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CHAPTER 1

INTRODUCTION

Financial markets, including capital and derivatives markets, are worldwide ex-
changes for small and large businesses to raise capital and hedge against different types of
risks. Capital markets include stock and bond markets, and derivatives markets include
futures and options markets. Investors may invest in these markets directly through banks
and online stockbrokers and indirectly through mutual funds and pension funds. Deriva-
tives have become increasingly important in finance. Futures and options are actively
traded on many exchanges throughout the world. Many different types of derivatives are
entered into by financial institutions, fund managers, and corporate treasurers. Deriva-
tives are added to bond issues, used in executive compensation plans, embedded in capital
investment opportunities, used to transfer risks in mortgages from the original lenders to
investors, and so on. Derivatives are securities whose value is determined by an underlying
asset (stocks, commodities, equities, interest rates and currencies) on which it is based.
Therefore the underlying asset determines the price and if the price of the asset changes,
the derivative changes along with it. The purpose of derivatives is to give producers and
manufacturers the possibility to hedge risks. There are three types of derivative market:

forward/futures, options and swaps.

Moment swaps are essentially forward contracts on the realized higher moments of
the log-returns of a specified underlying asset. More specifically, their payoff is a func-
tion of powers of the (daily) log-returns of the underlying asset at certain pre-specified
discretely sampled points. According to recent studies by Schoutens [17] and Rompolis
and Tzavalis [13], moment swaps play such an important role in financial markets to cover
different kinds of market shocks. Speculators trade variance swaps (second order moment
swaps) as an easy way to gain exposure to future levels of variance, and they may need to
hedge against their portfolio volatility risk. Skewness swaps (third order moment swaps)
provide protection against changes in the symmetry of the underlying distribution. Kurto-

sis swaps (fourth order moment swaps) provide protection against unexpected occurrences



of very large jumps or changes in the tail behavior of the underlying distribution. These
studies suggest that using variance and higher-moment swaps to hedge Furopean options
gives better performance compared with traditional delta hedging strategies. Therefore,
it is meaningful to define and price higher-moment swaps to hedge the existing skewness

and kurtosis risks.

As a result of the increasing trading activities of variance swaps, Zhu and Lian [23],
[24] obtain a closed-form formula under Heston stochastic volatility model for the un-
derlying asset price process by solving a coupled system of partial differential equations.
However, Zhu and Lian’s results [23, 24| are still too complicated for facilitating market
practitioners. Rujivan and Zhu [16, 15] simplified the formulas of [23, 24] by employing
the dimension-reduction technique. Zheng and Kwok [22] also extended Zhu and Lian’s
results [24] to price variance swaps under the stochastic volatility models with simultane-
ous jumps in the asset price where the variance processe relies on the availability of the
analytical expression of the joint moment generating function of the underlying processe.
Moreover, Rujivan [14] presented a simple closed-form formula for pricing discretely sam-
pled gamma swaps based on Heston stochastic volatility model. Recently, Weraprasert-
sakun and Rujivan [19] presented an analytical approach for pricing discretely-sampled
variance swaps on commodities described by the Schwartz model. Due to the launching
of CBOE Skew Index (SKEW) to measure the skewness risk in the financial market by
the Chicago Board Options Exchange (CBOE) in 2011, the study of skewness and kur-
tosis risks is tremendous growth. Neuberger [11] studied a set of tools to improve the
measurement of the skewness of asset returns. Kozhan et al. [7] measured the skew risk
premium in the equity index market through the skewness swap. Zhao et al. [21] approx-
imated the skewness and kurtosis swap contracts. Zhang et al. [20] studied the skewness
of stock returns under the Heston model. For study on moment swaps, Schoutens [17] de-
fined higher-moment swaps using daily log-returns for the realized moments, and claimed
that moment swaps can protect against incorrectly estimated skewness or kurtosis and
Rompolis and Tzavalis [13] suggested perfect hedging strategies of contingent claims un-
der stochastic volatility and/or random jumps of the underlying asset price. However,

Schoutens [17] and Rompolis and Tzavalis [13] did not derive an exact pricing formula for



moment swaps.

In this thesis, an analytical method is derived to price the discretely-sampled mo-
ment swaps introduced by Schoutens [17]. The study begins by considering a probability
space (2, F, Q) with a filtration {Ft}tzo and a risk-neutral probability measure Q). The
dynamics of the underlying asset price S; is assumed to follow the Black-Scholes and

Schwartz model, described by the It6 process.

The thesis is organized into five chapters. Chapter 2 provides some basic knowledges
in Itd process, moment swaps and methods using in this research. Our analytical approach
for obtaining the fair price of moment swaps and its interesting topic based on the Black-
Scholes and Schwartz model are presented in chapter 3 and 4, respectively. Finally, in
chapter 5, we conclude the result of thesis and compare the fair price of moment swaps

for underlying asset described by the Black-Scholes and Schwartz model.



CHAPTER 11

PRELIMINARIES

In this chapter, we review the concept of Itd process and introduce the moment
swaps, which are used to investigate the closed-form formula. The chapter is divided into

three sections: Itd process, Moment swaps, and Methods.
2.1 1Itd6 Process

It0 process is a branch of stochastic process that operates on differential equation. It
allows a consistent theory of integration to be defined for integrals of stochastic processes
with respect to Brownian motion. It is used to model systems that behave randomly. The
It6 process has been widely applied in financial mathematics and economics to model the
stock price, commodity price, interest rates, etc. More details on Itd process can be found

in [4], [6], [9] and [12].

Definition 2.1. A stochastic process {X;},., is a family of random variables X; :

Q x [0,00) — R with the continuous map ¢ — X¢(w) for each w € Q.

Definition 2.2. A Brownian motion {W;},. is a stochastic process that satisfies the

following;:

1. W, is continuous and Wy =0 a.s.,
2. W, has independent increments,

3. The increment AW; = Wi ar — Wi is normally distributed with zero mean and

variance At, AW; ~ N(0, At).

Definition 2.3. An Itd process is a stochastic process { X}~ that can be written in

the form

t t
X =Xo+ / (s, Xs)ds + / o(s, Xg)dWs, (2.1)
0 0



where u and o are known as drift and diffusion terms, respectively. The integral
t

/ o (s, Xs)dWs is called the It6 integral. It is usual to rewrite (2.1) in differential form
0

or stochastic differential equation (SDE)

dX, = p(t, X;)dt + o(t, X;)dW. (2.2)
Theorem 2.4 (It6 lemma). Let S; be an Ité process given by

dSy = p(t, Sy)dt + o(t, Sy)dWr.

Let g(t,s) € CH2([0,00) x R). Then

Xi = g(t,St)
is again an Ito process, and
dg dg 1 0% 9
dX; = =dt+ —d ——=(d
T ot +88 St+2352( St)

where (dS;)? is computed according to the rules
(dt)? = dtdW; = dWidt = 0 and (dW;)? = dt.

Lemma 2.5. According to Theorem 2.4, for Xy = g(t,Sy) and Y, = h(t, X;) such that

h(t,x) € C12([0,00) x R), then Y; is also an It process with

Ohdg 1

Ohog 1 O0h 8%¢
ox0s 2

o(t,Sy) == =

_|on . onag 1, 8?h (99
ot geos? 20 “’Sﬂaﬂ(as dt

Oh Og
+U(t, St)%%th

dYy



Proof. From Theorem 2.4,

dg dg 10%g
dX, = 8tdt+3 dS; + 3952

0y dg
= Shdt + S| u(t, St + o, st)dwt} +

Oy
8t dt + ,Lt(t St)

2 (dS,)*

10% 2
5%[ (t, S)dt + o(t, St)th]

dg dg 10% ,
ot (5 S dWi 4 oS

0%g 1 0% o2 2
+ ﬁ#(t, Sp)o(t, S)dtdWy + - 507 (t, S¢) (dWr)

282
10%g 9

_0Og dg dg
. dt + ,u(t St) dt + U(t, St)adet + 5@0’ (t, St)dt

0 0s
0 dg 1 0%g 0
7.9 + ,u(t, St)i + 02(t7 St) D% 2 dt + U(t St) agth

ot Os 2

(t,S;)(dt)?

Applying Theorem 2.4 to Y; = h(t, X;), we get

= Py P 1O
- Z:dt gh Hgg ult, St)? + ;a (t, St)gﬂ dt+a(t,st)ggdwt}
+;gi}; H(ZiJr pult, St)gng 102 t,Sy) ] dt + o(t, Sy) thr
— % + %% [u(t, St)%% + %aQ(t St)%% % 2(t, S“g:; @i)j dt
+olt, St)gzgdet

It6 process is usually used to describe the stock and commodity prices, the Black-

Scholes and Schwartz model, respectively.

2.1.1 The Extended Black-Scholes Model

The Black-Scholes (BS) model is one of the most important concepts in modern
financial theory. It was developed in 1973 by Fisher Black, Robert Merton and Myron

Scholes and is still widely used to described the stock. The dynamics of the stock price



S; is assumed to follow the SDE

ClSt = T'Stdt + O'Stth, (23)

where r is the risk-free interest rate, o is the volatility of the stock prices and W; is a
Brownian motion on the probability space (€2, F, Q) [1]. Moreover, Merton [10] suggested
that the Black-Scholes model (2.3) also holds for time dependent risk-free interest rate r(t)

and volatility o(¢), which hereinafter refer as the extended Black-Scholes (EBS) model,

In addition to the BS model, the assumption of time-dependent parameters provides
flexibility to describe the possible events, politically or economically, that may occur in

different time.

