^{*} W$
(given as DTSCZN)
C
C ZSC ${ }^{* *}$ RG*TSC

C LAMDA $(\mathrm{J}, \mathrm{I})=(\mathrm{MW})^{*}\left(\mathrm{PI} * \mathrm{D}(\mathrm{J}, \mathrm{I})^{* *} 2\right) \quad$ (given as CLAMDA)
C
C
(ZAVG*RG*TG)* 4
C
$\operatorname{ALPHA}(\mathrm{J}, \mathrm{I})=$
[2*FF(J, I)*L(J, I)]
(given as CALPHA)
C
C
$\left[G C^{*} \mathrm{D}(\mathrm{J}, \mathrm{I}) *(\mathrm{Z}(\mathrm{I})-\mathrm{Z}(\mathrm{J}))\right]$
C $\quad \operatorname{PHI}(\mathrm{J}, \mathrm{I})=\operatorname{EXP}\left[2^{*} \mathrm{MW}^{*} \mathrm{GC}^{*}(\mathrm{Z}(\mathrm{I})-\mathrm{Z}(\mathrm{J}))\right]$
(given as CPHI)
C
C
[ZAVG*RG*TG]
C Horizontal flow:
C $\quad \operatorname{QSC}(\mathrm{J}, \mathrm{I})=+/-\operatorname{AREA}(\mathrm{J}, \mathrm{I}) * \operatorname{SQRT}+/-(\operatorname{EPS}(\mathrm{J}, \mathrm{I}) * \mathrm{~W})$
C
C

DTSC

C Here:
C $\quad \mathrm{W}=(\mathrm{P}(\mathrm{J}))^{* * 2-(\mathrm{P}(\mathrm{I}))^{* * 2}}$
C DTSC $=$ PSC*MW GKORN University (given as DTSCZE)
C
C
ZSC ${ }^{* *}$ RG*TSC
C AREA $=\mathrm{PI}^{*}(\mathrm{D}(\mathrm{J}, \mathrm{I}))^{* *} 2$
(given as CAREA)
C
C
C
$\operatorname{EPS}(\mathrm{J}, \mathrm{I})=$ (MW) * D(J , I) (given as CEPS)

C
C
(ZAVG*RG*TG) $\mathbf{4}^{*} \mathrm{FF}(\mathrm{J}, \mathrm{I}) * \mathrm{~L}(\mathrm{~J}, \mathrm{I})$

C The flow rate across a compressor for flow from node j to node i :
C $\quad \operatorname{QSC}(\mathrm{J}, \mathrm{I})=$ (1/DTSC) * PC(J , I)

C
C
[1/KK]*IGEN*TINLET(J)*\{[(RIJ)**(KK)-1]+(WIJ) \}
C The flow rate across a compressor For flow from node i to node j :
C $\quad \operatorname{QSC}(\mathrm{J}, \mathrm{I})=$ (1/DTSC)*-PC(I , J)

C

C
[1/KK]*IGEN*TINLET(I)*\{[(RJI)**(KK)-1]+(WJI) \}
C Here:
C $\quad \mathrm{WIJ}=\mathrm{Z}(\mathrm{I})-\mathrm{Z}(\mathrm{J})$

$$
\mathrm{WJI}=\mathrm{Z}(\mathrm{~J})-\mathrm{Z}(\mathrm{I})
$$

C \quad DTSC $=\quad$ PSC*MW
(given as DTSC)

C IGEN = ZAVG*RG/MW
(given as IGEN)
C

$\mathrm{K}=\mathrm{CP} / \mathrm{CV}$	$\mathrm{KK}=(\mathrm{K}-1) / \mathrm{K}$
$\mathrm{RIJ}=\mathrm{P}(\mathrm{I}) / \mathrm{P}(\mathrm{J})$	$\mathrm{RJI}=\mathrm{P}(\mathrm{J}) / \mathrm{P}(\mathrm{I})$
$\mathrm{PI}=3.1415$	

CTG $=T G+459.67$
CTSC $=$ TSC +459.67
CLAMDA=24.*60.*60.*PI/(4.*144.*ZAVG*CTG*10.**6)
CALPHA=2./(32.2*12.)**3
CPHI=2.*MW/(1545.3*ZAVG*CTG)
DTSCZN=32.2*12.**2*PSC/(ZSC*CTSC)
DTSCZE=12.**2*PSC*MW/(1545.3*ZSC*CTSC)
CAREA=24.*60.*60.*PI/(4.*144.*10.**6)
CEPS=32.2*(12.)**3*MW/(4.*1545.3*ZAVG*CTG)
DTSC=144.*10.**6*PSC*MW/(1545.3*24.*3600.*550.*ZSC*CTSC)
IGEN=1545.3*ZAVG/MW

$\mathrm{K}=\mathrm{CP} / \mathrm{CV}$

C Compute NBAND:
C NBAND is the maximum difference between adjacent nodal numbers.
C It is used for limiting upper and lower parts of the associated coefficient
C matrix, $\mathrm{F}(\mathrm{I}, \mathrm{J})$ computed from the Newton-Raphson method,
C at the J_th column during generate I _th row in banded matrix,
C where; $\mathbf{1}=<\mathrm{I}, \mathrm{J}=<\mathrm{n}$

DO $12 \mathrm{~J}=1, \mathrm{~N}$
IF (C(I, J) .NE. 0) THEN
IF (ABS(I-J) .GT. NBAND) THEN
$\mathrm{ABSIJ}=\mathrm{ABS}(\mathrm{I}-\mathrm{J})$
WIDTH $=$ ABSIJ
ENDIF
ENDIF
12 CONTINUE

NBAND $=$ WIDTH
11 CONTINUE
WRITE $(6,320)$ NBAND
WRITE $(6,500)$
WRITE $(6,330)$
CALL OUT (C, D, E, L, N, NBAND, NC, P, PC, T, TINLET, V, Z)
C Set lower and upper limit of the JLOWK_th and JHIGH_th column
C respectively at the I_th row in order to save time consumed to compute
C an associated coefficient banded matrix, $\mathrm{F}(\mathrm{I}, \mathrm{J})$.
C Set symmetrical metrics of any nodal connection, $\mathrm{C}(\mathrm{I}, \mathrm{J})$ in pipeline
C diameter, $\mathrm{D}(\mathrm{J}, \mathrm{I})$ and length, $\mathrm{L}(\mathrm{I}, \mathrm{J})$ including Fanning friction factor,
C $\quad \mathrm{FF}(\mathrm{I}, \mathrm{J})$ through pipeline roughness, $\mathrm{E}(\mathrm{I}, \mathrm{J})$.
C Compute preliminary values at any nodal connection for ALPHA(I, J),
C LAMDA(I , J), PHI(I, J), AREA(I, J), and EPS(I , J) in all flow rate
C equations within pipeline segments.
DO $13 \mathrm{I}=1, \mathrm{~N}$

$$
\begin{aligned}
& \operatorname{JLOW}(\mathrm{I})=\operatorname{MAX} 0(1, \mathrm{I}-\mathrm{NBAND}) \\
& \mathrm{JHIGH}(\mathrm{I})=\operatorname{MIN0}(\mathrm{N}, \mathrm{I}+\mathrm{NBAND}) \\
& \mathrm{JLOWK}=\mathrm{JLOW}(\mathrm{I}) \\
& \mathrm{JHIGHK}=\mathrm{JHIGH}(\mathrm{I})
\end{aligned}
$$

DO $14 \mathrm{~J}=\mathrm{JLOWK}$, JHIGHK
IF (J .NE. I) THEN

$$
\begin{aligned}
& \mathrm{D}(\mathrm{~J}, \mathrm{I})=\mathrm{D}(\mathrm{I}, \mathrm{~J}) \\
& \mathrm{E}(\mathrm{~J}, \mathrm{I})=\mathrm{E}(\mathrm{I}, \mathrm{~J}) \\
& \mathrm{L}(\mathrm{~J}, \mathrm{I})=\mathrm{L}(\mathrm{I}, \mathrm{~J}) \\
& \mathrm{FF}(\mathrm{~J}, \mathrm{I})=\mathrm{FF}(\mathrm{I}, \mathrm{~J})
\end{aligned}
$$

IF (C(I, J).EQ. 1) THEN

$$
\mathrm{C}(\mathrm{~J}, \mathrm{I})=\mathrm{C}(\mathrm{I}, \mathrm{~J})
$$

IF (Z(J) .NE. Z(I)) THEN

$$
\begin{aligned}
& \operatorname{ALPHA}(\mathrm{J}, \mathrm{I})=\mathrm{CALPHA} * \mathrm{FF}(\mathrm{~J}, \mathrm{I})^{*} \mathrm{~L}(\mathrm{~J}, \mathrm{I}) /(\mathrm{D}(\mathrm{~J}, \mathrm{I}) *(\mathrm{Z}(\mathrm{I})-\mathrm{Z}(\mathrm{~J}))) \\
& \operatorname{LAMDA}(\mathrm{J}, \mathrm{I})=\operatorname{CLAMDA} *(\mathrm{D}(\mathrm{~J}, \mathrm{I}))^{* * 2} \\
& \operatorname{PHI}(\mathrm{~J}, \mathrm{I})=\operatorname{DEXP}\left(\mathrm{CPHI}^{*}(\mathrm{Z}(\mathrm{I})-\mathrm{Z}(\mathrm{~J}))\right)
\end{aligned}
$$

ELSE

$$
\begin{aligned}
& \operatorname{AREA}(\mathrm{J}, \mathrm{I})=\operatorname{CAREA}^{*}(\mathrm{D}(\mathrm{~J}, \mathrm{I}))^{* *} 2 \\
& \operatorname{EPS}(\mathrm{~J}, \mathrm{I})=\operatorname{CEPS} * \mathrm{D}(\mathrm{~J}, \mathrm{I}) /(\operatorname{FF}(\mathrm{J}, \mathrm{I}) * \mathrm{~L}(\mathrm{~J}, \mathrm{I}))
\end{aligned}
$$

