REFERENCES

- Barton, J. W., Fitzgerald, T. P., Lee, C., O'Rear, E. A., and Harwell, J. H., (1988), Admicellar Chromatography: Separation Concentration of Isomers Using Two-Dimensional Solvents, <u>Sep. Sci. Technol.</u>, Vol. 23, pp. 637-660.
- Berendsen, G. E., Pikaart, K. A., and de Galan, L., (1980), Preparation of Various Bonded Phases for HPLC Using Monochlorosilanes, <u>J.</u> <u>Liquid Chromatogr.</u>, Vol. 3 (10), pp. 1437-1464.
- Bitting, D. and Harwell, J. H., (1987), Effects of Counterions on Surfactant Surface Aggregates at the Alumina/Aqueous Solution Interface, <u>Langmuir</u>, Vol. 3 (4), pp. 500-511.
- Eisenhauer, H. R., (1971), Dephenolization by Ozonolysis, <u>Wat. Res.</u>, Vol. 5, pp. 467-472.
- Esumi, K., Sakamoto, Y., and Meguro, K., (1990), Mixed Bilayers of Anionic and Nonionic Surfactants on Alumina, <u>J. Colloid Interface Sci.</u>, Vol. 134, No. 1, pp. 283-288.
- Frommer, D. W., (1967), Ore Flotation Enhanced by Surfactants Adsorbed onto Media, J. Am. Oil Chem. Soc., Vol. 44, pp. 270-284.
- Gurol, M. D. and Vatistas, R., (1987), Oxidation of Phenolic Compounds by Ozone and Ozone +U. V. Radiation: A Comparative Study, <u>Wat.</u> <u>Res.</u>, Vol. 21, No. 8, pp. 895-900.
- Harwell, J. H., Hoskins, J. C., Schechter, R. S., and Wade, W. H., (1985),
 Pseudophase Separation Model for Surfactant Adsorption: Isomerically Pure Surfactant, <u>Langmuir</u>, Vol. 1, pp. 251-262.

Hogine, J. and Badder, H., (1976), The Role of Hydroxyl Radical Reactions in Ozonation Processes in Aqueous Solutions, <u>Wat. Res.</u>, Vol. 10, pp. 377-288.

1

- Karch, K., Sebestian, I., and Halsz, I., (1796), Preparation and Properties of Reversed Phases, J. of Chromatogr., Vol. 122, pp. 3-16.
- Lee, B. H., Christian, S. D., Tucker, E. E., and Scamehorn J. F., (1990), Solubilization of Mono-Dichlorophenols by Hexadecylpyridinium Chloride Micelles: Effects of Substituent Groups, <u>Langmuir</u>, Vol. 6, pp. 230-235.
- Lee, C., Yeskie, M. A., Harwell, J. H., and O'Rear, E. A., (1990), Two-Site Adsolubilization Model of Incorporation of Alcohols into Adsorbed Surfactant Aggregates, <u>Langmuir</u>, Vol. 6, pp. 1758-1762.
- Levitz, P. and Van Damme, H., (1986), Fluorescence Decay Study of the Adsorption of Nonionic Surfactant at the Solid-Liquid Interface. 2. Influence of Polar Chain Length, J. Phys. Chem., Vol. 90, pp. 1302-1310.
- Levitz, P., Van Damme, H. and Keravis, D., (1984), Fluorescence Decay Study of the Adsorption of Nonionic Surfactant at the Solid-Liquid Interface. 1. Structure of the Adsorption Layer on a Hydrophilic Solid, J. Phys. Chem., Vol. 88, pp. 2228-2235.
- Little, C. J., Whatley, J. A., and Dale, A. D., (1979), Optimization of Reaction
 Conditions for the Preparation of Chemically Bonded Supports, J.
 <u>Chromatogr.</u>, Vol. 171, pp. 435-438.
- Miller, C. A. and Qutubuddin, S., (1987), In Interfacial Phenomena in Apolar Media; Eicke, H. F., Parfitt, C. D., Eds., Marcel Dekker: New York, pp. 117-185.