2.1.2 The Schwartz Model

In 1997, Schwartz [18] described the spot commodity price, denoted by S, follows
the SDE,

dSt =K (/J, —1In St) Stdt + O'Stth, (25)

where p is the long-run mean, & is the speed of the reversion, ¢ is the volatility of the
commodity prices, and W; is a Brownian motion on the probability space (€2, F,Q).
This dynamic of commodity prices is different from those of equities, interest rates, or
currencies, but similar to physically produced, transported, stored and consumed. It is

natural to expect that they should be treated differently from financial security markets.



2.2 Moment Swaps

Moment swaps are essentially forward contracts on the realized higher moments
of returns of a specified underlying asset, which play an important role in protection
against different kinds of market shocks rapid changes of prices. Variance, skewness, and
kurtosis swaps are examples of moment swaps traded in derivative markets. In literature,
methods of calculating realized moment are classified into two categories: continuous and
discrete sampling. The continuous sampling one has greatly increased the mathematical
tractability. The discrete sampling is divided based on two different definitions, the actual
return-based realized moment and the log-return realized moment [17]. The annualized
realized m™-moment, m > 2, in terms of discrete sampling over the contract life [0, 7]

for a maturity time 7" > 0 on an underlying asset .S; is

N S
MOMS™ = N x Zlnm ( b >

i=1

where S;, are the closing prices of the underlying asset observed at times t;, for i =
0,1,...,N, and N’ is the nominal amount, N/ = ATF when AF is the annualized factor
for converting to annualized higher moments. If the sampling frequency is calculated

daily, then AF = 252, assuming that there are 252 trading days in one year; if weekly,

N
then AF = 52; and if monthly, then AF = 12. Typically, T' = —— with equally-spaced

AF
discrete observations At = t;—t;_1 > 0, fori = 1,2, ..., N. The annualized factor becomes
N 1
AF = T = Ap and the typical formula for the measure of realized m™-moment is
1 1
MOMS™ = —N "™ Xy, - X 2.6
ro () r ko 20

where X; :=In S, a log price process.

th

In a risk-neutral world, the value of an m"-moment swap at time ¢, denoted by V4,

is the expected present value of the future payoff

vV, = E9 [e— L r®ds(pponrsm — k™)L



where K™ is the annualized delivery price for the m*-moment swap and L is the notional
amount of the swap. The value of V; should be zero at the beginning of contract because
both parties pay zero cost to enter into a forward contract. Therefore, the fair delivery

h

price of the m*'-moment swap when Vj = 0, is

K™= ESIMOMS™). (2.7)

The valuation problem for an m!

-moment swap is reduced to calculating the conditional
expectation of the realized m™-moment (2.6) in the risk-neutral world which are solved

by the method of next section.
2.3 Methods for computing conditional moments

This section introduces two well-known techniques for obtaining the conditional

expectation of [t0 process, i.e., the Monte Carlo simulation and the Feynman-Kac formula.

2.3.1 Monte Carlo Simulations

Monte Carlo (MC) simulations are the method for calculating conditional expec-
tation based on probability simulations by repeated random sampling. MC simulations
are often used practically in many areas such as finance, engineer, project management,
manufacturing, environment and other forecasting models because it is easy to implement
even with a complicated stochastic model. However, in practice the accuracy of MC sim-
ulations is a trade-off with computational time. In general, there are many well-known
MC simulations such as Euler-Maruyama (EM) scheme, Milstein Scheme ([3], [6]). In this

thesis, the conditional expectations of the log price process, X; = In .Sy,
dXt = /,L(t, Xt)dt -+ O'(t, Xt)th (28)

is calculated via MC simulation by EM scheme to compare with the obtained closed-form

formula. The simplest way is EM discretization for the log price process (2.8) on the time
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interval [0, 77,
th (w) = th71 (w) + ,u(t], Xt])At + O'(tj, th ) V Atth (w), (29)

where w € , At = %, tj = jAt,j =0,1,..., M., M, is a positive integer representing the
number of time steps used in the discretization, and Z, is the standard normal random

variable.

To compute the realized m'™-moment defined in (2.6), we set M, = N for simplicity
and this gives us the approximate of X, at the observation time ¢;,7 = 1,2, ..., N. Next,

we introduce an approximate of K™ (T, N) obtained by MC simulations as

N, N
Z (% Z (X, (wp) — Xt“(wp))m>

K™(T,N;N,) = o~ =1

N, ’

for wp, € Q and p = 1,2,..., N, where N, is the number of sample paths used in MC

simulations.
2.3.2 Feynman-Kac Theorem

The Feynman-Kac formula, named after Richard Feynman and Mark Kac, estab-
lishes a link between the solutions of partial differential equations and the conditional
expectations of It6 processes [12]. This technique is the quite efficient in terms of compu-
tational times when compared with MC simulations for finding conditional expectations,

especially when high accuracy is required.

Theorem 2.6 (Feynman-Kac Formula). Suppose that X, follows the Ité process

dXt = }L(t, Xt)dt + O'(t7 Xt)th,

where Wy is a Brownian motion. If u(t,x) € CY2([0,T] x K), for a compact support
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K CR, follows the PDE

ou ou 1, 0*u B
E + p(t, x)% +30 (t,x)@ —V(t,x)u =0, (2.10)

subject to the terminal condition w(T,z) = f(x) with bounded below V. Then,
u(t,z) = E [e* JIveXodr (x| X, = x} . (2.11)

Moreover, u is unique, i.e., if w(t,z) € CH2([0, T] x K) and solves (2.10) with the terminal

conditional, then w(t,x) = u(t,z) for allt € [0,T] and z € K.

Example 2.7. Consider the problem of pricing of a forward contract on stock described
by BS model (2.3). Let f be a forward contract on the underlying where forward payoff

at maturity time 7" is f(S7). The value of the forward contract at time ¢ is
u(t,s) = Ele™" "D f(Sr) | S = 5],

for 0 <t < T. This conditional expectation is of the form that occurs in the Feynman-
Kac formula (2.11) with constant V(r,S,) = r*. Therefore, u(t, s) satisfies the partial

differential equation

1 2
du + 7’8@ + *0282% —r'u=0

Ot Os 2 0s2

with the terminal condition w(7,s) = f(s). This is the Black-Scholes-Merton partial

differential equation.

Example 2.8. For t > 0, consider the discount process
D(t) — e Sy redt
defined on the interest rate process 7y,

dry = p(t,r)dt + o(t,ry)dWy.
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For a zero-coupon bond that pays $1 at time T, the value of the bond at time ¢ € [0, T

is given by
v(t,r) = Ele” Ji rudu | e =7].

for 0 <t <T. Using the Feynman-Kac formula (2.11), by uniqueness, v(¢,r) satisfies the
partial differential equation

ov @

— + pu(t,r)

1 0
5 +702(t,r)—v—rv:0

or 2

with the terminal condition v(T,r) = 1.

In this thesis, the Feynman-Kac formula is applied to find conditional moment by
solving the solution of PDE associated with EBS model (2.4), which is equivalent to
solving the system of ordinary differential equations (ODEs). Moreover, the efficiency of
this technique is investigated through the computational times by comparing with MC

simulations.



CHAPTER 111

CLOSED-FORM FORMULA FOR PRICING
MOMENT SWAPS UNDER THE EXTENDED

BLACK-SCHOLES MODEL

This chapter provides a simple and easy-to-use pricing formula for moment swaps
based on discrete sampling under the EBS model (2.4) and BS model (2.3) for the un-
derlying stock prices. The formulas are obtained by using Feynman-Kac theorem and
combinatorial techniques. Moreover, some interesting observations of the fair prices are

presented.

In section 3.1, we obtain the analytical formula for the conditional moment, which
is used for deriving the fair price in section 3.2. The positivity and the relation of the
fair prices for moment swaps are provided in sections 3.3 and 3.4, respectively. Finally, in
section 3.5, we conduct Monte Carlo simulations to provide a verification of the correctness
of the pricing formula and demonstrate with numerical examples to show the sensitivity

of the parameters and the relations of fair prices.
3.1 Conditional Moments

This section presents the closed-form formula for k*-conditional moment of the

EBS model (2.4) and the BS model (2.3) in the two conditions of parameters.

Theorem 3.1. Suppose that k > 2 is an integer and Sy follows the EBS model in (2.4).
We set Xy =1In Sy and At; =t; —t foralli=1,2,...,N. Ifr(t), o(t) > 0 are integrable

on [ti—1,t;] in which r(t) — $0°(t) is not a zero function on [t;_1,t;) then

k
EY [XF)=EQX} | Xy, , =a] = Zl’kfjAj(Ati;ti,k) (3.1)
=0
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for allt € [ti—1,t;] and z € (=00, 00), where we define 2% := 1 for all z € (—o0,00) and

Ao(Atis ti k) = 1, (3.2)
At;
Atk =k [ (vl =) = o0 0)) oy (33)
At;
A8t = (= G- 1) [ (vt =) = 0% ) Ayealos i

1 At;
43 h= G- =G -1) [ - At Ry (.)
0

for3=23,... k.