ENDIF
ENDIF
ENDIF
14 CONTINUE
13 CONTINUE
C Using Newton-RAPHSON method to find out the element values of
C associated coefficient on the left hand side in banded matrix as follows:
C
C
C
C
C
C
C
C
C
C
C
$\left[\begin{array}{lllllllll}* & * & * & * & * & 0 & 0 & 0 & 0 \\ * & * & * & * & * & * & 0 & 0 & 0 \\ * & * & * & * & * & * & * & 0 & 0 \\ * & * & * & * & * & * & * & * & 0 \\ * & * & * & * & * & * & * & * & * \\ 0 & * & * & * & * & * & * & * & * \\ 0 & 0 & * & * & * & * & * & * & * \\ 0 & 0 & 0 & * & * & * & * & * & * \\ 0 & 0 & 0 & 0 & * & * & * & * & *\end{array}\right]$
$\left[\begin{array}{l}? \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \\ ?\end{array}\right]=\left[\begin{array}{l}! \\ ! \\ ! \\ ! \\ ! \\ ! \\ ! \\ !\end{array}\right]$

C
C * Represent one of following integral values: $1=<\mathrm{I}, \mathrm{J}=<\mathrm{N}$
C $\quad \mathrm{F}(\mathrm{I}, \mathrm{I})=$ Partial derivative of the function, $\mathrm{F}(\mathrm{P})$ with respect $\mathrm{P}(\mathrm{I})$
C $\quad F(I, J)=$ Partial derivative of the function, $F(P)$ with respect $P(J)$

C \quad = The correction of pressure change, $\mathrm{DP}(\mathrm{I})$
C $\quad!=$ The function $\mathrm{F}(\mathrm{P})$ represent $-\mathrm{F}(\mathrm{I}, \mathrm{NP} 1),[\mathrm{NP} 1=\mathrm{N}+1]$ in $\mathrm{N}^{*} 1$ matrix
C Note: $\mathrm{F}(\mathrm{P})$ is the simultaneous nonlinear nodal material balance
C equations at every node i in the whole network based on the function of
C the unknown nodal pressures.
C Nodal material balance equations at every node i:
C $\quad \mathrm{F}(\mathrm{P})=\mathrm{V}(\mathrm{I})$, [injection or withdrawal rate]
$\mathrm{C} \quad+$ summation of $\mathrm{QSC}(\mathrm{I}, \mathrm{J})$ at $\mathrm{C}(\mathrm{J}, \mathrm{I})=1$,
C [pipeline flow from node j to node i]
$\mathrm{C} \quad+$ summation of $\operatorname{QSC}(\mathrm{I}, \mathrm{J})$ at $\mathrm{C}(\mathrm{J}, \mathrm{I})=3$,
C [compressor flow from node j to node i]
$\mathrm{C} \quad+$ summation of $\operatorname{QSC}(\mathrm{I}, \mathrm{J})$ at $\mathrm{C}(\mathrm{I}, \mathrm{J})=3$,
C [compressor flow from node ito node j]
C Beginning iteration counter to solve the elements of coefficient in
C banded matrix until DP(I) lower than some criterion value or exceeds
C ITMAX. (maximum number iteration).
15 DO 60 ITER $=1$, ITMAX
C Initialized all elements in the banded matrix to zero.
C \quad Give all $F(I, J)=0.0$
$\mathrm{NP} 1=\mathrm{N}+1$
DO $20 \mathrm{I}=1, \mathrm{~N}$
DO $20 \mathrm{~J}=1$, NP1
$F(I, J)=0$.
20 CONTINUE
C Set lower and upper limit at each I th row on the left hand side of
C coefficient banded matrix to save time consumed in the number
C of columns computed.
DC $41 \mathrm{I}=1, \mathrm{~N}$

$$
\begin{aligned}
& \mathrm{JLOW}(\mathrm{I})=\mathrm{MAX} 0(1, \mathrm{I}-\mathrm{NBAND}) \\
& \mathrm{JHIGH}(\mathrm{I})=\mathrm{MIN0}(\mathrm{~N}, \mathrm{I}+\mathrm{NBAND}) \\
& \mathrm{JL}=\mathrm{JLOW}(\mathrm{I}) \\
& \mathrm{JH}=\mathrm{JHIGH}(\mathrm{I})
\end{aligned}
$$

C Checking type of node, $\mathrm{T}(\mathrm{I})$ whether it is unknown nodal pressures.
C $\quad \mathrm{T}(\mathrm{I})=1$ Nodal pressures specified
C $\quad \mathrm{T}(\mathrm{I})=3$ Terminal node with specified injection or withdrawal rate IF (T(I) .NE. 1) THEN

C Initial node ito include a possibly specified injection or withdrawal rate
C given as V(I) (for nodal material balance)

$$
\begin{aligned}
& \mathrm{F}(\mathrm{I}, \mathrm{NP} 1)=-\mathrm{V}(\mathrm{I}) \\
& \text { DO } 40 \mathrm{~J}=\mathrm{JL}, \mathrm{JH} \\
& \text { IF (J .NE. I) THEN }
\end{aligned}
$$

C Compute in case of pipeline flow between nodes j and i IF (C(J , I).EQ. 1) THEN

C For inclined flow: $[\mathrm{Z}(\mathrm{J})$ not equal to $\mathrm{Z}(\mathrm{I})$]
IF (Z(J) .NE. Z(I)) THEN

$$
\mathrm{W}=(\mathrm{P}(\mathrm{~J}))^{* * 2-\mathrm{PHI}(\mathrm{~J}, \mathrm{I}) *(\mathrm{P}(\mathrm{I}))^{* *} 2}
$$

$$
\mathrm{AL}=\operatorname{ALPHA}(\mathrm{J}, \mathrm{I}) *(\mathrm{PHI}(\mathrm{~J}, \mathrm{I})-1)
$$

$$
\mathrm{WA}=\mathrm{W} / \mathrm{AL}
$$

$$
\mathrm{LA}=\mathrm{LAMDA}(\mathrm{~J}, \mathrm{I}) / \mathrm{AL}
$$

DT = LA/DTSCZN

$$
\mathrm{LC}=\mathrm{LAMDA}(\mathrm{~J}, \mathrm{I}) / \mathrm{DTSCZN}
$$

C Special case at which i is terminal node with specified injection
C or withdrawal rate in case of inclined flow.
IF (T(I).EQ. 3) THEN
$\mathrm{QADD}=\mathrm{DTSCZN} * * 2 * \mathrm{~V}(\mathrm{I}) * A B S(\mathrm{~V}(\mathrm{I}))$
$\mathrm{F}(\mathrm{I}, \mathrm{J})=-2 *(\operatorname{LAMDA}(\mathrm{~J}, \mathrm{I}))^{* *} 2 * \mathrm{P}(\mathrm{J}) / \mathrm{AL}$

$$
\begin{aligned}
& \mathrm{F}(\mathrm{I}, \mathrm{I})=2^{*}(\mathrm{LAMDA}(\mathrm{~J}, \mathrm{I}))^{* *} 2^{*} \mathrm{P}(\mathrm{I})^{*} \mathrm{PHI}(\mathrm{~J}, \mathrm{I}) * \mathrm{P}(\mathrm{I}) / \mathrm{AL} \\
& \mathrm{~F}(\mathrm{I}, \mathrm{NP} 1)=\mathrm{QADD}+\mathrm{LAMDA}(\mathrm{~J}, \mathrm{I})^{* *} 2 * \mathrm{WA} \\
& \mathrm{ELSE}
\end{aligned}
$$

C Checking whether the W value for inclined flow from node j to node i
C equals zero. If so, the next iteration of do-loop 40 is performed again.
$C \quad[F(I, J), F(I, I)$, and $F(I, N P 1)$ given as zero]
IF (W .NE. 0.) THEN
C For inclined flow from node i to node j

$$
\begin{aligned}
& \text { IF }(\mathrm{W} . \mathrm{LT} .0 .) \text { THEN } \\
& \mathrm{F}(\mathrm{I}, \mathrm{~J})=\mathrm{DT}^{*} \mathrm{P}(\mathrm{~J}) / \text { SQRT(-WA) } \\
& \mathrm{F}(\mathrm{I}, \mathrm{I})=\mathrm{F}(\mathrm{I}, \mathrm{I})-\mathrm{DT} * \operatorname{PHI}(\mathrm{~J}, \mathrm{I}) * P(\mathrm{I}) / \text { SQRT(-WA) } \\
& \mathrm{F}(\mathrm{I}, \mathrm{NP} 1)=\mathrm{F}(\mathrm{I}, \mathrm{NP} 1)+\mathrm{LC} * \mathrm{SQRT}(-\mathrm{WA})
\end{aligned}
$$

C For inclined flow from node j to node i
ELSE

```
F(I , J) = DT*P(J)/SQRT(WA)
F(I,I)=F(I,I)-DT*PHI(J ,I)*P(I)/SQRT(WA)
F(i,NPI)=F(I,NP1)-LC*SQRT(WA)
ENDIF
ENDIF
```