- Nayyar, S. P., Sabatini, D. A., and Harwell, J. H., (1994), Surfactant Adsolubilization and Modified Admicellar Sorption of Nonpolar, Polar and Ionizable Organic Contaminants, <u>Environ. Sci. Technol.</u> Vol. 28, No. 11, pp. 1874-1881.
- Netzer, L. and Sagiv, J., (1983), A New Approach to Construction of Artificial Monolayer Assemblies, J. Am. Chem. Soc., Vol. 105. pp. 674-676.
- Nunn, C. C., Chechter, R. S., and Wade, W. H., (1982), Visual Evidence Regarding the Nature of Hemimicelles through Surface Solubilization of Pinacyanol Chloride, <u>J. Phys. Chem.</u>, Vol. 86, pp. 3271-3172.
- O'Haver, J. H., Harwell, J. H., O'Rear, E. A., Snodgrass, L. J., and Waddell,
 W. H., (1994), In Situ Formation of Polystyrene in Adsorbed Surfactant Bilayers on Precipitated Silica, <u>Langmuir</u>, Vol. 10, pp. 2588-2593.
- O'Haver, J. H., Harwell, J. H., Lobban, L. L., and O'Rear, E. A., (1997), Adsolubilization, Short Course in Applied Surfactant Science and Technology, Bangkok, Thailand.
- Ogawa, H., Koh, T., Taya, K., and Chihara, T., (1994), Catalysis at the Toluene/Water Interface: Octadecyl Immobilized H-ZSM-5 Catalyst Promoted Hydrolysis of Water-Insoluble Esters, J. Catal., Vol. 148, pp. 493-500.
- Rosen, M. J., (1989), Surfactants, and Interfacial Phenomena, (2nd Edition), John Wiley & Sons, Inc., New York, pp.196-202.
- Scamehorn, J. F., Schechter, R. S., and Wade, W. H., (1982), Adsorption of Surfactants on Mineral Oxide Surfaces from Aqueous Solutions: 1. Isomerical Pure Anionic Surfactants, <u>J. Colloid Interface Sci.</u>, Vol. 85, pp. 463-478.

- Scamehorn, J. F. and Harwell, J. H., (1988), Surfactant-Based Treatment of Process Streams, in Surfactants in Chemical/Process Engineering, Wasan, D. T., Ginn, M. E., and Shah, D. O. (Editors), Marcel-Dekker, Inc., pp. 77-126.
- Skoog, D. A., Leary, J. J., (1992), Principles of Instrument Analysis, (4th Edition), Saunders College Publishing, U. S. A., p. 279.
- Smith, G.A., Christian, S. D., and Tucker, E. E., (1987), Group Contribution Model for Predicting the Solubilization of Organic Solutes by Surfactant Micelles, <u>Langmuir</u>, Vol. 3, pp. 598-599.
- Somasundaran, P. and Fuerstenau, D. W., (1966), Mechanism of Alkyl Sulfonate Adsorption at the Alumina-Water Interface, <u>J. Phys.</u> <u>Chem.</u>, Vol. 70, pp. 90-96.
- Thakulsukanant, C., Lobban L. L., Osuwan, S., and Waritswat, A., (1997), Adsolubilization and Stability Characteristics of Hydrocarbon Aggregates Chemically Bonded to Porous Silica, <u>Langmuir</u>, Vol. 13, pp. 4595-4599.
- Throughton, E. B., Brain, C. D., Whiteside, G. M., Allara, D. L., and Porter, M. D., (1988), Monolayer Films Prepared by the Spontaneous Self-Assembly of Symmetrical and Asymmetrical Dialkyl Sulfides from Solution onto Gold Substrates: Structure, Properties, and Reactivity of Constituent Functional Groups, <u>Langmuir</u>, Vol. 4, pp. 365-385.
- Uchiyama, H., Christian, S. D., Scamehorn, J. F., Abe, M., and Ogino, K., (1991), Solubilization of 2-Phenylethanol by Dodecyldimethylamine Oxide in Aqueous Solution, <u>Langmuir</u>, Vol. 7, pp. 95-100.
- West, C. C. and Harwell, J. H., (1992), Surfactants and Subsurface Remediation, Environ. Sci. Technol., Vol. 26, pp. 2324-2330.