Proof. We let g(t,s) = Ins, h(t,z) = 2* and note that

dg dg 1 d2g 1 dh dh k—1 d?h k2
202 = LSRR ()N B — =k(k—-1 .
dt 0, ds s ds? s27 dt 0, dx T2 ( )@

This implies from Lemma 2.5 to the transformation X; = InS; and Y; = Xt’C that Y;

follows the Ito process

1 1
dYy = |r(OkX[™! = So* (kX" + Shk = 1)02(t)Xf_2] dt + ko (t) X[ 1 dW,

= _<T(t> - ;02@)) kX + %k(k _ 1)02(75))(52] dt + ko (£) XF1dw,

[ 1 11 _2 1
- (r(t) - 202(15)) kY, F 4+ Sh(k - 1)o?()Y, } dt + ko(t)Y, FdW,.  (3.5)
Consider a real-valued function defined by
UMy, 1) = B9V | Vi, = ) (3.6)

for all (y,t) € Rx [ti—1,t;). Applying the Feynman-Kac formula (2.10) to (3.5) and (3.6),
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we have that Ui(k) satisfies the PDE

an(k) 1 2 -+ 2 1-2 8Ui(k)
5t + [(r(t) — 50 (t)) ky ™% + k:(k Do“(t)y ~* 9y
2 82Uz(k)
i [ka(t)y } g =" (3.7)
subject to the terminal condition
Uy, ;) =y (3.8)

for all (y,t) € Rx[t;—1,t;). Let 7 = t;—t. We solve the PDE (3.7) subject to the terminal

condition (3.8) by assuming that the solution can be written in the form

k
i)=Yy E A (i, k) (3.9)
7=0

where A;(7;t;, k) is the function depend on 7, t; and k for j = 0,1,..., k. Calculating all
(k)

partial derivatives of U;™ in (3.7) by using the solution form (3.9) yields

8U(k) L dA;
Zyl s (3.10)
8Ui(k) k=1 7
3 _jz_;(l k)y * A, (3.11)
82Uz(k) k-1 ] ] i
(O I
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Inserting (3.10)—(3.12) into (3.7), we obtain

(r(ti —7)— %(72(15@- — T)) ky' =k 4+ Zk(k — 1)o?(t; — T)yl_::| S <1 - */1) y A,

J=0

=: —Ay + Ay + Az + Ay,

where

o 1_]’ dA]
A= T
j=0
L 5 = J 1_G+D
Ay = <’I‘(t1 —-7)— 30 (t; — 7‘)) k <1 - k) Ajyt =,
7=0
k-1
A3—*k’(k—1)0'2(ti—7') (1_]) A]yl (J+2)’
J=0 F
A _lk,22 = 1 J J A 1-G+2)
155 O’(ti—T)' (—k><—g> Y k.

To find coefficients A;, we will collect the coefficients of ylff for j = 0,1,...,k by
considering Ay, Aa, A3, A4. First, we separate A; into three terms as A; =: 411+ A2+
A1’3, where

dAg

k
_1dA 5 dA;
Alﬂ:?J?? ALQ:yl k d7'17 Al,SZE yl ’“TTJ
i=2

Next, considering Ap =: A1 + Az o, where

Aoy = <T(ti —-7) - %UQ(ti - T)) kAoy'"F,

o= (st 2o )3 (1 U0 ) 4yt
=2

J
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with shifting index j in to j — 1. Then, we investigate A3 =: A3 1 + A3z 2, where

1 - (J—2) :
_ 204 o - ] 1_%
Az = Sk(k = 1)o(ti — 7) ;:2 <1 ’ ) Aj oy T,

=l

1
Az g = 5(,14: — 1)02(t,- —T)Ak_1y~

with shifting index j in to j — 2. Finally, we divided A4 =: A4 1 + A4, where

.

Ayq = %k%z(ti _T)zk: <1 B (j;2)> (_(j;2)> A oyt

Jj=2

1 1
Ay = —5(]? — 1o (t; — 7) Ap-ry
with shifting index j into j —2. Since Az + As2 = 0, we have
Aig+A10+A13 =421+ (A2 + Ag1+ As).

By collecting the coefficients of ylfé for j = 0,1,...,k, this implies a system of ODEs

that
%0 0, (3.13)
%1 =k (T(ti —7) - %Uz(ti - T)) Ao, (3.14)
== (=) - ot - ) ) A
5 (k= (= 2)) (k= (= D) 0 (t — ) A; (315)

for j = 2,3,..., k, subject to the initial conditions derived from the terminal condition

(3.8) as

Ap(0st;,k) =1 and A;(0st;,k) =0 for j=1,2,...,k. (3.16)

The solution of (3.13), (3.14) and (3.15) subject to the initial conditions (3.16) can be

found by integration as expressed in (3.2), (3.3), and (3.4), respectively. This completes
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the proof of the theorem. O
Next, we investigate the relation of parameters in case that r(t) — %02 (t) is a zero

function on [0, 7] which can be obtained by the following corollary.

Corollary 3.2. Suppose that k > 2 is an integer and Sy follows the EBS model in (2.4).
We set Xy =1In Sy and At; =t; —t foralli=1,2,...,N. Ifr(t), o(t) > 0 are integrable
on [ti—1,t;] in which r(t) — $02(t) is a zero function on [t;_1,;] then

15

EZ [XF = EQIXF | X, =a] = " ¥ Ay (At 1y, k)
7=0

for allt € [ti_1,t;] and x € (—o00,00), where we define x° := 1 for all x € (—o0,00) and

Ao(Ati; ti, ]C) == 1, (317)
1 At;

Ao (At k) = §k(k - 1)/0 o (t; — n)dn, (3.18)
1 -1 At; 75 M2 9 9
Agj(Atisti k) = — | [ (k—7) o [0t (ti—m) o7 (t — ny)d - dny;

2\ o Jo 0
(3.19)

forj:2,3,...,L§J.

Proof. Since r(t) — 302(t) is a zero function [t;_1,%;], we can reduce Aj(At;;t;,k) and

Aj(Ati;ti, k) defined as (3.3) and (3.4) to the form

=

7 odd,
Aj(Ati; ti, k) =

At;
(k=G -2) (k- (- 1) /0 o2t — ) Ay a(nstos K)dn, j even,

N | —

for j =1,2,...,k. This proof is complete. O

1
Next, we consider the BS model where r and o > 0 are constants with r # 502.

From Theorem 3.1, the ODEs (3.2)-(3.4) subject to the initial conditions (3.16) can be
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solved analytically as proposed in the following theorem.

Theorem 3.3. Suppose that S; follows the BS model in (2.3) such thatr # 30% and k > 1
is an integer. Then, the solution of ODEs (3.13)—(3.15) subject to the initial conditions

(3.16) can be expressed as

[£] 2
k! - on Lo\ .
— = j=n 2
(k= )! &= 2mnl(j — 2n)! (T 27 ) i (8:20)

n—=

Aj(riti k) =
fort>0and j=0,1,..., k.

Proof. 1t suffices to show that A;(7;t;, k) satisfies the ODEs (3.13)-(3.15) subject to the
initial conditions (3.16) for all j = 0,1,...,k with r(¢t) = r and o(t) = 0. We begin to

consider in case of j = 0,1, 2.

12 0-2
k! 0'2” 1 n
Ag(riti k) =1= -3 o
0(7_7 ) ) (k—O)'T§2nTL'(O—2n)| (’f' 20 ) T )

L%J 1-2n
_ _ Lo K on 1, Ln
Aulriti k) = kr (r —a > ~(k—1) nz; 2nnl(1 — 2n)! (r — 27 T

and

Ao (15t k) = (k — 1)/ <7" — 202> Aq(n;ti, k)dn + §k(k - 1)/ a?Ao(n; ti, k)dn
0 0

T 1 2 1 T
= (k— 1)/ k (r - 202> ndn + §k(k - 1)/ o?dn
0 0

k|1 1,\%, 1,
—M[2<T—20> T +§UT

k! L%J 0.2n 1 ) 2—2n )
(k- 2)l &= 2l (2 - 2n)) (“2") T

this show that the solution of ODEs (3.13)-(3.15) can be written in the form (3.20) when
j=0,1,2.



k—1
For other j, we divide it into two cases. If j =20 + 1 for ¢ € {1,2, e {J }, we

have

A1 (733, k)
= =20 (r = 30*) [ Aaonts,
0
1 T
450 (= 20 = 1)) (k=20 [ A (i, Ry
0

2
%) 2t-2
1w o2 L '
_ ., 1, L2 20—n
(k —20) (7" 57 )/0 (k — 20)! ~ 2nnl(20 — 2n)! (r 27 ) ! &

+ %0’2 (k—(20—1)) (k —20)

L2224 (26—1)—2
T k! R 1, "
o = (26—1)—n
/0 (k— (20— 1))! nz:% (20 — 1) — 2n)! <T 20> K i

L%[J 20—2n+1
]{' 0.2n 1 , n .
(k= (20+1)) ;) 27 (20 — 2n)1(20 —n + 1) (“f) T (3.21)
& 42 (20—1)—2n
il 1 2 20—n
+ nz::O 27 +nl((20 — 1) — 2n)(20 — n) <7' 20 > T ]
k!
Ty A o
where
1 1 20+1 Y
= — g2 20+1
A= G (T 27 > R (3.23)
L%J 0.2n 1 20—2n+1 ,
- — —o? 2l—n+1
7 ; 27n)(2¢ — 2n)!(20 —n + 1) <7" 27 > T 7 (3.24)
|22 2n+2 (20—1)—2n
- o — 1 2 20—n
s = T;) 2n+ipl((20 — 1) — 2n)!(20 — n) (T 57 > T )

Then, we shift index from n into n — 1 of A3 to get that

252

02n 1 20—2n+1
e _ 22 2entl (3.2
3= ) 2n(n — 1)I(20 — 2n+ 1)!(20 —n + 1) <r 20) ' o2

n=1




21

From (3.24) and (3.25),

|25 2 2
Ay + Ay =
2+ s nz::l [2”n!(2£—2n)!(2€—n+1)+2”(n—1)!(26—2n+1)!(2£—n+1)

1 20—2n+1
<r B U2> L20-n+1
2
|25 on N
_ 1 +1)-n, 2
7; 9nnl((20 + 1) — 2n)! <T 27 ) ’ (3:26)

We conclude form (3.22), (3.23) and (3.26),

2] 2

K 4 L2
A (Tl = G 7;) 2 nl((20+1) = 2n)! <T 27

which can be written in the form of (3.20) when set j = 2¢ + 1 in this case.
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k—2
Ifj:2€+2for€€{l,2,...,{2J},Wehave