ENDIF
C For horizontal flow: [Z(J) equal to $\mathrm{Z}(\mathrm{I})$]
ELSE

$$
\begin{aligned}
& \mathrm{W}=(\mathrm{P}(\mathrm{~J}))^{* *} 2-(\mathrm{P}(\mathrm{I}))^{* * 2} \\
& \mathrm{EP}=\operatorname{EPS}(\mathrm{J}, \mathrm{I})^{*} \mathrm{~W} \\
& \mathrm{AC}=\operatorname{AREA}(\mathrm{J}, \mathrm{I}) / \mathrm{DTSCZE} \\
& \mathrm{EPJ}=\operatorname{EPS}(\mathrm{J}, \mathrm{I})^{* P}(\mathrm{~J}) \\
& \mathrm{EPI}=\operatorname{EPS}(\mathrm{J}, \mathrm{I}) * \mathrm{P}(\mathrm{I})
\end{aligned}
$$

C Special case at which i is terminal node with specified injection

C or withdrawal rate in case of horizontal flow.

```
IF (T(I).EQ. 3) THEN
    QADD = DTSCZE**2*V(I)*ABS(V(I))
    F(I , J) = -2*P(J)*EPS(J , I)*(AREA(J , I))**2
    F(I, I) = 2*P(I)*EPS(J , I)*(AREA(J , I))**2
    F(I, NP1) = QADD+EP*(AREA(J , I))**2
    ELSE
```

C Checking whether the W value for horizontal flow from node j to node i
C equals zero. If so, the next iteration of do-loop 40 is performed again.
C $\quad[\mathrm{F}(\mathrm{I}, \mathrm{J}), \mathrm{F}(\mathrm{I}, \mathrm{I})$, and $\mathrm{F}(\mathrm{I}, \mathrm{NP} 1)$ given as zero]
IF (W .NE. 0.) THEN
C For horizontal flow from node ito node j IF (W .LT. 0.) THEN
$\mathrm{F}(\mathrm{I}, \mathrm{J})=\mathrm{AC} * \mathrm{EPJ} / \mathrm{SQRT}(-\mathrm{EP})$
$F(I, I)=F(I, I)-A C * E P L / S Q R T(-E P)$
$F(I, N P 1)=F(1, N P 1)+A C * S Q R T(-E P)$
C For horizontal flow from node j to node i
ELSE
$\mathrm{F}(\mathrm{I}, \mathrm{J})=\mathrm{AC} * E P J / S Q R T(E P)$
$\mathrm{F}(\mathrm{I}, \mathrm{I})=\mathrm{F}(\mathrm{I}, \mathrm{I})-\mathrm{AC} * E P I / S Q R T(E P)$
$\mathrm{F}(\mathrm{I}, \mathrm{NP} 1)=\mathrm{F}(\mathrm{I}, \mathrm{NP} 1)-\mathrm{AC} * \mathrm{SQRT}(\mathrm{EP})$

ENDIF
ENDIF
ENDIF
ENDIF
C Compute in case of a compressor compresses from node j to node i ELSEIF (C(J , I).EQ. 3) THEN

$$
K K=(K-1) / K
$$

$$
\begin{aligned}
& \mathrm{RIJ}=\mathrm{P}(\mathrm{I}) / \mathrm{P}(\mathrm{~J}) \\
& \mathrm{RIJK}=\mathrm{RIJ} * * \mathrm{KK} \\
& \mathrm{RK} 1=\mathrm{RIJ}^{* * \mathrm{KK}-1} \\
& \mathrm{ZZ}=\mathrm{Z}(\mathrm{I})-\mathrm{Z}(\mathrm{~J}) \\
& \mathrm{TP}=\mathrm{IGEN} * \mathrm{TINLET}(\mathrm{~J}) * \mathrm{PC}(\mathrm{~J}, \mathrm{I}) * \mathrm{RIJK} \\
& \mathrm{~W}=(1 / \mathrm{KK}) * \mathrm{IGEN} * \mathrm{TINLET}(\mathrm{~J}) * \mathrm{RK} 1+\mathrm{ZZ}
\end{aligned}
$$

C Checking whether the W value for a compressor compressing from C node j to node i equals zero. If so, the next iteration of do-loop 40 is C performed again. [F(I, J), F(I, I), and $F(I, N P 1)$ given as zero]

IF ((P(J) .NE. P(I)) .OR. (Z(J) .NE. Z(I))) THEN

$$
\begin{aligned}
& \mathrm{F}(\mathrm{I}, \mathrm{~J})=\mathrm{TP} /\left(\mathrm{P}(\mathrm{~J})^{*} \mathrm{DTSC}^{*} \mathrm{~W}^{* *} 2\right) \\
& \mathrm{F}(\mathrm{I}, \mathrm{I})=\mathrm{F}(\mathrm{I}, \mathrm{I})-\mathrm{TP} /\left(\mathrm{P}(\mathrm{I})^{*} \mathrm{DTSC}^{*} \mathrm{~W}^{* *} 2\right) \\
& \mathrm{F}(\mathrm{I}, \mathrm{NP} 1)=\mathrm{F}(\mathrm{I}, \mathrm{NP} 1)-\mathrm{PC}(\mathrm{~J}, \mathrm{I}) /\left(\mathrm{DTSC}^{*} \mathrm{~W}\right)
\end{aligned}
$$

ENDIF
C Compute in case of a compressor compressing from node i to node j ELSEIF (C(I, J).EQ. 3) THEN
$K K=(K-1) / K$
$\mathrm{RIJ}=\mathrm{P}(\mathrm{J}) / \mathrm{P}(\mathrm{I})$
RIJK=RIJ**KK
RK1=RIJ**KK-1
$\mathrm{ZZ}=\mathrm{Z}(\mathrm{J})-\mathrm{Z}(\mathrm{I})$
TP=IGEN*TINLET(I)*PC(I, J)*RIJK
W=(1/KK)*IGEN*TINLET(I)*RK $1+Z Z$
C Checking whether the W value for a compressor compressing from
C node i to node j equals zero. If so, the next iteration of do-loop 40 is
C performed again. [$F(I, J), F(I, I)$, and $F(I, N P 1)$ given as zero]
IF ((P(J) .NE. P(I)) .OR. (Z(J) .NE. Z(I))) THEN

$$
\mathrm{F}(\mathrm{I}, \mathrm{~J})=\mathrm{TP} /\left(\mathrm{P}(\mathrm{~J}) * \mathrm{DTSC}^{*} \mathrm{~W}^{* *} 2\right)
$$

$$
\begin{aligned}
& \mathrm{F}(\mathrm{I}, \mathrm{I})=\mathrm{F}(\mathrm{I}, \mathrm{I})-\mathrm{TP} /\left(\mathrm{P}(\mathrm{I})^{*} \mathrm{DTSC} * \mathrm{~W}^{* *} 2\right) \\
& \mathrm{F}(\mathrm{I}, \mathrm{NP} 1)=\mathrm{F}(\mathrm{I}, \mathrm{NP} 1)+\mathrm{PC}(\mathrm{I}, \mathrm{~J}) /\left(\mathrm{DTSC}^{*} \mathrm{~W}\right)
\end{aligned}
$$

ENDIF

ENDIF

ENDIF

CONTINUE

C If type of node, $T(I)=1$, pressure is fixed [specified], the pressure
C change, $\mathrm{DP}(\mathrm{I})$ is always zero. Therefore, it can be achieved by in
C the banded matrix as follows:
C
$F(I, J)=0$
C
$F(I, I)=1$.
C
$F(I, N P 1)=0$
C In the simultaneous linear equations, the elements in banded matrix can
C be shown as follows:

ELSE

$$
\mathrm{F}(\mathrm{I}, \mathrm{I})=1
$$

ENDIF

41 CONTINUE

C SGEM is Gaussian elimination method implemented by the
C normalization and reduction scheme with column pivoting strategy.
C Call on subroutine SGEM to solve the elements of coefficient in banded
C matrix which becomes a diagonal matrix. There results the set solution
C of DP(I) equal the elements of coefficient of $\mathrm{N}^{*} 1$ matrix on the right
C hand side. The matrix can be shown as follows:
C

C

C

C

C

C
C

C
C

C
$\left[\begin{array}{lllllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}? \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$

CALL SGEM (F, N, NBAND, ERR)
C If $\operatorname{ERR}=1$ it means some pivot element in the K_{-}th
C column at any elimination step is equal to zero.
C The users are requested to check whether they input wrong parameters
C or setting new initial guesses for pressures and testing program again.
IF (ERR .NE. 0) THEN
WRITE(*,*) 'AFTER', ITER,' ITERATION, FOUND SOME PIVOT
$+=0$,

+ PLEASE CHECKING INPUT PARAMETERS OR SETTING NEW
+ INITIAL GUESS PRESSURES AGAIN'
GO TO 95

ENDIF

C Improve the set solution of pressure change, DP(I) by stability factor, C $\quad \mathrm{SF}(\mathrm{I})$ as follows:
$\mathrm{C} \quad \mathrm{P}(\mathrm{I})=\mathrm{P}(\mathrm{I})+\mathrm{DP}(\mathrm{I}) * \mathrm{SF}(\mathrm{I})$
C A mathematical technique, it is recommended to use $\mathrm{SF}(\mathrm{I})=0.5$ for the
C first iteration to ensure convergence. In subsequent iterations, propose
C the following scheme for obtaining SF(I) determined by SIGMA(I)
$\mathrm{C} \quad$ which depends on the ratio of $\mathrm{DP}(\mathrm{I})$ for the current and previous
C iteration in every other iteration as below:
C For SIGMA(I) lower or equal $-1, \mathrm{SF}(\mathrm{I})=\mathrm{C} 1^{*}$ ABS(SIGMA(I))
C For SIGMA(I) between -1 and $0, \mathrm{SF}(\mathrm{I})=\mathrm{C} 2-\mathrm{C} 3 * \mathrm{ABS}(\mathrm{SIGMA}(\mathrm{I}))$
c For SIGMA(I) between 0 and $1, \operatorname{SF}(\mathrm{I})=\mathrm{C} 4+\mathrm{C} 5 * \mathrm{ABS}(\mathrm{SIGMA}(\mathrm{I}))$
C For SIGMA(I) greater or equal $1, S F(I)=C 6$
C Where: $\quad \operatorname{SIGMA}(\mathrm{I})=\mathrm{DP}(\mathrm{I})$ at $(\mathrm{K}+1)_{-}$th iteration
C
C

C Note the users must obtain these specifications for $\mathrm{SF}(\mathrm{I})$ to improve the
C stability by giving the coefficients C1, C2, C3, C4, C5 and C6
C respectively. "The users have to do some experimentation to obtain
C these coefficients to prove better schemes for the stability, SF(I)
C applicable according to their own system."
C (usually $0.0=<\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 6=<1.0$)
C Setting all initial stability factor, $\mathrm{SF}(\mathrm{I})$ equal to 0.5
DO $43 \mathrm{I}=1, \mathrm{~N}$

$$
\begin{array}{r}
\mathrm{AF}(\mathrm{I})=0.5 \\
\mathrm{DP}(\mathrm{I})=\mathrm{F}(\mathrm{I}, \mathrm{~N}+1)
\end{array}
$$

43 CONTINUE
DO $44 \mathrm{I}=1, \mathrm{~N}$

C If node i is fixed pressure, $\mathrm{DP}(\mathrm{I})$ equals default value as zero. IF (T(I) .NE. 1) THEN
C Beginning the second iteration, the stability factor, $\mathrm{SF}(\mathrm{I})$ will be
C improved to avoid instability.