- Wolff, S., (1982), Optimization of Silane-Silica OTR Compounds: 1. Variations of Mixing Temperature and Time During the Modification of Silica with Bis-(3-Triethoxipropyl)-Tetrasulfide, Rubber Chem. & Tech., Vol. 55, pp. 967-989.
- Wu, J., Harwell, J. H., and O'Rear, E. A., (1987), Two-Dimensional Reaction Solvents: Surfactant Bilayers in the Formation of Ultrathin Films, <u>Langmuir</u>, Vol. 3, pp. 531-537.
- Wu, J., Harwell, J. H., O'Rear, E. A., and Christian, S. D., (1988), Application of Thin Films to Porous Mineral Oxides Using Two-Dimensional Solvents, <u>AIChE J.</u>, Vol. 34, pp. 1511-1518.
- Yeskie, M. A., Harwell, J. H., (1988), Various Aspects of Surfactant Aggregates Adsorbed on an Oxide Surface: The Hemimicelle/Admicelle Transition, and the Interaction of Alcohols and Alkanes, Ph. D. Dissertation, University of Oklahoma, Norman, U. S. A.
- Yu, C., Wong, D. W., and Lobban, L. L., (1992), Catalysis of the Hydrolysis of Trimethyl Orthobenzoate by Adsorbed Sodium Dodecyl Sulfate, <u>Langmuir</u>, Vol. 8, pp. 2582-2584.

APPENDIX A

SPECTRA OF TREATED SILICA

Table A.1Changes of IR spectra of silica by the treatment with ODS and HFD(Skoog et al., 1992)

Functional	Band	SiO ₂	ODS SiO ₂	HFD SiO ₂
groups	(cm ⁻¹)	absorbance	absorbance	absorbance
Si-O	1000-1100	1.59	1.66	1.76
Si-OH	3300-3600	1.39	1.35	1.36
CH ₂ , CH ₃	2850-2970	0.00	2.24	1.06
CF ₂ , CF ₃	1200-1350	0.00	0.00	2.39

APPENDIX B

EXPERIMENTAL DATA

B.1 Data

Table B.1Bonded ODS adsorption isotherm on silica surfaceSystem: 180 ml of toluene, 6 g of silica with various amount of ODS

Silica	Initial concentration of	Bulk phase conc. of	Adsorbed ODS
	ODS (µM)	ODS (µM)	(µmoles/g)
ODS silica/0.3	4220.42	1045.93	95.23
ODS silica/0.5	7026.25	2706.39	129.60
ODS silica/0.7	, 9825.86	4136.82	170.67
ODS silica/1	14013.67	5998.60	240.45
ODS silica/2	27873.35	17065.52	324.23
ODS silica/3	41581.55	28980.23	378.04
ODS silica/4	55140.75	41999.47	394.24
ODS silica/5	68553.75	54353.06	426.01

 Table B.2
 Bonded HFD adsorption isotherm on silica surface

System: 100 ml of toluene, 4 g of silica, 2.5 ml of pyridine with various

Silica	Initial concentration of	Bulk phase conc. of	Adsorbed HFD
	HFD (μM)	HFD (μM)	(µmoles/g)
HFD silica/0.1	1849.39	893.56	23.90
HFD silica/0.5	9246.93	3847.27	134.99
HFD silica/0.7	12945.70	4492.87	211.32
HFD silica/1.0	18493.86	8694.18	244.99
HFD silica/2.0	36987.72	26481.19	262.66

amount of HFD

Table B.3 Adsolubilization of phenol into bonded ODS

System : 15 ml of aqueous solution, 0.7 g of ODS silica (initial concentration of

183.68 ppm, pH 7)