Aopyo(Titi k)
— (k- (204 1)) ( - ;0> /0 " g1 (i, K)dy
n %oﬂ (k —20) (k — (20 + 1)) /OT Age(m; ti, k)dny
= (k- (20 +1)) <r — ;&)
LN%J 2n

0 _ = +1—n
/0 (k—(20+1))! HZO 9mnl(20+ 1 — 2n)! (T 27 ) 1 o

- %O’Q (k—20) (k — (24 1))
15 o

T k! 1 > 20—2n 0 p
/0 (k —20)! &= 2m1(20 - 2n))! (T AR > g g
k! |25 ] 52n 1, 2042-2n yris
T k- (20+2) nz_o 9nnl(20 + 1 — 2n)1(20 + 2 — n) <T 97 > T
N —n
+ nzo 2n+1nl(20 — 20)1(20+ 1 — n) <r 2”) T
k!
=: —(k'—(2€+2))! [B1 + B2 + Bs + Bj| (3.28)
where
1 1 2 2 2042
Bi=——(r—= + 3.29
L= et 2) (T 20) T (3:29)
|25 ]
B - o?" 1\ o 3,30
2= nZ::l 20nl(20 + 1 — 2n)1(20 + 2 — n) (”‘2”) ’ o (3:30)
L%J_l 2n+2 20—2n
o 1
B3 = ) 204+1—n
5 nz:;) onHnl(20 — 2n)1(20 + 1 — n) ( 20> ’ ’
20+2
g o (3.31)

Bi=—o
LT+ )
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Shifting index n into n — 1 of Bs, we obtain that

L%J O_Qn 1 2042—2n ’
B: = -2 204+2—n 39
3 Z2n(n—1) (20— 2n+ 2)1(20 + 2 — n) <T 20> ’ (3:32)

n=1

From (3.30) and (3.32),

B> + B3
2041
LZJ 0.277, N O.2n
21204+ 1 -2n)!(204+2—n) 27(n—1)(20 —2n+2)1(20 + 2 —n)

1 20+2—2n
<’I” N 02> 2€+2—n
+

2n

o 1 > (20+2)—2n (2642)
= nzl (20 1+ 2) — 2n)! <’" HT > T ' (3:33)

We conclude from (3.28), (3.29), (3.31) and (3.33),

y Lz(;rzj 520 1 ) (26+2)— (2042)
R A LI -5 o
A2€+2(Tatlvk) (k‘— (2€+2))| r;) 2”n'((2€+2) —21%)' (r 20 > " ’

which can be written in the form of (3.20) when set j = 2¢ + 2 in this case. O]

1
The next corollary is a special case of Corollary 3.2 when r = 502 described by BS

model.

Corollary 3.4. Suppose that S; follows the BS model in (2.3) such that r = 20 and

k > 1 is an integer. Then, the solution of ODEs (3.17)~(3.19) can be express as

L, J=0,
Agj(Titi, k) = 2j—1 ey (3.34)
<H(k_7‘)> 2‘7'7]'7—7 ]:1)2) 7L%J7
r=0

forT > 0.

Proof. 1t suffices to show that As;(7;t;, k) satisfies (3.17)-(3.19) for all j = 1,2,...,|

[l

]
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with 7(t) = r and o(t) = 0. We begin to consider in case of j = 1.
1 2
Ag(T5ti, k) = 5]{:(1{ —1)o*r

Ifj=2,...,|%], we write the counterpart form of (3.19) as

1 . T
Aoyt k) = 5 (k= (27 =2) (k= (27 = 1) [ 0% Aay-olmsti )y
T 2j—3 2(j—-1)
_1 _ (2 — 2 S IO
=5 (k= (2 =2)) (k= (2j 1))/0 o ((l;[o(k r)) 11" )dn
21 o2
- (Ie-n) 5
This show that (3.34) holds for j =0,1,..., L%j O

3.2 Pricing Moment Swaps

This section derives analytical formulas for pricing discretely-sampled moment swaps
under the EBS model (2.4) and the BS model (2.3) based on two cases of condition on

1 1l
parameters, r(t) — 502(15) # 0 or r(t) — 502(15) = 0 for all ¢.

The following lemmas will be used to derive the fair delivery price of moment swaps

under the EBS model (2.4).

Lemma 3.5. Let 7, € R, j € NU{0} and let A;(1;(, k1), Aj(7;(, ko) be the sequence
of function defined as (3.2), (3.3) and (3.4). Then,

kil (k2 —j)!
(k1 =) k!

for all kv, ks € {4,5+1,...}.

Proof. We shall prove the lemma by using the strong induction principle. First, we will
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to investigate that (3.35) holds for j = 0,1, 2. Hence,

AO(T; Cv kl) =1= AO(T; Ca k?)?

Mtk =k [ (rlc=m = 5o*C—m) dn

= (klki!l)! (Z;’:) /OT (T(C —n) — %UQ(C - 77)> dn

kq! ko — 1)! T 1
" 1>!( e <“<‘”> - 20'2((—77)> di

k! (k1) .
STl kTG

and

Aalrioin) = (b =1) [ (G = 502 = ) AaCs b
+ %kl(kl - 1)/0T (¢ =)Ao (n; ¢, k1)
== [ (ric—m - gote=m) (G e ) ) o

T %kl(kl ! 1)/O a?(¢ = 1) Ao(1; €, k2)dn

— g e e = 1) [ (e =) = 3¢ = ) ) A k)
+ka(k1 — 1)@2@(@ -1 /OT (¢ =) Ao(m; €, kz)dn
e R M (R e e RS

gy e Stk = 1) [ ma(i k)i
- (klkilz)! (kaj)! 4276, o).

Let n € N. We assume that (3.35) holds for j = 0,1,...,n. From (3.4), we separate to

two terms as

An+1(T; Cv kl) = A;&H. (T7 C? kl) + A;’IL+1(T; Ca kl)?
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where

Hpa(ricoin) = (=) [ (¢ =) = 306 = 1)) AulisC. by

AL (ri€n) = 50 = (0= D)= ) [ 026 = Al G

By the hypothesis for ki, k1 > n, using (3.35) with j =n and j =n — 1 gives

A/n-‘rl(T; C: kl)
— (1= [ (€= = 5= ) ) Al R,

=t [ (e - o) (i e stnc ) o

Rl (ke (n 1)) : | .
— e ) [ (e =) 50— ) ) Anlo Gk

and

A/7L+1 (Ta Cv kl)

= 3= 0= D) =) [ ¢ Aua )

1 - B (ke — (n—1)! _
= g0k = 0= )0k =) [ o) (e Analn o))
kq! (kg—(ﬂ—i—l))'

T -t k! é(l” AT DB /OT 0%(¢ = m)An1(17; ¢, k2)dn,

respectively. Therefore, from (3.4),

k! (ky — (n+1))!

Ant1 (T3¢ k) = (k1 — (n+1))! ko!

Api1(73 ¢, ko). (3.36)

This show that (3.35) holds for j = n + 1, hence, it is true for all j € N. O

Lemma 3.6. For 0 < j <m —1, we have

g <Z>(_1)m_k (& ﬁ!jﬂ -0

k=j

dn
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Proof. By combinatorial techniques, we obtain that

" /'m e k! s . m! ! o
; <k> (-1 k (k —j)! - Z(—l) k(m O ) (by combination)

i
<

[
(]
T
=
E
8
3
|
=
=
|
\M/.

bl
Il
<

Il
]z
=

3

L
VN
= 3
|
ol
N———
3
NEl
\b_/.

h=j
m—j .
=Y (—1ym- kD) <mk J) (m’i o (by shifting index)
k=0 -
- m! n —J m=3\,
RCETINE szo < k >( 2
2 (mTi!])' (=)™ (1 + (=1))"7 (by binomial theorem)
=0.

In the following theorem, we derive the fair delivery price of the m™-moment swap

under the EBS model (2.4) by utilizing Theorem 3.1, Lemma 3.5 and Lemma 3.6.

Theorem 3.7. Suppose that S; follows the EBS model (2.4) and m > 2 is an integer.
Then, the fair delivery price of the m™-moment swap under the EBS model (2.4) in which

r(t) — %02(75) is not a zero function on [0,T], denoted by K, can be expressed as

1 N

Kfs(T.N) = = > | Am(At; tim) (3.37)
i=1

where At = %,ti =iAt,i=0,1,...,N, and Ap(At;t;,m) are defined in (3.2)—(3.4).

Proof. From (2.6) and (2.7), we have

N
(Xti - Xt7'71)m = T Z E[? [(th - Xti—l)m}
i=1 i=1

Kjis(T,N) = EY

N~
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It suffices to show that

ES [(Xe, — Xi.)™] = Am(At;t;,m). (3.38)
Hence,
Eg [(X = Xi.,)"]
= Eég Z (7:) (—l)m_ka:ngf_ ] (by binomial theorem)
Lk=0
= E9 i " (1) kxmkpe [Xk} (by Tower property)
0 — k t@ 1 tl s tq'
[ m m k
m—k ym— k—j
=E¢ |y (k> (—1)mk Xk ZAj(At;ti,k)Xth (by Theorem 3.1)
_k::O 7=0
[ m m k \
= Egg Z (k‘) (_1)m—k Z Aj(At; ti, ]C)XZE?J
| k=0 =0
= Egg Z Z (T]Z) (=)™ " A (At t;, k)XZﬁ:j (by rearrangement of summation)
| 7=0 k=j
= E9 izm: " (=1)m=k k—!A(At'ti J) ) X (by Lemma 3.5)
O |22\ =gy 8t J R
| 7=0 k=j
Q Ui U m m—k k' 1 3 m—j
=E > (Y (=)™ F | S A (At ) XTI
: \ k (k=3 3!
| 7=0 \k=j
= Eq Z (k:> (1) =) ﬁAj(At;tivj)Xti,l + Am(At;ti,m)
J=0 \k=j
= ES [Ap(At; t7,m)] (by Lemma 3.6)
= A (At t;,m). (by deterministic function)

We can derive the next corollary by using Corollary 3.2 with Theorem 3.7.