> IF (ITER .NE. 1) THEN
> $\operatorname{SIGMA(I)~=~DP(I)/DPP(I)~}$

IF (SIGMA(I) .LE. -1.) THEN
$\mathrm{SF}(\mathrm{I})=0.5^{*} \mathrm{ABS}(\mathrm{SIGMA}(\mathrm{I}))$
ELSEIF ((SIGMA(I) .LT. 0.) AND. (SIGMA(I) .GT. -1.)) THEN
$\mathrm{SF}(\mathrm{I})=0.4-0.15 * \mathrm{ABS}(\operatorname{SIGMA}(\mathrm{I}))$
ELSEIF ((SIGMA(I).LT. 1.) .AND. (SIGMA(I) .GT. 0.)) THEN
$\mathrm{SF}(\mathrm{I})=0.4+0.15 * \mathrm{ABS}(\mathrm{SIGMA}(\mathrm{I}))$
ELSEIF (SIGMA(I) .GE. 1.) THEN

$$
\mathrm{SF}(\mathrm{I})=0.5
$$

ENDIF

$$
\begin{aligned}
& \mathrm{DP}(\mathrm{I})=\mathrm{DP}(\mathrm{I}) * \mathrm{SF}(\mathrm{I}) \\
& \mathrm{P}(\mathrm{I})=\mathrm{P}(\mathrm{I})+\mathrm{DP}(\mathrm{I}) \\
& \mathrm{DPP}(\mathrm{I})=\mathrm{DP}(\mathrm{I})
\end{aligned}
$$

ELSE

$$
\begin{gathered}
\mathrm{DP}(\mathrm{I})=\mathrm{DP}(\mathrm{I}) * \mathrm{SF}(\mathrm{I}) \\
\mathrm{P}(\mathrm{I})=\mathrm{P}(\mathrm{I})+\mathrm{DP}(\mathrm{I}) \\
\mathrm{DPP}(\mathrm{I})=\mathrm{DP}(\mathrm{I}) \\
\mathrm{ENDIF}
\end{gathered}
$$

ENDIF

44 CONTINUE
C Find maximum value of $\operatorname{DP}(\mathrm{I})$, given as CONVERG, in order to
C check convergence whether it less than some criterion value. CONVERG $=0$.

$$
\begin{aligned}
& \text { DO } 50 \text { I }=1, \mathrm{~N} \\
& \text { FIJNP } 1 \text { = DP(I) } \\
& \text { IF }(\text { ABS(FIJNP1) .GT. CONVERG) THEN } \\
& \text { CONVERG }=\text { ABS(FIJNP1) } \\
& \text { ENDIF }
\end{aligned}
$$

CONTINUE
C Checking the convergence for all $\mathrm{DP}(\mathrm{I})$ given to compare whether it is
C less than 0.01 .
IF (CONVERG .LT. 0.01) THEN
C If the convergence represented as CONVERGE is lower than 0.01 .
C Print messages for CONVERGENCE and then getting the result of new
C pressures at every node i, at ITER_th iteration.
WRITE $(6,350)$ ITER
WRITE $(6,360)(I, P(I), I=1, N)$
WRITE $(6,500)$
GO TO 65
C If the convergence represented as CONVERGE is more than or equal to
C 0.01. Print messages for NO CONVERGENCE and then getting the
C result of current pressures at every node i, at ITER_th iteration.
ELSE
WRITE $(6,370)$ ITER
WRITE $(6,380)(\mathrm{I}, \mathrm{P}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N})$
WRITE $(6,500)$

ENDIF

C Call on subroutine UP to generate the new flow rates in all pipeline
C segments from the new pressures and the old Fanning friction factor
C after it gave no convergence. and then...
C compute the Reynolds number that will be used to compute the next

C Fanning friction factor for the next iteration.
C $\quad($ ITEK $=1, \ldots$ ITMAX $)$
CALL UP (ALPHA, AREA, C, D, DTSCZE, DTSCZN, E, EPS, FF, + LAMDA, MW, N, NBAND, P, PHI, TG, VT, Z, ZAVG)

60 CONTINUE
C If all DP(I) represented as CONVERGE achieve convergence to lower
C than 0.01 as mentioned above.
C Compute flow rates between nodes i and j in all nodal connections.
C $\quad \operatorname{QSC}(\mathrm{J}, \mathrm{I})$ is positive value for flow from node j to node i .
C $\quad \operatorname{QSC}(\mathrm{J}, \mathrm{I})$ is negative value for flow from node i to node j
65 CONTINUE
DO $70 \mathrm{I}=1, \mathrm{~N}$
DO $70 \mathrm{~J}=1, \mathrm{~N}$
$\operatorname{QSC}(\mathrm{I}, \mathrm{J})=0$.
70 CONTINUE
C Set upper and lower limit of element in banded matrix at J_th column
C in order to save time consumed for computing.
DO $80 \mathrm{I}=1, \mathrm{~N}$
$\operatorname{JLOW}(\mathrm{I})=\operatorname{MAX0}(1, \mathrm{I}-\mathrm{NBAND})$
$\mathrm{JHIGH}(\mathrm{I})=\mathrm{MIN} 0(\mathrm{~N}, \mathrm{I}+\mathrm{NBAND})$
$\mathrm{JL}=\mathrm{JLOW}(\mathrm{I})$
$\mathrm{JH}=\mathrm{JHIGH}(\mathrm{I})$
DO $75 \mathrm{~J}=\mathrm{JL}, \mathrm{JH}$
IF (J .NE. I) THEN
C Compute flow rate in case of pipeline flow between nodes j and i .
IF (C(J , I) .EQ. 1) THEN
C In case of inclined flow: [Z(J) .NE. Z(I)]
IF (Z(J) .NE. Z(I)) THEN

$$
\begin{aligned}
& \mathrm{W}=(\mathrm{P}(\mathrm{~J}))^{* *} 2-\mathrm{PHI}(\mathrm{~J}, \mathrm{I})^{*}(\mathrm{P}(\mathrm{I}))^{* *} 2 \\
& \mathrm{AL}=\operatorname{ALPHA}(\mathrm{J}, \mathrm{I})^{*}(\operatorname{PHI}(\mathrm{~J}, \mathrm{I})-1) \\
& \mathrm{WA}=\mathrm{W} / \mathrm{AL} \\
& \mathrm{DT}=\mathrm{LAMDA}(\mathrm{~J}, \mathrm{I}) / \mathrm{DTSCZN}
\end{aligned}
$$

C Checking whether the W value of inclined flow from node j to node i
C equals zero. If so, $\mathrm{Q}(\mathrm{J}, \mathrm{I})=0.0$
IF (W .NE. 0.) THEN
C The flow rate for inclined pipeline flow from node j to node i
IF (W .GT. 0.) THEN

$$
\operatorname{QSC}(\mathrm{J}, \mathrm{I})=\mathrm{DT} * \mathrm{SQRT}(\mathrm{WA})
$$

C The flow rate for inclined pipeline flow from node i to node j
ELSE

$$
\mathrm{QSC}(\mathrm{~J}, \mathrm{I})=-\mathrm{DT} * \mathrm{SQRT}(-\mathrm{WA})
$$

ENDIF

ENDIF
C In case of horizontal flow: [Z(J).EQ. Z(I)]
ELSE

$$
\begin{aligned}
& \mathrm{W}=(\mathrm{P}(\mathrm{~J}))^{* * 2-(\mathrm{P}(\mathrm{I}))^{* * 2}} \\
& \mathrm{EP}=\operatorname{EPS}(\mathrm{J}, \mathrm{I}) * \mathrm{~W} \\
& \mathrm{AC}=\operatorname{AREA}(\mathrm{J}, \mathrm{I}) / \mathrm{DTSCZE}
\end{aligned}
$$

C Checking whether the W value of horizontal flow from node j to node i
C equals zero. If so, $\mathrm{Q}(\mathrm{J}, \mathrm{I})=0.0$
IF (W .NE. 0) THEN
C The flow rate for horizontal pipeline flow from node j to node i
IF (W .GT. 0.) THEN
QSC $(\mathrm{J}, \mathrm{I})=\mathrm{AC} * \operatorname{SQRT}(E P)$
C The flow rate for horizontal pipeline flow from node i to node j
ELSE

$$
\operatorname{QSC}(\mathrm{J}, \mathrm{I})=-\mathrm{AC} * \operatorname{SQRT}(-E P)
$$