Silica	Equilibrium	Partitioning	Adsolubilization	Adsolubilized
	Concentration	Coefficient,	constant, K _S	phenol
	(ppm)	Pa		(µmoles/g)
ODS silica/0.3	166.95	0.100	22.55	3.936
ODS silica/0.5	155.95	0.178	29.41	6.523
ODS silica/1	143.88	0.277	24.66	9.362
ODS silica/2	150.62	0.220	14.51	7.778
ODS silica/3	155.26	0.183	10.38	6.685
ODS silica/4	155.70	0.180	9.77	6.580

Table B.4 Adsolubilization of phenol into bonded HFD

System : 15 ml of aqueous solution, 0.7 g of HFD silica (initial concentration of

189.47 ppm, pH 7)

Silica	Equilibrium	Partitioning	Adsolubilization	Adsolubilized
	Concentration	Coefficient, P _a	constant, K _S	phenol
	(ppm)			(µmoles/g)
HFD silica/0.1	185.15	0.023	20.91	1.015
HFD silica/0.5	168.28	0.126	19.99	4.983
HFD silica/0.6	168.89	0.122	13.04	4.840
HFD silica/1	171.12	0.107	9.37	4.314

Table B.5 Adsolubilization of TCE into bonded ODS

System : 15 ml of aqueous solution, 0.7 g of ODS silica (initial concentration of 896.97 ppm, pH 7)

Silica	Equilibrium	Partitioning	Adsolubilization	Adsolubilized
	Concentration	Coefficient,	constant, K _s	TCE
	(ppm)	Pa		(µmoles/g)
ODS silica/0.3	453.56	0.890	200.21	65.818
ODS silica/0.5	396.51	1.162	192.08	75.122
ODS silica/1	287.19	1.985	176.86	92.951
ODS silica/2	243.19	2.524	166.84	100.127
ODS silica/3	226.16	2.790	158.14	102.905
ODS silica/4	221.07	2.877	156.39	103.736

Table B.6 Adsolubilization of TCE into bonded HFD

System : 15 ml of aqueous solution, 0.7 g of HFD silica (initial concentration of

871.73 ppm, pH 7)

Silica	Equilibrium	Partitioning	Adsolubilization	Adsolubilized
	Concentration	Coefficient,	constant, K _s	TCE
	(ppm)	Pa		(µmoles/g)
HFD silica/0.1	738.29	0.181	162.09	21.764
HFD silica/0.5	622.43	0.401	63.58	40.660
HFD silica/0.6	489.48	0.781	83.54	62.342
HFD silica/1.0	465.72	0.872	76.25	66.217

Table B.7 Effect of agitation Speed on stability of the monolayers (pH7, 25°C,30 min)

Speed no.	Speed (rpm)	C/Co of Bonded ODS	C/Co of Bonded HFD
1	60	1.000	0.985
4	210	0.980	0.978
9	450	0.983	0.978

Table B.8 Effect of agitation time on stability of the monolayers (pH7, 25°C,

210 rpm)

Agitation time (min)	C/Co of Bonded ODS	C/Co of Bonded HFD
30	0.994	0.978
60	0.994	0.972
120	0.993	0.972

pH	C/Co of Bonded ODS	C/Co of Bonded HFD
4	3.15	0.992
7	3.17	0.980
10	3.16	0.984

Table B.9 Effect of pH on stability of the monolayers (210 rpm, 25°C, 30 min)

Table B.10 Effect of temperature on stability of the monolayers (210 rpm,

pH7, 30 min)

1

Temperature (°C)	C/Co of Bonded ODS	C/Co of Bonded HFD
25	0.995	0.978
50	0.994	0.975
70	0.998	0.969

 Table B.11
 Effect of ozone concentration on stability of bonded ODS (pH7)

Time (min)	C/Co at	C/Co at	C/Co at
	150 g O ₃ /m ³	100 g O ₃ /m ³	70 g O ₃ /m ³
20	0.909	0.968	0.983
40	0.823	0.900	0.953
60	0.712	0.828	0.904