Corollary 3.8. Suppose that S; follows the EBS model (2.4) and m > 2 is an integer.

Then, the fair delivery price of the m™-moment swap under the EBS model (2.4) in which
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r(t) — $02(t) is a zero function on [0,T), denoted by K., can be expressed as

0, m odd,
K}TEnBS* (Tv N) = 1 N
T Z A (At; t;,m), m even,
=1

where At = %,ti =iAt,i =0,1,...,N, and Ap(At;t;,m) are defined in (3.17)—(3.19).

Proof. From Theorem 3.7 and utilizing (3.17), (3.18) and (3.19) in Corollary 3.2. This

completes the proof. O

Applying Theorem 3.3 and Theorem 3.7, the fair delivery price of moment swaps

1
under the BS model (2.3) when r # 502 can be deduced as follows.

Theorem 3.9. Suppose that Sy follows the BS model (2.3) such that r # %02 and m > 2

h

is an integer. Then, the fair delivery price of the m"-moment swap under the BS model

(2.3), denoted by K§y, can be expressed as

1%

m m' n 1 meam m—n—

where At = % In particular, the fair delivery prices of variance, skewness, and kurtosis

swaps under the BS model (2.3) can be expressed as
2\ 2
T
Kgg(T,N) = <r — ) N + 0%,

o2\ *® 12 a?\ T
Kgs(T7N):<7’—2> ]\72"_302(7’—2) N7

2\ 4 13 2\ 2 72
T T T
KgS(T,N):<r—0> ~— 4602 (7’—U2> 3005,

respectively.
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Proof. Utilizing (3.20) in Theorem 3.3, we have

L%J O_Qn 1 ) m—2n

n=

This implies from Theorem 3.7 that

KRS(T,N) = = > A (At;t;,m) (3.40)

From Corollary 3.4 and Theorem 3.7, we can derive the fair delivery price of moment

2

1
swaps under the BS model (2.3) when r = By can be deduced as follows.

Theorem 3.10. Suppose that S; follows the BS model (2.3) such that r = 30 andm > 2

h

is an integer. Then, the fair delivery price of the m"-moment swap under the BS model

(2.3), denoted by Kgy., can be expressed as

0, m odd,
K (T,N) =4 /m-1 o
H (m—r)] —= Atz 71 m even,
r=0 2>

where At = %

Proof. Obviously, Kfit. (T, N) = 0 when m is odd. Utilizing (3.34) in Corollary 3.4, we

have

m—1 m .
Ap(At;t;,m) = (H (m — 7”)) Qv;(m),At?
)|

r=0
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This implies from Theorem 3.7 that

1
KB (T,N) = = > Am(At; ti,m)

3.3 Positivity of Validated Solution

The construction of the formula for pricing moment swaps under the EBS model
(2.4) presents some interesting discussions in terms of the validity of the solution. The
purpose of such an examination is to ensure the fundamental assumptions that the fair
delivery price of a moment swap is finite and strictly positive for a given set of parameters

determined from market data.

Theorem 3.11. According to Theorem 3.7, if the parameter functions r(t), o(t) > 0 are

integrable and satisfy

1
r(t) — 502@) >0 (3.41)
for allt € [0,T]. Then,
0 < Kgps(T,N) < o0 (3.42)

for all integer m > 2.

1
Proof. Since the function r(t) — 502(15) is integrable on [0, 7], we can compute the coef-

ficient functions A;(At;t;,m) for all i = 1,...,N, and j = 1,2,..,m by (3.3) and (3.4).
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This implies that A,,(At;t;, m) are bounded for all i = 1,..., N. Hence,

1 N

Kifis (T, N) = > Ap(At;t,m) < 0.
=1

Similarly, from (3.3) and (3.4), it follows that A;(At;t;,m) > 0 for all i = 1,..., N, and
j =1,2,..,m by the positive condition (3.41). O

3.4 Comparison of Fair Delivery Prices

This subsection provides a comparison theorem for the fair delivery prices of differ-
ent moment swaps under the BS model (2.3). The following theorem demonstrates that

trading variance swaps is more expensive than trading any higher moment swaps.
Theorem 3.12. According to Theorem 3.9, we suppose that r > %02 and m,n are integers
such that 2 <n <m —1. Then,

Kgs(T,N) < Kgg(T,N) (3.43)

for — € (0,7,,) where 15, . is the smallest positive root of a polynomial function of

N
degree m —n + L%J with respect to T defined by

e —{ ) F (B2 n|_
R IIOES 37 Oy ysm ) Bl ' Cp s3],
j=0 j=0
o 1l 2 1, £=2j
Cj = 2106 — 2j)1° (’” 37 ) (3.44)

for £ =m,n. In particular,

Kps(T,N) = Kgg(T, N) (3.45)

T _ %
when 5 = Ty p-
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Proof. Recall from (3.39),

3] m) 1 m—2j 12 ]
! ; o o

KRN = 3 gty (157t 7 =) Onge

— 2/ 7)! par
and
5] ! 4 1 A" 5] ‘

KT = 3 g e (= 377) 7 = 3 G

=2 ! pr

one can derive the following relation

K1)~ K1) =3 -3

1% ]
ZC n+])+|." ZC’RJT %

= Tnfthflp 2] (1)

m—n

T
for 7 = N To obtain (3.43), we shall show that lim P ot 2] (s) < 0 and note that

s—0+

Pt 2)(®)

2] 3]
= Cmyjsmf(nﬂ)ﬂﬂ G C’mst%J*j
7=0 =0
= Cmos™ 3] 4 Z mwitls) g g, |, mmnrls D)
=1
B
- Cugslil 7, l5]) (3.46)
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Since 2<n<m—1andr > %02, the limit can be deduced from

< 0. (3.47)

Next, we consider the coefficient of the highest order (3.46) as s™ " [5]. We note from
1
(3.44) that Cy, 0 = (r — 502)"‘ > 0 and this implies

lim P I

s—oo  M—nt

|(8) = oo. (3.48)

From (3.47) and (3.48), we immediately obtain that P _ . B (s) has at least one positive

root by the Intermediate Value Theorem and the continuity of P B (s). Welet 7, ,,

m—n+| 3
be the smallest positive root. Therefore, (3.43) and (3.45) hold for L € (0,7,,,) and
% = Tpn.n» Tespectively. O]

Corollary 3.13. According to Theorem 3.12, if r > 30° then (3.43) and (3.45) hold for

all integers m,n such that m is odd and 2 < n < m.

Proof. The proof is complete following the fact that when m is odd, (3.47) and (3.48)

hold for 2 < n < m. O

Corollary 3.14. According to Theorem 3.12, if r > 352 then (3.43) and (3.45) hold for

all integers m,n such that 2 <n < m.

Proof. Sincer > 362 > 102, Thus, we have the following facts: (i) (3.47) and (3.48) hold
for 2 < n < m —1 from Theorem 3.12 and (ii) (3.47) and (3.48) hold for m is odd and

2 < n < m from Corollary 3.13. Next, we suffices to consider Sl_i>r(1;1+ P B (s) under
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the case that m is even and n = m — 1. The limit can be deduced from (3.44), (3.46) that
li n = m| — n
s Bt 39 = Con 3]~ )

= Copp — Cop—1,h—1

(2R)! o, (2h=1! 9, L,
ohpt 7 T oh—1(p —1)17 "Rl

_ (2h)' 2h—2 2 1 2
= 2hh' g g — T — 20'
_ (Qh)' 2h—2 3 2
~ o ? "R

< 0. (3.49)

where m = 2h for some positive integer h. Using (3.47) and (3.49), we now obtain (3.43)
and (3.45) for L € (0,77, ,,) and £ = 7% . respectively. O

y'myn m,n’

3.5 Numerical Results and Discussions

In this section, numerical examples are presented to demonstrating the correctness
of our closed-form formulas (3.37) and (3.39). We compare the results obtained from our
formulas and those from MC simulations. Although theoretically there would be no need
to discuss the accuracy of the closed-form formulas and present numerical results, some
comparisons with the MC simulations provide a sense of verification for the newly found
solutions. This is particularly so for some market practitioners who are very used to MC
simulations and would not trust analytical solutions that may contain algebraic errors,

unless they have seen numerical evidence of such a comparison.

Example 3.15 (Comparison to MC simulations). In this example, we confirm our closed-
form formula (3.28) by comparing with MC simulations. The parameters used in the
experiment are N = 252, and for various 7' = 0.1,0.2,...,1.0. The testing is taken on
the EBS with the parameter functions r(¢t) = 0.075 + 0.05¢ and o(t) = 1/0.03 + 0.02¢
satisfying the condition (3.41). The comparisons for m = 2,3,4 as displayed in Figure
3.1.
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(A)

0.040}

0.038}

0.036¢

0.034f

0.032]

Fair delivery pricefor varianceswaps

(B)
0000047 T T T

0.00003}

0.00002

0.00001f

Fair deliverypricefor skewnessswaps

©)

0.00002;

0.00001%

Y
Kees

* Kyc

0.00001f

5.x10°6F

Fair deliverypricefor kurtosisswaps

Figure 3.1: Comparisons of fair delivery prices from the closed-form solution Kgphq
and the MC simulations for pricing K{j~: (A) variance swaps, (B) skewness swaps, and
(C) kurtosis swaps
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Figure 3.1 shows that the results from the closed-form solution and the MC sim-
ulations perfectly match, illustrating that the closed-form formula does not contain any
algebraic errors and practitioners can confidently use the formula for pricing moment

swaps.