ENDIF

ENDIF

ENDIF

C Compute flow rate in case of a compressor flow from node j to node i ELSEIF (C(J, I).EQ. 3) THEN

$$
K K=(K-1) / K
$$

$$
\mathrm{RIJ}=\mathrm{P}(\mathrm{I}) / \mathrm{P}(\mathrm{~J})
$$

$$
\text { RIJK }=\text { RIJ**KK }
$$

$$
\text { RK } 1=\text { RIJ**KK-1 }
$$

$$
\mathrm{ZZ}=\mathrm{Z}(\mathrm{I})-\mathrm{Z}(\mathrm{~J})
$$

$$
\mathrm{TP}=\mathrm{IGEN} * \operatorname{TINLET}(\mathrm{~J}) * \operatorname{PC}(\mathrm{~J}, \mathrm{I}) * \text { RIJK }
$$

$$
\mathrm{W}=(1 / \mathrm{KK}) * \operatorname{IGEN} * \operatorname{TINLET}(\mathrm{~J}) * \mathrm{RK} 1+\mathrm{ZZ}
$$

C Checking whether both nodal pressures and elevations change for flow
C from node j to node i. [P(J) .EQ. P(I)...AND...Z(J) .EQ. Z(I)]
C If not, $\operatorname{QSC}(\mathrm{J}, \mathrm{I})=0.0$
IF ((P(J) .NE. P(I)) .OR. (Z(J) .NE. Z(I))) THEN

$$
\operatorname{QSC}(\mathrm{J}, \mathrm{I})=\mathrm{PC}(\mathrm{~J}, \mathrm{I}) /(\mathrm{DTSC} * \mathrm{~W})
$$

ENDIF
C Compute flow rate in case of a compressor flow from node i to node j ELSEIF (C(I , J).EQ. 3) THEN
$K K=(K-1) / K$
$\mathrm{RJJ}=\mathrm{P}(\mathrm{J}) / \mathrm{P}(\mathrm{l})$
RIJK $=$ RIJ ${ }^{* *}$ KK
RK1 = RIJ**KK-1
$Z Z=Z(J)-Z(I)$
TP $=\mathrm{IGEN} * \operatorname{TINLET}(\mathrm{I}) * P C(I, \mathrm{~J}) *$ RIJK
$\mathrm{W}=(1 / \mathrm{KK}) *$ IGEN*TINLET(I)*RK $1+Z Z$

C Checking whether both nodal pressures and elevations change for flow
C from node ito node j . [P(J).EQ. P(I)...AND...Z(J) .EQ. $\mathrm{Z}(\mathrm{I})]$
C If not, $\operatorname{QSC}(\mathrm{J}, \mathrm{I})=0.0$
IF ((P(J) .NE. P(I)) .OR. (Z(J) .NE. Z(I))) THEN

$$
\mathrm{QSC}(\mathrm{~J}, \mathrm{I})=-\mathrm{PC}(\mathrm{I}, \mathrm{~J}) /(\mathrm{DTSC} * \mathrm{~W})
$$

ENDIF

ENDIF

ENDIF

75 CONTINUE

80 CONTINUE

C Arrange non-zero flow rate from node i to node j, where $i<j$.
C If the $\operatorname{QSC}(\mathrm{I}, \mathrm{J})<0.0$, change subscript from node j to node i according
C to the positive direction of flow rate and print it out as positive value.
$\mathrm{TM}=0$
DO $90 \mathrm{I}=1, \mathrm{~N}$
DO $85 \mathrm{~J}=\mathrm{I}$, N
IF (ABS(QSC(I , J)) .NE. 0.) THEN
$\mathrm{TM}=\mathrm{TM}+1$
$\operatorname{FRIJ}(T M)=F F(I, J)$
IF (QSC(I , J) .GT. 0.) THEN

$$
\mathrm{II}(\mathrm{TM})=\mathrm{I}
$$

$$
\mathrm{JJ}(\mathrm{TM})=\mathrm{J}
$$

$$
\operatorname{QIJ}(\mathrm{TM})=\operatorname{QSC}(\mathrm{I}, \mathrm{~J})
$$

ELSE

$$
\mathrm{II}(\mathrm{TM})=\mathrm{J}
$$

$$
\mathrm{JJ}(\mathrm{TM})=\mathrm{I}
$$

$$
\operatorname{QIJ}(\mathrm{TM})=\operatorname{QSC}(\mathrm{J}, \mathrm{I})
$$

ENDIF

ENDIF

85 CONTINUE

90 CONTINUE
WRITE $(6,390)$
WRITE (6,400) (II(M), JJ(M), QIJ(M), $\mathrm{M}=1, \mathrm{TM})$
WRITE $(6,500)$
WRITE $(6,410)$
WRITE $(6,420)(\mathrm{II}(\mathrm{M}), \mathrm{JJ}(\mathrm{M}), \operatorname{FRIJ}(\mathrm{M}), \mathrm{M}=1, \mathrm{TM})$
WRITE $(6,500)$
95 STOP
C Format output statements and parameters for the main program
C Solution for gas network:
$\mathrm{C} \quad \mathrm{N} \quad=$?
C MW $=$?
C RG $=$?
C TG $=$?
C ZAVG = ?
C VT =?
$\mathrm{C} \quad \mathrm{CP} \quad$ = ?
$\mathrm{C} \quad \mathrm{CV} \quad=$?
C PSC $=$?
C TSC $=$?
C ZSC = ?
C NPC = ?
C NC = ?
C NDL = ?
C NT = ?
C NV = ?

C ITMAX = ?
C The bandwidth of associated coefficient matrix is ?
C After ? iterations for the Newton-Raphson method:
C It gave no convergence, the current pressures (psia.) are:

C	I	$\mathrm{P}(\mathrm{I})$								
C	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$
C	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$
C	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$

C After ? iterations for the Newton-Raphson method:
C It gave convergence, the new pressures (psia.) are:

C	I	$\mathrm{P}(\mathrm{I})$								
C	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$
C	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$
C	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$

C The flow rates, QSC (MMSCFD.) from node ito node j are:
C I - J $\operatorname{QSC}(I, J) \quad I-J \quad \operatorname{CSC}(I, J) \quad I-J \quad \operatorname{CSC}(I, J)$
C ? - ? ? ? ? ? ? ? ?
C ? - ? ? ? ลงก? - ? าาวิทย?ลัย ? - ? ?
C ? - ? ? ? ? ? ? ? ? ? ? ? ?
C The Fanning friction factors connecting nodes i and j are:

| C | $\mathrm{I}-\mathrm{J}$ | $\mathrm{F}(\mathrm{I}, \mathrm{J})$ | $\mathrm{I}-\mathrm{J}$ | $\mathrm{F}(\mathrm{I}, \mathrm{J})$ | $\mathrm{I}-\mathrm{J}$ | $\mathrm{F}(\mathrm{I}, \mathrm{J})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | $?-?$ | $?$ | $?-?$ | $?$ | $?-?$ | $?$ |
| C | $?-?$ | $?$ | $?-?$ | $?$ | $?-?$ | $?$ |
| C | $?-?$ | $?$ | $?-?$ | $?$ | $?-?$ | $?$ |

100 FORMAT (79X/10X,I6/10X,F12.6/10X,F12.6/10X,F12.6/10X, + F12.6/10X,F12.6/10X,F12.6/10X,F12.6/10X,F12.6/10X,F12.6/10X, + F12.6/(10X, I6))

200 FORMAT (10X)

300 FORMAT (/5X'Solution for gas network :'//

$+$	5X'N	$=1 \mathrm{I} 4 /$
$+$	5X'MW	$={ }^{\prime} \mathrm{F8} 8.3 /$
$+$	5X'RG	= 'F7.2/
$+$	5X'TG	$={ }^{\prime} \mathrm{F} 7.2 /$
$+$	5X'ZAVG	$=1 \mathrm{~F} 7.2 /$
$+$	5X'VT	$={ }^{\prime} \mathrm{F8} 8.3 /$
$+$	5X'CP	= ' F9.4/
$+$	5X'CV	$=1 \mathrm{F9.4/}$
$+$	5X'PSC	= 'F7.21
$+$	5X'TSC	F7.21
$+$	5X'ZSC	$=1$ F7.2)

310 FORMAT (5 X'NPC $=1$ I $4 /$
$+5 \mathrm{X}^{\prime} \mathrm{NC}={ }^{\prime} \mathrm{I} 41$
$+5 \mathrm{XNDL}=\cdot 14 /$
$+5 \mathrm{XNT}=1 \mathrm{I} 41$
$+5 X^{\prime} N V={ }^{\prime} 14 /$
$+\quad$ 5X'ITMAX $=1$ I4)
320 FORMAT (5X'The bandwidth of associated coefficient matrix is' I2)
330 FORMAT (5X,'I - J',5X,'C(I , J)',6X,'D(I , J)',9X,'L(I , J)',7X,'E(I , J

+)',8X,'PC(I , J)')
350 FORMAT (5X,'After'2X,I3,3X'iterations for the Newton-Raphson
+ method :'//
+5 X ,It gave convergence, the new pressures (psia) are:'//
+ 5X,'I'6X,'P(I)'5X,'I'6X,'P(I)'5X,'I'6X,'P(I)'5X,'I'6X,'P(I)',5X,'I
$+\quad$ '6X,'P(I)')
360 FORMAT (5(3X,(I3,F10.3)))
370 FORMAT (5X,'After'2X,I3,3X'iteraticns for the Newton-Raphson

```
    + method:'//
    + 5X,'It gave no convergence, the current (psia) pressures are:'//
    + 5X,'I'6X,'P(I)'5X,'I'6X,'P(I)'5X,'I'6X,'P(I)'5X,'I'6X,'P(I)',5X,'I
    + '6X,'P(I)')
```