Time (min)	C/Co at	C/Co at	C/Co at
	150 g O ₃ /m ³	100 g O ₃ /m ³	70 g O ₃ /m ³
20	0.988	0.988	0.991
40	0.970	0.973	0.979
60	0.940	0.955	0.970

Table B.12 Effect of ozone concentration on stability of bonded HFD (pH7)

Table B.13Effect of pH under ozone condition on stability of bonded ODS(O3 concentration of 150 g O3/m3)

Time (min)	C/Co at pH 4	C/Co at pH 7	C/Co at pH 10
20	0.941	0.909	0.896
40	0.876	0.823	0.792
60	0'.762	0.712	0.704

Table B.14Effect of pH under ozone condition on stability of bonded HFD $(O_3 \text{ concentration of } 150 \text{ g } O_3/\text{m}^3)$

Time (min)	C/Co at pH 4	C/Co at pH 7	C/Co at pH 10
20	0.985	0.988	0.985
40	0.955	0.970	0.958
60	0.904	0.940	0.934

B.2 Sample calculations

Referring to the ODS silica/0.3 in Table B.1

B.2.1 Initial concentration of ODS

From	initial concentration = Mole of ODS		
		Volume	_
Since	density of ODS	= 0.984	g/ml
	MW of ODS	= 387.94	g/mole
So	Mole of ODS	= 0.3*0.984	(ml)(g/ml)
		387.94	(g/mole)
		= 761	μmole
	Volume	= 0.183	liter
initial	concentration	= 761	(µmole)

0.183 (liter)

= 4220.42 μ M

B.2.2 <u>Adsorbed ODS</u> From equation 3.1 Adsorbed molecules = 10^{6*P_c} $1200^*n_c - P_c^*(M-1)$ Since $P_c = 2.22$ $n_c = C$ from ODS+C from CH₃ = 18+2 = 20 M = MW of ODS-(3*MW of Cl)+(2*MW of CH₃) = 387.94-(3*35.5)+(2*15) = 311.44

Adsorbed ODS =
$$10^{6*2.22}$$
 (µg carbon/100g silica)
 $1200^{*20-2.22^{*}(311.44-1)}$ (g carbon/100 mole)

= 95.23 μ moles/g silica

B.2.3 Bulk phase concentration

1

From	Bulk phase concentration =		Moleintitial-Moleadsorbed	
			Volu	ime
Since	Mole _{initial}	= 4200	42*0.183	(µmole/liter)*liter
		= 768.6	8	μmole
	Moleadsorbed	= 95.23	*6	(µmole/g)*g
		= 571.3	8	μmole
	Volume	= 0.183		liter

Bulk phase concentration	= (768.68-571.38)	(µmole)
	0.183	(liter)

Referring to the ODS silica/0.3 in Table B.3

B.2.4 <u>Partition coefficient (P_a) and adsolubilization constant (K_s)</u>

From equation 4.1 $P_a = [C^*]/[C_{eq}]$ $= [C_{initial}] \cdot [C_{eq}]$ $C_{eq}]$ Since [C^*] = 183.63 ppm [C_{eq}] = 166.95 ppm

So
$$P_a = \frac{183.68 - 166.95}{166.95}$$
 (ppm)
(ppm)

ź

= 0.10

From	equation	on 4.2 $K_s = P_a/[S]$	
Since	Pa	= 0.10	
	[S]	= Mole	
		Volume	
		$= (95.23 \times 10^{-6} \times 0.7)$	(mole)
		0.015	(liter)
		= 0.0044 M	
So	Ks	= 0.0044 M = 0.10	1
So	K _s	= 0.0044 M = 0.10 0.0044	1 (M)

$$= 22.55 M^{-1}$$

CURRICULUM VITAE

Name:	Ms. Siriporn Jongpatiwut
Birth Date:	April 4, 1975
Nationality:	Thai
University Education:	
1992-1996	Bachelor's Degree of Science in Chemical Engineering Faculty of Science, Chulalongkorn University