In addition to the comparisons in Figure 3.1, we define the percentage relative error
(e™) from using MC simulations by
_ | Egps(TVN) — Ko (T, N; Np)

e™(T,N; N,) = K (T, N) x 100%,

to measure the levels of accuracy which is shown in the Table 3.1 for N,, = 10, 000, 30, 000, 50, 000,
and T'= 1.

th m m
m Ko Kigs

moment N, e™(%) Comp. (s) Comp. (s)

10,000 0.074  6403.919
m =2 30,000 0.053  19840.584 0.406
50,000 0.033  34406.980

10,000 4.421  6861.916
m =3 30,000 1.970  20313.791 3.609
50,000 1.024  33784.318

10,000 0.169 6314.332
m =4 30,000 0.087  18831.897 10.297
50,000 0.050  31651.802

Table 3.1: Percentage relative errors €™ and computational times (Comp.) of MC
simulations for pricing variance swaps (m = 2), skewness swaps (m = 3) and kurtosis
swaps (m = 4) for N, = 10,000, 30,000, and 50,000, comparing with computational
times of the closed-form formula

Table 3.1 confirms in addition that the results from the closed-form formula and the
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MC simulations match with high accuracy with very small €™ for all cases of m and N,
the highest €™ is 4.4% when m = 3 and N, = 10,000. Moreover, the accuracy for MC
simulations is improved when N, increases, trade-off with increasing in computational
times. The experiment showed that the computational time from closed-form formula is

extremely faster than that from MC simulations, around 600 times faster.

Example 3.16 (Sensitivity of parameters). In this study, we investigate the sensitivity
of fair prices for moment swaps (m = 2,3,4) based on small changes of parameters
r(t) = ro + rit and o(t) = /oo + o1t in the EBS. Here, we use the same parameters
provided in Example 3.15 with rog = 0.075, ;1 = 0.050, o9 = 0.030, and o1 = 0.020. To
check the sensitivity of each parameter separately, the change of fair price is computed
corresponding to the change of one parameter while the other three parameters are fixed.
The sensitivity is measured based on the percentage relative errors of the fair price Kfphq

and parameter AP, defined by

/

Kiips(P) — Kigps (P')
Kips(P)

P —
AP = ‘ x 100%, AK o (P, P') := x 100%,

with fixed T'=1 and N = 252. The results are shown in Tables 3.2-3.3.
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PP AP(%) AKggs(P, P)(%) AKggs(P,P') (%) AKggs(P, P') (%)
ro rh=102r, 2 2.402 x 1073 1.838 4.800 x 1073
rh=1.04r, 4 4.848 x 1073 3.675 9.688 x 1073
ry =1.06rg 6 7.339 x 1073 5.513 1.463 x 1072
ry=1.08rg 8 9.875 x 1073 7.350 1.973 x 1072
rh=1.10rg 10 1.246 x 1072 9.188 2.488 x 1072
o =1.02r; 2 8.625 x 1074 0.664 1.852 x 1073
ri=1.04r, 4 1.732 x 1073 1.327 3.718 x 1073
ri =1.06r, 6 2.607 x 1073 1.991 5.600 x 1073
ri=1.08r 8 3.490 x 1073 2.654 7.494 x 1073
ri=1.10r; 10 4.379 x 1073 3.318 9.404 x 1073
oy oh=10200 2 1.499 1.096 2.958
oh =1.040, 4 2.997 2.181 5.960
oy =1.0600 6 4.496 3.255 9.006
oh =1.080; 8 5.994 4.318 12.095
oh =1.1000 10 7.493 5.370 15.229
o1 o) =1.020; 2 0.500 0.397 1.063
o, =1.040; 4 0.999 0.792 2.133
o, =1.060; 6 1.499 1.186 3.210
o, =1.080, 8 1.998 1.578 4.293
o) =1.100; 10 2.498 1.968 5.382

Table 3.2: The percentage relative errors of the fair prices of moment swaps
AKTsg(m =2,3,4) for AP =2,4,6,8,10% of parameters ro,r1,00 and oy

Moreover, since Table 3.2 shows that AKgLq depends linearly on AP, the order of
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e . AK™
sensitivity Sj* of each parameter is computed as the average of =g,

m 1N~ AR (P, P)
5P =4 Zl AP, ’
shown in Table 3.3.
Moment swaps S S Sy Sy
m=2 1.223 x 1072 4.346 x 10* 0.749 0.250
m=23 0.919 0.332 0.543 0.198
m=4 2.443 x 1072 9.331 x 107* 1.501 0.535

Table 3.3: The orders of sensitivity of fair prices for m = 2,3,4 corresponding to
parameters rg, 71, 0g, 01

Table 3.2 shows that AKP}q depends linearly on AP for all cases (m = 2,3,4 and
all parameters). The results show that Kjhg is more sensitive to the parameter og than
the others. When comparing using the orders of sensitivity, the results display that when
m = 2,4, KJlq is more sensitive to the volatility o(¢) than interest rate r(t), which is

not the case when m = 3.

Example 3.17 (Comparison fair prices). In this example, we compare the fair prices
K5 to illustrate Theorem 3.9 for the BS model. The fair prices K3y, Kig are compared
based on two sets of parameters for various pairs (m,n) with m > n. The first set (I)
of parameters is from Broadie and Jain [2], 7 = 0.0319 and o = 0.1326. The second set
(IT) is from Khaled and Samai [5], 7 = 0.0013 and ¢ = 4/0.0009, which were used in the
likelihood function for the share price of gold for the period from April 2-December 31,
2007. The evaluation is performed with 7" =1 and N = 252 to find 7, ,,, the smallest
positive root defined in Theorem 3.12, for each pair of Ky and K[q, where the existing
of 75, ,, implies the order Kgg(T, N) < Kgg(T, N) for all L e (0,7y,,)- Note that the

first set of parameters satisfies r > %02, while the second set %02 <r< %JQ. The results

of 7, , for several (m,n) pairs are shown in Table 3.4.
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(m,n) (3,2) (4,2) (4,3) (6,2) (6,3) (6,4) (6,5)

T I 19.10 14.12 6.36 11.56 8.72 9.38 4.59
IT 481.71 305.35 — 245.78 156.90 196.34 —

Table 3.4: The 7, ,, of various pairs of Kpg and Kgg for the two sets of parameters

The results from Table 3.4 show that for the set I of parameters, r > 352, the T

exists for all (m,n) pairs, which supports Corollary 3.14 that Ton.n always exists in this

case. However, for the set II of parameters, %02 <r< %O‘2, the 7, ,, exists for all pairs
(m,n) except for the pairs (4, 3) and (6,5), where n = m — 1 is odd. This illustrates that
when the set of parameters does not satisfy the condition of Corollary 3.14, the existence
of 7,7, depends on (m,n) according to Theorem 3.12 and Corollary 3.13, namely, the

To.n €xists for all (m,n) except when n.=m — 1 is odd.

3.6 Conclusion

This chapter presented a simple and easy-to-use pricing formula for discretely-
sampled moment swaps when the realized higher moments defined in terms of m!-
moment of the log-returns of a specified underlying asset described by BS model with
time-dependent parameters. The obtained analytical method is developed based on
Feynman-Kac theorem, where the PDE is solved analytically, and some combinatorial
techniques are used to simplify the sum of the conditional expectations. In terms of vali-
dation purposes, we have demonstrated that pricing formula has financial meaningfulness,
the fair prices for moment swaps are always finite and positive in the parameter space.
A comparison theorem has been proved in order to show that trading variance swaps is
more expensive than trading any higher moment swaps under the BS model. The first and
third numerical examples support the validity of our results. Namely, the first experiment
shows that MC simulations produce the same results as that from our formula, while the
third experiment illustrates the comparison results of moments for BS model. Moreover,

the second example gives the sensitivity of the fair prices respect to the parameters, and
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the results show that the fair price is more sensitive to the volatility parameters when

m = 2,4 (even).



CHAPTER IV

CLOSED-FORM FORMULA FOR PRICING
MOMENT SWAPS UNDER THE SCHWARTZ

MODEL

This chapter derives a simple closed-form formula for pricing discretely-sampled
moment swaps based on the Schwartz model (2.5) for the underlying commodity price, by
improving the result from Weraprasertsakun and Rujivan [19]. Furthermore, the obtained
formula of moment swaps prices is applied to extract the current convenient yield and

commodity fair price.

In section 4.1, the system of recursive ordinary differential equations (ODEs) as-
sociated with the conditional moment from Weraprasertsakun and Rujivan [19] is solved
analytically. In addition, a pseudocode for computing conditional moments is provided
together with discussion of efficiency of the formula. The pricing formula is derived in sec-
tion 4.2 and used to extract the convenience yields in the parameter space in section 4.3.
Moreover, in section 4.4, we conduct Monte Carlo simulations to provide a verification
of the correctness of the pricing formula, demonstrate with numerical examples for the
sensitivity of the parameters. Finally, the fair price of moment swaps with initial value

between the extended Black-Scholes and Schwartz model is compared in section 4.5.
4.1 Conditional Moments

This section presents the closed-form formula for conditional moment of the Schwartz

model (2.5) by improving the following result [19].

Theorem 4.1 (Weraprasertsakun and Rujivan [19]). Suppose that Sy follows the dynamics
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2
described in (2.5) and k € N. Let X; =InS; and o = p — ;—H. Then

k
ER [XF = EQIX} [ Xi, =a] = | YAV (r)a? | e (4.1)
§=0

forallt € [ti—1,t;] and x € R, where T =t —t;—1 and A§k)(7'),j =0,1,2,...,k, can be

obtained by solving the system of linear ordinary differential equations (ODEs)

(k)
dA ;
dr

=k (k=) AP() + (G + Dradl (1) + LG+ DG +290*APr)  (42)

subject to the initial conditions
®) () — AN
A;7(0)=0 forallj=k—1,k—2,...,0, (4.3)

providing that A,gk) (1) =1 and A](Clil(T) =0 for all > 0.