380 FORMAT (5(3X,(I3,F10.3)))
390 FORMAT (4x'The flow rates, QSC (MMSCFD) at standard conditions
+ from node i to node j are ;'//

$+6 \mathrm{X}, \mathrm{QSC}(\mathrm{I}, \mathrm{J})$)
400 FORMAT (3(4X,(I2,' -',14,1X,F13.3)))
410 FORMAT (4x'The Fanning friction factor connecting node i and j are:'//
$+5 \mathrm{X}, \mathrm{I}-\mathrm{J}, 5 \mathrm{X}, \mathrm{F}(\mathrm{I}, \mathrm{J})$ '5X,'I - J'5X,'F(I, J)'5X,'I - J'5X,'F(I , J)')
420 FORMAT (3(4X,(I2,'-,14,1X,F10.6)))
500 FORMAT (10X/4X'
+ ----------------------------')
END
SUBROUTINE OUT (C, D, E, L, N, NBAND, NC, P, PC, T, TINLET,
$+\mathrm{V}, \mathrm{Z})$
C Print input parameters for gas network:
C 1. node ito node j
C 2. nodal connection, C
C 3. inlet temperature, TINLET and compression power, PC
C 4. pipeline diameters, D and lengths, L joining node i and j
C 5. starting guesses and specified pressure, P
C 6. node-type vector, T:
C $\quad \mathrm{T}(\mathrm{I}): 1=$ pressure specified
C $\quad \mathrm{T}(\mathrm{I}): 2=$ injection rate specified
C $\quad \mathrm{T}(\mathrm{I}): 3=$ terminal node with specified injection or withdrawal rate

C 7. nodal injection or withdrawal rates, V:
C $\quad \mathrm{V}(\mathrm{I})$: positive value $=$ injection rates
C $\quad \mathrm{V}(\mathrm{I})$: negative value $=$ withdrawal rates
C 8. nodal elevations, Z
C Type declaration variables
REAL*8 $\mathrm{D}(35,35), \mathrm{E}(35,35), \mathrm{L}(35,35), \mathrm{PC}(35,35), \mathrm{P}(35), \mathrm{Z}(35)$,

+ TINLET(35), V(35), VD(1225), VE(1225), VL(1225), VPC(1225)
INTEGER*4 C(35,35), IRI(35), JCJ(35), JHIGH(35), JLOW(35),
$+\mathrm{T}(35), \mathrm{VC}(1225)$,
+ IR, JC, JH, JL, N, NBAND, NC, TM
C Set upper and lower limit of a banded matrix in order to save time
C consumed for computing
$\mathrm{TM}=0$
DO 50 IR = 1, N

$$
\begin{aligned}
& \mathrm{JLOW}(\mathrm{I})=\mathrm{MAX0}(1, \mathrm{IR}-\mathrm{NBAND}) \\
& \mathrm{JHIGH}(\mathrm{I})=\mathrm{MNO} 0(\mathrm{~N}, \mathrm{IR}+\mathrm{NBAND}) \\
& \mathrm{JL}=\mathrm{JLOW}(\mathrm{I}) \\
& \mathrm{JH}=\mathrm{JHIGH}(\mathrm{I}) \text { งกรณัมหาวิทยาลัย }
\end{aligned}
$$

DO $45 \mathrm{JC}=\mathrm{JL}, \mathrm{JH}$
IF (IR .NE. JC) THEN
C Checking all parameters used in the network whether both node i, (IR)
C and node $\mathrm{j},(\mathrm{JC})$ are connected. [C($\mathrm{I}, \mathrm{J})$ not equal to zero] If so, it is
C stored in one dimensional array of variables before printing it out later.
IF (C(IR , JC) .EQ. 1 .OR. C(IR , JC) .EQ. 3) THEN
$\mathrm{TM}=\mathrm{TM}+1$
$\operatorname{IRI}(T M)=\operatorname{IR}$
$\mathrm{JCJ}(\mathrm{TM})=\mathrm{JC}$
$\mathrm{VC}(\mathrm{TM})=\mathrm{C}(\mathrm{IR}, \mathrm{JC})$

$$
\begin{aligned}
& \mathrm{VD}(\mathrm{TM})=\mathrm{D}(\mathrm{IR}, \mathrm{JC}) \\
& \mathrm{VL}(\mathrm{TM})=\mathrm{L}(\mathrm{IR}, \mathrm{JC}) \\
& \mathrm{VE}(\mathrm{TM})=\mathrm{E}(\mathrm{IR}, \mathrm{JC}) \\
& \mathrm{VPC}(\mathrm{TM})=\mathrm{PC}(\mathrm{IR}, \mathrm{JC})
\end{aligned}
$$

ENDIF
ENDIF
45 CONTINUE
50 CONTINUE
WRITE (6,209) (IRI(TM), JCJ(TM), VC(TM), VD(TM), VL(TM),
$+\mathrm{VE}(\mathrm{TM}), \mathrm{VPC}(\mathrm{TM}), \mathrm{TM}=1, \mathrm{NC})$
WRITE $(6,109)$
WRITE $(6,309)$
WRITE (6,409) (I, T(I), P(I), Z(I), V(I), TINLET(I), I = $1, \mathrm{~N}$)
WRITE $(6,109)$
C Format input parameters for the SUBROUTINE OUT:

C	I - J	$\mathrm{C}(\mathrm{I}, \mathrm{J})$	$D(1, \mathrm{~J})$: L(I, J)		E(I, J)	PC(1 , J)
C	? - ?	?	?	: ?	:	?	$?$
C	? - ?		รณ?	: จทย?	:	?	?
C	1	T(I)	$\mathrm{P}(\mathrm{I})$: \mid Z (1)	;	V(1)	TINLET(I)
C	?	?	?	?	:	?	?
C	?	?	?	: ?		?	?

109 FORMAT (10X/4X'

```
    + ---------------------------'/)
```

209 FORMAT (4X,I2,' -',I3,3X,':',3X,I2,4X,':'1X,F8.3,' :',3X,F8.2,

$$
+13 X, ': ', 2 X, F 7.5,3 X, \prime \cdot:, 4 X, F 6.2)
$$

309 FORMAT (8X,'I',9X,'T(I)',9X,'P(I)',11X,'Z(I)',9X,'V(I)',6X,'TINLE

$$
\left.+\mathrm{T}(\mathrm{I})^{\prime}\right)
$$

409 FORMAT (6X,I3,6X,':',3X,I2,4X,':',1X,F8.3,3X,':',3X,F8.3,3X,':',
$+1 \mathrm{X}, \mathrm{F} 8.3,3 \mathrm{X}, \cdot:, 4 \mathrm{X}, \mathrm{F} 6.2$,)
RETURN
END
C Solution for special Gaussian elimination method
C Subroutine SGEM
C Purpose: to solve a system of simultaneous linear equations with
C elements.on the left hand side in a banded matrix.
C
C

C
C
C
C

C

C
C
C

C
C Usage: Call SGEM (F, N, NBAND, ERR)
C Description of parameters:
C $\quad \mathrm{N}$ - Number of columns in square matrix.
C NBAND - Number of upper or lower codiagonals in square matrix.
C ERR - Error parameter coded as below:
C $\quad E R R=0$: No error
C $\quad E R R=1$: Found some pivot element at any elimination step equal to
C zero (initial guess value for nodal pressures should be changed)
C F - Element of associated coefficient in the simultaneous linear
C equations represent as two separated cases in matrix as follows:

C
C
C
C
C
C
C
C
C

C
C
C

C

C

C

C

C
C Note: Return of $\mathrm{F}(\mathrm{I}, \mathrm{N}+1)$ contains the solution given as $\mathrm{DP}(\mathrm{I})$.
C Method: to get set of solution, DP(I) by Gaussian elimination method
C with column pivoting only, implemented by normalization and
C reduction scheme until banded matrix becomes diagonal matrix.
SUBROUTINE SGEM (F, N, NBAND, ERR)
C Type declaration variables
REAL*8 F(36,36), AIJCK, TB, TM
INTEGER*4 IROW(35), I, ID, II, ILR, IROWK, J, JJ, KST, N
C Start L-U decomposition loop at $K=1,2,3, \ldots, N$
$E R R=0$
$K S T=1$

DO $38 \mathrm{~K}=1$, N

$$
\begin{aligned}
& \text { ILR = K+NBAND } \\
& \text { IF (ILR .GT. N) THEN } \\
& \text { ILR = N }
\end{aligned}
$$

ENDIF
C Search pivot in KST_th column for row indexes from $\mathrm{I}=\mathrm{K}$ up to
C I = ILR. The element in the K_th column with the greatest absolute
C value is the pivot element.

PIVOT $=0$.
$\mathrm{J}=\mathrm{KST}$
DO $22 \mathrm{I}=\mathrm{K}$, ILR
IF ($\mathrm{ABS}(\mathrm{F}(\mathrm{I}, \mathrm{J}))$. GT . ABS(PIVOT)) THEN
PIVOT $=$ F(I, J)
$\operatorname{IROW}(\mathrm{K})=\mathrm{I}$
ENDIF
22 CONTINUE
C Checking whether the pivot becomes zero. If not,

C the banded matrix, $\mathrm{F}(\mathrm{I}, \mathrm{J})$ can be implemented by normalization and
C reduction further. If so, the subroutine SGEM will return and give
C warning error messages.
IF (PIVOT .EQ. 0.) THEN
ERR $=1$
GO TO 50
ENDIF •
C Normalize pivot row elements:
C At the row of the KST th column given as pivot element will be
C normalized by dividing with pivot from KST_th column $=1$ to $\mathrm{N}+1$.
C
C
C
C
C
C
C
C
C
C
C KST_th column $=1,2, \ldots$

$\mathrm{NPI}=\mathrm{N}+1$
IROWK $=\operatorname{IROW}(\mathrm{K})$
DO $14 \mathrm{~J}=\mathrm{K}, \mathrm{NP} 1$
F(IROWK , J) $=$ F(IROWK , J)/PIVOT
14 CONTINUE
C Interchange pivot row elements:
C At the row of the KST_th column given as pivot element after

C normalized already, it is checked to see whether the row (IROWK) of
C pivot element equal to the top of row indexes from $I=K$ up to $I=I L R$.
C If not, it will be interchanged between the row of pivot element,
C (IROWK) from J _th column $=\mathrm{K}$ to $\mathrm{N}+1$ and the row indexes, (K) from
C J_th column $=\mathrm{K}$ to $\mathrm{N}+1$ each other. (in order to get main diagonal
C becomes 1)
C
C
C
C
C

C

C

C

C

C
C

C
IF (K .NE. IROWK) THEN
DO $30 \mathrm{~J}=\mathrm{K}$, NP1
$T M=F(K, J)$
$F(K, J)=F($ IROWK,$J)$
F(IROWK , J) $=\mathrm{TM}$
30 CONTINUE
ENDIF
C Carry out pivot row reduction:
C Compute to reduce the elements below main diagonal becomes zero.
C (to set as lower triangular matrix)

C
C
C
C
C
C
C
C
C
C
KST_th column $=1,2, \ldots$

$\longrightarrow\left[\begin{array}{llllllllll}1 & \# & \# & \# & \# & \# & \# & \# & \# & \# \\ 0 & 1 & \# & \# & \# & \# & \# & \# & \# & \# \\ 0 & 0 & 1 & \# & \# & \# & \# & \# & \# & \# \\ 0 & 0 & 0 & 1 & \# & \# & \# & \# & \# & \# \\ 0 & 0 & 0 & 0 & 1 & \# & \# & \# & \# & \# \\ 0 & 0 & 0 & 0 & 0 & 1 & \# & \# & \# & \# \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & \# & \# & \# \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \# & \# \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \#\end{array}\right]$

Represent as $\mathrm{F}(\mathrm{I}, \mathrm{J})$:
$1=<\mathrm{I}, \mathrm{J}=<\mathrm{N}+1$
$\mathrm{II}=\mathrm{K}+1$
$\mathrm{JJ}=\mathrm{KST}$
DO $18 \mathrm{I}=\mathrm{II}$, ILR
AIJCK $=-\mathrm{F}(\mathrm{I}, \mathrm{JJ})$
DO $17 \mathrm{~J}=\mathrm{JJ}, \mathrm{NP} 1$
F(I, J) $=\mathrm{F}(\mathrm{I}, \mathrm{J})+\operatorname{AJJCK} * \mathrm{~F}(\mathrm{JJ}, \mathrm{J})$
17 CONTINUE
18 CONTINUE
C Iterative element forward reduction from $\mathrm{K}=1$ until $\mathrm{K}=\mathrm{N}$ until
C elements of lower codiagonal become zero.
C KST is the value for generating the next column and pivot element
C and reducing all elements of pivot column below main diagonal to zero.
$\mathrm{KST}=\mathrm{KST}+1$
38 CONTINUE
C End of L-U decomposition loop
C Back substitution:
C Compute the correction, $\mathrm{DP}(\mathrm{I})$ represent as $\mathrm{F}(\mathrm{I}, \mathrm{NP} 1)$, (!) $[\mathrm{NP} 1=\mathrm{N}+1]$

C from the coefficient on the end of right hand side in matrix by
C successive iterative substitution in all the elements of main diagonal
C until the upper triangular matrix becomes zero.
C
C
C
C
C
C
C
C
C
C
$\left[\begin{array}{llllllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \# \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \# \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \# \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & \# \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & \# \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & \# \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & \# \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \# \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \#\end{array}\right]$

C
$\mathrm{II}=\mathrm{N}$
DO $45 \mathrm{I}=2, \mathrm{~N}$

$$
\mathrm{II}=\mathrm{II}-1
$$

$$
\mathrm{ID}=\mathrm{II}
$$

$$
\mathrm{TB}=\mathrm{F}(\mathrm{II}, \mathrm{NP} 1)
$$

$$
\mathrm{ID}=\mathrm{ID}+1
$$

DO $43 \mathrm{JJ}=\mathrm{ID}, \mathrm{N}$
43
$\mathrm{TB}=\mathrm{TB}-\mathrm{F}(\mathrm{II}, \mathrm{JJ}) * \mathrm{~F}(\mathrm{JJ}, \mathrm{NPl})$
F(II , NP1) $=$ TB
45 CONTINUE
50 RETURN
END
C Solution for the next approximation of Fanning friction factor
C Subroutine UP

C Purpose: to compute the new approximation for the Fanning friction
C factor after the set solution of $\mathrm{DH}(\mathrm{I})$ gave no convergence.
C They are used for generating to find out the new nodal pressures at the
C next iteration of the Newton-Raphson method.
C Usage: Call UP (ALPHA, AREA, C, D, DTSCZE, DTSCZN, E, EPS,
C FF, LAMDA, MW, N, NBAND, P, PHI, TG, VT, Z, ZAVG)
C Description of parameters:
C C - Nodal connection matrix
C D - Pipeline diameter matrix
C E - Pipeline roughness matrix
C FF - Fanning friction matrix
C MW - Molecular weight
C $\quad \mathrm{N}$ - Number of column in square matrix.
C NBAND - Number of upper or lower codiagonals in square matrix.
C P - Nodal pressures
C TG - Gas temperature
C VT - Average gas viscosity
C Z - Nodal elevations
C ZAVG - Average gas compressibility factor
C Method: to get the new approximation of Fanning friction factor by
C computing the Reynolds number given from the flow rate equations
C then compare pattern of flow region to compute the value of $\mathrm{FF}(\mathrm{I}, \mathrm{J})$ SUBROUTINE UP (ALPHA, AREA, C, D, DTSCZE, DTSCZN, E,

+ EPS, FF, LAMDA, MW, N, NBAND, P, PHI, TG, VT, Z, ZAVG)
C Type declaration variables
REAL*8 ALPHA(35,35), AREA(35,35$), \mathrm{D}(35,35), \mathrm{E}(35,35)$,
$+\operatorname{EPS}(35,35), \operatorname{FF}(35,35), \operatorname{FIJ}(35,35), \operatorname{LAMDA}(35,35), \operatorname{QSC}(35,35)$,
$+\operatorname{PAVG}(35,35), \operatorname{PHI}(35,35), \operatorname{RE}(35,35), \mathrm{P}(35), \mathrm{Z}(35)$,
+ AC, AL, DT, DTAVG, DTSCZE, DTSCZN, ED, EP, MW, RIJ, TG,
+ W, WA, ZAVG INTEGER*4 C(35,35), JHIGH(35), JLOW(35), JH, JL, N

C Compute to update flow rates, $\mathrm{QSC}(\mathrm{I}, \mathrm{J})$ for all pipeline segments C connecting nodes i and $\mathrm{j} C(\mathrm{I}, \mathrm{J})=1$ from the new pressure, $\mathrm{P}(\mathrm{I})$ and C the old Fanning friction factor, $\mathrm{FF}(\mathrm{I}, \mathrm{J})$ in the equation as follows:

C Inclined flow from node j to node i :
C

C Here:
C $\quad \mathrm{W}=(\mathrm{P}(\mathrm{J}))^{* *} 2-\mathrm{PHI}(\mathrm{J}, \mathrm{I}) *(\mathrm{P}(\mathrm{I}))^{* *} 2$
C Horizontal flow flow from node j to node i :
C $\quad \operatorname{QSC}(\mathrm{J}, \mathrm{I})=+-(\operatorname{AREA}(\mathrm{J}, \mathrm{I})) * \operatorname{SQRT}$

DTSCZE
Here.
C $\quad \mathrm{W}=(\mathrm{P}(\mathrm{J}))^{* *} 2-(\mathrm{P}(\mathrm{I}))^{* *} \mathbf{2}$
C The flow rates are generated to compute the Reynolds number, RE(I, J)
C by considering two regions to get the new Fanning friction factor as
C follows:
C $\quad \operatorname{RE}(\mathrm{J}, \mathrm{I})=4^{*} 12^{*} 10^{* *} 5^{*} 144^{*} 10^{* *} 6^{*} \mathrm{QSC}(\mathrm{J}, \mathrm{I})^{* P A V G}(\mathrm{~J}, \mathrm{I}) * \mathrm{MW}$
32.2*2.089*1545.3*24*3600*PI*VT*D(J , I)*ZAVG*TG

C Here:
C $\quad \operatorname{PAVG}(\mathrm{J}, \mathrm{I})=2.0^{*}\left[\mathrm{P}(\mathrm{J})^{* * 3}-\mathrm{P}(\mathrm{I})^{* * 3}\right]$