Unfortunately, they solved the recursive ODEs (4.2) only for £ = 1,2, and used
the solutions to derive a closed-form formula for pricing variance swap on a commodity.
Moreover, they did not derive explicit formulas for A;-k)(T), j=k—1,k—2...,0 for
k > 3. Therefore, we shall complete their work by deriving a closed-form formula for

A;k) (1),j=k—1,k—2,...,0 for k£ > 3 as following theorem.

Theorem 4.2. The solution (4.2) can be written in the form

k—j—1 1452)
1 i KT —j— KT
AP(r) = ( 11 <k—r>> ST I e (T I T (1)

r=0 =0



where cg} is defined using j = k —n as an index in

61”1 = S = RLgJ—H,

for odd n > 3,

and for even n > 4,

JAP
dkT_" n/ﬂA,(f)n(T)
1
= ((k—n) + Dradly) (1) + 5 ((k =)+ 1)((k —n) + 2)02 Al ()

with conditions (4.3) when j =k —n is

n—1 \_%J

k Lo N ¢

A;,)n(T) = <H(k - 7")) prie G2 (5T — 1) (e 4 1) c,i}cfn,
=0 £=0

where c,(fgcfn for n =1,...,k is defined through (4.5)—(4.7).



For n = 1, the equation (4.8) is reduced to

AP, (k)
2 " kA (T) = kka,

with the solution subject to the initial condition (4.3) when j =k — 1,

Al(ck_)l(T) =" [~kae ™™ + ka].

This can be written in the form of (4.9) when n =1 as

1-1 [3]
1
A0 = (10 -0)) 3 b S -y 411l

kk—1
r=0 ¢=0

where C;(goll,l =1.

For n = 2, the equation (4.8) becomes

dAy, (k) (k) 1 2
5 264, 5(T) = (k= 1) raAy” (1) + Q(k — 1)ko?,

with the solution subject to the initial condition (4.3) when j =k — 2,

5 w7 Tyt ge

1 1 1 1
A/(fk_)g(T) = k(k — 1)62m [_a2e—m b ZaleT T 52— 2mT 2 2} ‘

By writing in the form of (4.9) when n = 2, we get

1 1
A,@Z(T) =k(k-1) [20?(6’” —1)2+ &02(6’” —1)(e" + 1)}
2-1 13] 1
_ (H(k B 7’)) ?Oﬂf%o_% (em‘ B 1)2—@ (em' + 1)5 C,I(:i,{;_ga
r=0 =0
where ck?,)g_2 = % and c,(:’,)g_Q = %

46



47

For n = 3, the equation (4.8) becomes

e 1
s 3:AM. (1) = (k — 2)kaA®,(7) + Sk =2)(k - DoAY, (7)

with the solution in integral form

k
AEC_)?)(T)

1
— 7 / e (k — 2)ra AP, (T)dr + €7 / TS (k= 2)(k = Do” A, (r)dr

1 1
— e3m’/€3m'(k - 2)/10[ <<H(k ot 7,)) % (ti) 27260_28 (em- N 1)2—@ (em' + 1)€> dr

7Sk k-2
r=0 £=0
1 2 1
+ e3m’/€3m'2(k _ 2)(]€ _ 1)0_2 ((H(k = 7,)) Z Ecgi_lalfﬂoﬁé (em' o 1)1—( (em' + 1)€> dr
r=0 =0

= R(r,3) + R"(7,3) + R\’ (7, 3),

where

By integration, we obtain the solution

R{Y(r,3) = ( (k—m) £ot (@ 1+ B(0,3),

2
r=0
2 1
RY(7,3) + RP(r,3) = (H(k - r)) ?(MQ (e — 1)2 (" + 1) + R1Y(0,3) + R{P(0,3).
r=0
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By the initial condition (4.3) when j = k — 3, R\"(0,3) + R{"(0,3) + R (0,3) = 0, and

AP (7 = R (7,3) + |RY(7,3) + B (7.3)

2 15)
_ <H<k, _ 7“)) lﬁa?’_%U% (e — 1)3—€ (" + 1)6 c%)ﬂ_g)

K

where 0537)1_3 = % and 0511721_3 = 4, which is the form of (4.9) when n = 3. This show that

(4.6) hold for n = 3,

N Sl

For n = 4, the equation (4.8) becomes

dA®) .
=t AR A (1) = (k= 3)Ra Al (1) + S (k= 3)(k = 2)0° APy(7)

with the solution in integral form

k
4,

1
(1) = et*™ / e 4T (kb — 3)/€OzA](€k)3(T)d7‘ + T / 6_4m§(k —3)(k — 2)0214&)2(7”7

=: R(()l)(T, 4) + Rgl)(T, 4) + Ré2) (1,4) + REQ) (1,4),

where
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By integration, we obtain the solution

3
R{V(r,4) = (H(k - r)) 2714064 (e — 1)+ R{Y(0,4),
r=0
3 1
R (r,4) + RP(r,4) = (H(k - 7’)> 00" (e 1)% (" + 1) + B1(0,4) + RP(0,4),
r=0
2 ] 1 2
RY(r,4) = (H(lC - 1")) 5520 (€T =1 (T + 1)+ RP(0,4).
r=0

By the initial condition (4.3) when j = k — 4, R\"(0,4) + B{"(0,4) + R?(0,4) +
R?(0,4) =0, and

AP, (1) = B () + [B (r,0) + B (r,9)] + BY (,9)

3 134
_ (H(k 7 T)) _lzaél—%o_% (em- . 1)472 (6/17- + 1)( C]Efi;_zp

r=0 /=0

where 0,2?11_4 = i,c,(izz_ﬂt = % and c,(j,)ﬂ_él = 3%, which is the form of (4.9) when n = 4.

This show that (4.7) hold for n = 4,

) E T
Ck k—4 24 6 0
1
(1) e e s 1 i
C k—4 8 |t 2
(2) 1 1
Crk—4 32 0 1

For other n, the solution of (4.8) in integral form is

AP (1) := Qu(7) + Qa(7),

where

Qi) = [ (k= m)+ radll (),

Qa(r) = e [ (= ) (k) + 2P AL (7

Based on the same idea, we introduce Réi) by splitting A;-k)(T) in Q1(7) and Q2(7) as
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follows. By substituting AEIZln)+1(T) in Q1(7), we have

QI(T) — enm’/enm‘((k _ TL) + 1)/43@

(n—1)—1 L%
1 n—1)— KT n—1)— KT ¢
|:( (k — r)) Z QO‘( 1)-2¢ 52t (" — 1)( -t ("7 + 1)6 c,i}c_(n_l) dr

r=0 /=0

n—1 L%J
e 1 n— NKT —NKT KT n— KT
= (H(k—r)) Z c](g,i_(n_l)—,#_la 2520 /e (e — 1)( - Z( +1) dr
=0

r=0
n—1 anlJ (1)
= R,
(I 0) 55

By substituting AEZ)—n)—&—Z(T) in Q2(7), we have

Qa(r) = e [ e () £ (= ) + 200

(n—2)—1 (=2
1 n— KT n—a)— KT 4
{( (kr)) Z o a(n=2)—2¢ 2t (e — 1)( 2) f(e +1)‘c,(€}€(n2)] dr

r=0

n—1 Lan
L 1 n— - NKT —MNRKT KT n— KT
= (H(kr)> > Cl(c}c—(n—Q)Q_Kéa( D2 /6 (e = )" (e 4 1) dr

r=0 =0
n—1 |.ﬂ;2

= (H(k — r)) Z REQ)(T,TL)
r=0 /=0

For odd n, the splitting of Réi)(T, n), for i = 1,2, are combined to obtain A,(i)n(r)

according to the case of n = 3, namely, by the shifting index of R( )( n),

g

RP(rn) + Y[RV (ron) + RO (7, m]] .

n—1 _l_n71J
AP (7) = (Hu«—r)) > R (rm) +
=0 =

I
3
| L
—~
o
|
<
~—
N———
Sl

(=1

By integration subject to initial condition (4.3) for j = k —n, the solution can be written

in the form of (4.9) where the coefficients c,(ﬁc ,, satisfy (4.6). Similarly, the process of



51

even n follows the case of k =4, i.e.,

n—1 125 L=532)
Agin(T) = <H(k‘—7‘)> Z Rél)(T, n) + Z Rf)(T, n)

(=0 /=0

n—1 L%J*1
- (H(k: - r)) B () + Y[R (rn) + R (rm)] + REL (7, n)] .
By integration subject to initial condition (4.3) for j = k —n, the solution can be written
in the form of (4.9) where the coefficients c](ﬁ_n satisfy (4.7). O

Remark 4.3. From the result, the closed-form formula for the conditional moments can

be obtained from following the pseudo code.

Algorithm 1 Algorithm of the coefficient functions

Input: £, z,k,a,0,7

Output: k" condition moment

1. Set Cp1 = {1}

2. Set Cip = {1/2,1/4}
3. For n =3 to k do
4. If n is odd then
5. compute (4.6)
6. else

7. compute (4.7)
8. EndIf

9. EndFor

10. Compute (4.4)

11. Compute (4.1)




Example 4.4. The first conditional moment is
BO[Xi| X, , =] = (w+ A (7)) e,
where
A7) = a(e" —1).