C For $\operatorname{RE}(\mathrm{J}, \mathrm{I})>4000$
C $\quad \mathrm{FF}(\mathrm{J}, \mathrm{I})=\{-1.737 * \operatorname{DLOG}[E D-R I J * D L O G(E D+(14.5 / R E(\mathrm{~J}, \mathrm{I})))]\}^{* *}-2$
C Here:
C $\quad \mathrm{ED}=0.269 * \mathrm{E}(\mathrm{J}, \mathrm{I}) / \mathrm{D}(\mathrm{J}, \mathrm{I}) \quad \mathrm{RIJ}=2.185 / \operatorname{RE}(\mathrm{J}, \mathrm{I})$
C $\quad \operatorname{For} \operatorname{RE}(\mathrm{J}, \mathrm{I})=<2000$
C $\quad \mathrm{FF}(\mathrm{J}, \mathrm{I})=16$
C
C
RE(J , I)
$\mathrm{PI}=3.14159$
DO $10 \mathrm{I}=1, \mathrm{~N}$
DO $10 \mathrm{~J}=1, \mathrm{~N}$

$$
\begin{aligned}
& \operatorname{QSC}(\mathrm{I}, \mathrm{~J})=0 \\
& \operatorname{RE}(\mathrm{I}, \mathrm{~J})=0 \\
& \operatorname{FIJ}(\mathrm{I}, \mathrm{~J})=0 \\
& \operatorname{PAVG}(\mathrm{~J}, \mathrm{I})=0
\end{aligned}
$$

10 CONTINUE
C Set upper and lower limit of element in banded matrix at J_TH column
C in order to save time consumed for computing.
DO $30 \mathrm{I}=1, \mathrm{~N}$
$\operatorname{JLOW}(\mathrm{I})=$ MAX0 (1, I-NBAND)
$\mathrm{JHIGH}(\mathrm{I})=\mathrm{MIN} 0(\mathrm{~N}, \mathrm{I}+\mathrm{NBAND})$
$\mathrm{JL}=\mathrm{JLOW}(\mathrm{I})$
$\mathrm{JH}=\mathrm{JHIGH}(\mathrm{I})$
DO $20 \mathrm{~J}=\mathrm{JL}$, JH
IF (J .NE. I) THEN
C Checking whether node j and node i is nodal connection.
IF (C(J , I) .EQ. 1) THEN
C In case of inclined flow: [Z(J) .NE. $\mathrm{Z}(\mathrm{I})$]

```
IF (Z(J).NE. Z(I)) THEN
    W = (P(J))**2-PHI(J , I)*(P(I))**2
    AL = ALPHA(J , I)*(PHI(J , I)-1)
    WA = W/AL
    DT = LAMDA(J , I)/DTSCZN
IF (W .NE. 0.) THEN
    IF (W .GT. 0.) THEN
        QSC(J , I) = DT*SQRT(WA)
        ELSE
        QSC(J , I) =-DT*SQRT(-WA)
        ENDIF
        P3 = (P(J))**3-(P(I))**3
        P2 = (P(J))**2-(P(I))**2
        PAVG(J , I) = (2./3.)*(P3/P2)
        DTAVG = PAVG(J,I)*MW/(ZAVG*TG)
        RE(J , I)=76963.156*ABS(QSC(J,I)*DTAVG)/(PI*VT*D(J , I))
    C For RE(J , I) > 4000:
C The Fanning friction factor is computed as follows:
IF (RE(J, I).GT. 4000.) THEN
            ED = 0.269*12.*E(J , I)/D(J , I)
            RIJ = 2.185/RE(J , I)
            A = DLOG(ED+(14.5/RE(J , I)))
            B = DLOG(ED-(RIJ*A))
            FIJ(J , I) = (-1.737*B)**(-2)
C For \(\mathrm{R}(\mathrm{J}, \mathrm{I})=<2000\) :
C The Fanning friction factor is computed as follows:
ELSEIF (RE(J , I).LE. 2000.) THEN
\[
\operatorname{FIJ}(\mathrm{J}, \mathrm{I})=16 / \operatorname{RE}(\mathrm{J}, \mathrm{I})
\]
```

C If the Reynolds number given in the transition region.
C $\quad[2000<\mathrm{RE}=<4000]$
C It is assumed as the default value of the old Fanning friction factor.

ELSE
 $$
\operatorname{FIJ}(\mathrm{J}, \mathrm{I})=\mathrm{FF}(\mathrm{~J}, \mathrm{I})
$$

ENDIF
C If the flow rate at standard conditions is computed as zero.
C It is assumed as the default value of the old Fanning friction factor.
ELSE

$$
\operatorname{FIJ}(\mathrm{J}, \mathrm{I})=\mathrm{FF}(\mathrm{~J}, \mathrm{I})
$$

ENDIF
C In case of horizontal flow: [Z(J) .EQ. Z(I)]
ELSE

$$
\begin{aligned}
& \mathrm{W}=(\mathrm{P}(\mathrm{~J}))^{* * 2-(\mathrm{P}(\mathrm{I}))^{* *} 2} \\
& \mathrm{EP}=\operatorname{EPS}(\mathrm{J}, \mathrm{I})^{*} \mathrm{~W} \\
& \mathrm{AC}=\operatorname{AREA}(\mathrm{J}, \mathrm{I}) / \mathrm{DTSCZE}
\end{aligned}
$$

IF (W .NE. 0) THEN

IF (W .GT. 0.) THEN

$$
\operatorname{QSC}(\mathrm{J}, \mathrm{I})=\mathrm{AC} * \operatorname{SQRT}(\mathrm{EP})
$$

ELSE

$$
\operatorname{QSC}(\mathrm{J}, \mathrm{I})=-\mathrm{AC} * \operatorname{SQRT}(-E P)
$$

ENDIF

$$
\begin{aligned}
& \mathrm{P} 3=(\mathrm{P}(\mathrm{~J}))^{* *} 3-(\mathrm{P}(\mathrm{I}))^{* *} 3 \\
& \mathrm{P} 2=(\mathrm{P}(\mathrm{~J}))^{* *} 2-(\mathrm{P}(\mathrm{I}))^{* * 2} \\
& \mathrm{PAVG}(\mathrm{~J}, \mathrm{I})=(2 . / 3 .) *(\mathrm{P} 3 / \mathrm{P} 2) \\
& \mathrm{DTAVG}=\mathrm{PAVG}(\mathrm{~J}, \mathrm{I}) * \mathrm{MW} /(\mathrm{ZAVG} * \mathrm{TG}) \\
& \mathrm{RE}(\mathrm{~J}, \mathrm{I})=76963.156 * \operatorname{ABS}(\mathrm{QSC}(\mathrm{~J}, \mathrm{I}) * \mathrm{DTAVG}) /\left(\mathrm{PI} * \mathrm{VT}^{*} \mathrm{D}(\mathrm{~J}, \mathrm{I})\right)
\end{aligned}
$$

C For RE($\mathrm{J}, \mathrm{I})>4000$:

C The Fanning friction factor is computed as follows:

$$
\begin{aligned}
& \text { IF }(\mathrm{RE}(\mathrm{~J}, \mathrm{I}) . \mathrm{GT} .4000 .) \mathrm{THEN} \\
& \quad \mathrm{ED}=0.269^{*} 12 .{ }^{*} \mathrm{E}(\mathrm{~J}, \mathrm{I}) / \mathrm{D}(\mathrm{~J}, \mathrm{I}) \\
& \quad \mathrm{RIJ}=2.185 / \mathrm{RE}(\mathrm{~J}, \mathrm{I}) \\
& \mathrm{A}=\operatorname{DLOG}(\mathrm{ED}+(14.5 / \mathrm{RE}(\mathrm{~J}, \mathrm{I}))) \\
& \mathrm{B}=\mathrm{DLOG}(\mathrm{ED}-(\mathrm{RIJ} * \mathrm{~A})) \\
& \mathrm{FIJ}(\mathrm{~J}, \mathrm{I})=\left(-1.737^{*} \mathrm{~B}\right)^{* *}(-2)
\end{aligned}
$$

C For $R(J, I)=<2000:$
C The Fanning friction factor is computed as follows:
ELSEIF (RE(J , I) LE. 2000.) THEN
$\operatorname{FIJ}(\mathrm{J}, \mathrm{I})=16 / \operatorname{RE}(\mathrm{J}, \mathrm{I})$
C If the Reynolds number is given in the transition region.
C $\quad[2000<\mathrm{RE}=<4000]$
C It is assumed as the default value of the old Fanning friction factor.
ELSE

$$
\operatorname{FIJ}(\mathrm{J}, \mathrm{I})=\mathrm{FF}(\mathrm{~J}, \mathrm{I})
$$

ENDIF
C If the flow rate at standard conditions is computed as zero.
C It is assumed as the default value of the old Fanning friction factor.

ELSE

$$
\operatorname{FIJ}(\mathrm{J}, \mathrm{I})=\mathrm{FF}(\mathrm{~J}, \mathrm{I})
$$

ENDIF

ENDIF

ENDIF
ENDIF
20 CONTINUE
30 CONTINUE
C Return all values of $\operatorname{FIJ}(\mathrm{J}, \mathrm{I})$ into $\mathrm{FF}(\mathrm{J}, \mathrm{I})$ before leaving subroutine UP

$$
\begin{aligned}
& \text { DO } 50 \mathrm{I}=1, \mathrm{~N} \\
& \mathrm{JL}= \\
& \mathrm{JLOW}(\mathrm{I}) \\
& \mathrm{JH}=\mathrm{JHIGH}(\mathrm{I}) \\
& \text { DO } 40 \mathrm{~J}=\mathrm{JL}, \mathrm{JH} \\
& \mathrm{IF}(\mathrm{~J} . \mathrm{NE} . \mathrm{I}) \mathrm{THEN} \\
& \mathrm{IF}(\mathrm{C}(\mathrm{~J}, \mathrm{I}) . \mathrm{EQ} .1) \mathrm{THEN} \\
& \quad \mathrm{FF}(\mathrm{~J}, \mathrm{I})=\mathrm{FIJ}(\mathrm{~J}, \mathrm{I})
\end{aligned}
$$

ENDIF

ENDIF

40 CONTINUE
50 CONTINUE
RETURN
END

CURRICULUM VITAE

Name Birth Date Nationality University Education 1985-1989	Mr. Patikom Saelee October 13, 1965
Wachelor's Degree of Engineering	
Mechanical Engineering	