The second conditional moment is

EAXZ|X,, , =) = (22 + AP (r)a + AP (r)) 2,
where
A?) (1) =2 (" — 1)
1 1
AP (r) =2 <§a2 (" = 1)° 0™ (7 — 1) (¢ + 1))

where

1 1
Ag3)(7')—6<2a2( m—_l)Z_{_EUZ(em—_l) (e'”—i—l)),
1 3
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4.1.1 Efficiency of Closed-Form Formula

In this section, the analytical formula (4.4) and the formula (4.2) by Weraprasert-
sakun and Rujivan [19] are compared for efficiency in term of computational time for
obtaining conditional moments (4.1), using Mathematica V9.0 program with symbolic
parameters under Microsoft Windows 10 64-bit, quad-processor Intel Core i7 3.4 GHz

machine with 32GB main memory. The comparison results are displayed in Figure 4.1.

| o
- & ¢
2 L’
é 1o 'p' i
£ .
g .' ]
.% . '.x’ 1 |-®-WR
3 5, ‘.‘r —
g_ L _.' 1 - & -CMR
3 Q"" |
. .-‘.,—‘
F Py i
W B 3 X BRI CEE BRI RN EE CRY EE EEY CTEX R LEF §
6 8 10 1= 14 16 18 20

Figure 4.1: Comparison computational time between Weraprasertsakun and Rujivan
(WR) and our formula (CMR)

Figure 4.1 shows that the formula from WR consumed more time when increases
from 5 to 20, increase exponentially from 0.328 to 13.906 sec with the total time 74.563
sec. However, our formula only consumed 0.016 sec for the total, which is extremely fast,

around 4,000 times faster.

The result concludes that our formula simplifies the result of Weraprasertsakun and
Rujivan [19] for computing conditional moments, which is easier and faster to use without

solving the system of recursive ordinary differential equations.
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4.2 Pricing Moment Swaps

In the present section, we derive an analytical formula for pricing discretely-sampled

moment swaps under the Schwartz model (2.5).

Theorem 4.5. Suppose that Sy follows the dynamics described in (2.5). Let Xy = In Sy
and At =t —t;_y for allt € [t;—1,t;]. Then,

EQ [(Xe, — X0, )" =D Amj(At 1) X} (4.10)
7=0

foralli=1,2,...,N and Xo > 0, where At =1t; —t;_1 and
¢

Amj At i 1 ZZ ( ) kAgmk k) (At)AEZ)( i 1) (TTL—k)HAte—fliti_l. (411)
{=j k=0

Proof.
E(? [(th Xtifl)m}
= E(? Z (7;) (_1)kXt]21XZ7_k] (by binomial theorem)
Lk=0
5 i mn (] ) =oe> E¢ [Xm_k] (by Tower property)
0 k ti1 Tt t; y property
Lk=0
[ m m m—k . '
=58 |3 () Corxt, [ X A0, | s
| k=0 §=0
(by Theorem 4.1)
[ m m—k 3
m— j+k —(m—k)k
=58 | Y ()0t || Aot s
| k=0 j=0
fm ¢
m m—k —(m—k)kK
— EJ Zz<k>(_1)kA§_k J(At)em(m=hmdtyf

(by rearrangement of summation)
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l
m m— —(m—k)k
3 <k>(_1>mgk M (At)e (mksAtER [Xfiil}

J=0

(by Theorem 4.1)

m m /L
= Z Z Z <TIZ> (—1)kA§7_nk_k)(At)A§£) (ti_l)ef(mfk)nAtefémtifl Xé

(by rearrangement of summation)

O]

Theorem 4.6. Suppose that Sy follows the Schwartz model (2.5) and m > 2 is an integer.

Then, the fair delivery price of the m™-moment swap can be expressed as
1 m N \ 60 7
K§'(T, At,00) = Z Z Ay (At 1) (,{> , (4.12)
where At = %,ti =iAt,i=0,1,..., N, and 6p = kIn Sy.
Proof. From (2.6) and (2.7), we note that

1
K{(T,N) = E

=l

N 1 N
(X - X )" = TZE(? [(Xe, — Xi )" (4.13)
i=1 =1

Insert (4.10) in Theorem 4.1 into (4.13), we immediately obtain (4.12). O

Example 4.7. We use Theorem 4.1 to derive the special case of moment swaps when
m = 2,3,4 under the Schwartz model (2.5). The fair price of variance swaps can be

expressed as

2 N j
1 ~ 5o\’
2 ) ) 0
KS (T, At, (50) = — E E AQ’J (At, tz_l) <I<L ) , (4.14)
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where

~ 1

Aso(At,ti 1) = Qiefzn(tiflJrAt) (ef-eAt _ 1) (20265(2&7&&) (el-cAt _ 1) (ZQQH _ 02)> ’
K

A271(At, ti—l) _ _2a672ﬁ(ti_1+At) (enAt - 1)2 7

AQQ(At, tifl) _ 6—2n(ti_1+At) (6/@At o 1)2 ,

for skewness swaps as

3 N 50 j
K3(T, At, 60) = ZOZ 3 (At iy (;-;) : (4.15)

where

Aso(At i) = 226—3,@(@,_&&) (enAt a 1)2 (6026”(2“‘1+At) 4 (enAt —1) (20% — 30_2)> ,
K

e 3

A3,1(At,tifl) _ 276—3/@(t¢71+At) (eHAt % 1)2 (_20_265(2ti,1+At) + (eI{At - 1) (0_2 o 20‘21%)) ’
K

Ag,2(At,ti—1) = 3ae 3t tAl) (e“At — 1)3,

A3,3(At, tz—l) — _e*?)l{(ti—l‘i’At) (eﬂAt cx 1)3 2

and for kurtosis swaps as

1 4 N 5 7
K&(T, At, 60) = ZZ 2 (AL 1) (;) , (4.16)

j:() =1
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where

L dk(ti it Al [ rAL 2
me K( ) (eN — 1)

40[4/{2 (e,‘iAt _ 1)2 _ 120[2/{0_2 (eHAt _ 1) (_1 + eK/At _ 265(2ti—1+At)>

Ago(At,tiq) =

+ 30_4 (1 + eﬁAt (_1 + 262Hti—1)) )7

A471(At, tifl) _ 2?046—45(1@,_1-1-&) (eﬁAt _ 1)3 (_602(3“(2ti‘1+m) + (6/4At _ 1) (—2042/{ + 302)) ’

Aua(At,tiy) = %e—m(tifﬁm) (eFBt — 1)3 (20265(2@-7&&) ("2~ 1) (202K 02)> ’

121473(At, ti—l) _ _4aef4n(ti71+At) (emAt [ 1)47

Ay (At i) = etz tAD (e“At - 1)4

4.3 Extraction of Convenience Yields From Fair Price of Moment swaps

In commodity markets, commodity prices depend on the convenience yield. Conse-
quently, the current convenience yield and the spot commodity price imply the fair price
of its moment swaps. However, the current convenience yield and commodity spot price
are not clearly observed in markets. If we can observe the price of commodity moment
swaps at current time t, then it can be used to extract the current convenience yields of
commodity, given that parameters k, u, o are already correctly observed. Technically, by
solving the quadratic equation (4.14) based on the observed price of variance swap will
gives two values of convenience yield. To obtain suitable unique value, we compare with

the values extracted from observed price of the skewness swap or higher moment swaps.

We give the pseudo algorithm to extract a convenience yield as following.
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Algorithm 2 Extraction of convenience yields d; from observed markets prices

variance (p§2)) and skewness (pgg)) swaps.

Input: observed market prices of variance (p?)) and skewness (p§3)) swaps at time .

Output: a convenience yield 6;.

1. Compute set of roots Ry = {0; € R | K*(§;) = p§2)},

2. Ry = {6, € R| K*(6,) = p{”},
3. Fori=1,....,#Ryand j=1,...,#R3do

4. Compute d;; = |Ra; — Rs .

5. If d,,,, = min(d;;) do

6. set 0, = % (Rap + Ram)-

7. EndIf

8. EndFor

9. Return ¢,

Remark 4.8. The accuracy of the extraction of convenience yield can be improved by

adding higher moment swaps into the algorithm, for comparison.

Example 4.9. Assume that formulas of fair prices (4.14) and (4.15) are used based
on the parameters N = 252,k = 0.099,u = 2.857,0 = 0.129, and T' = 1. Suppose
that the observed market price of variance and skewness swaps are 0.035 and 0.000589,
respectively. Here, the observed prices are pre-assumed by using the formulas (4.14)
and (4.15) based on the same parameters. Solving for quadratic (4.14) and cubic (4.15)

equation gives

Ro1 &~ —2, Ry ~ 2.549 and R3; ~ —2.
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In this case, the suitable of convenience yield is the average of two closed solutions,
1
do = §(R2,1 + R31) =~ —2.

Remark 4.10. If we can observe a series of commodity moment swaps prices at anytime
t, we can use the formula of fair price of moment swaps with this technique to extract a

series of convenience yields in the commodity market.

4.4 Numerical Results and Discussion

For the purpose of demonstrating the correctness of our closed-form formula (4.12),
we present some numerical examples in this section. We compare the results obtained

from our formula and those from MC simulations and discuss the sensitivity of parameters.

Example 4.11 (Comparison to MC simulations). In this example, we confirm our closed-
form formula (4.12) by comparing with MC simulations when m = 2, 3,4. The parameters
used in the experiment are N = 252,7 = 1 and for various §p = —1,—0.8,-0.6,...,1.
the testing is consumed on the Schwartz model with the parameter p = 2.857,0 = 0.129

and k = 0.99. The comparisons as displayed in Figure 4.2.
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Figure 4.2: Comparisons of fair delivery prices from the closed-form solution K™ and
the MC simulations for pricing K}~ of variance (A), skewness (B) and kurtosis (C)
swaps
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Figure 4.2 shows that the results from the closed-form solution and the MC sim-
ulations perfectly match, illustrating that the closed-form formula does not contain any
algebraic errors and practitioners cam confidently use the formula for pricing moment
swaps. Define the percentage relative error (¢") from using MC simulations by

| K™(T, N, éo) — K{io(T, N, do; Np)

e™(T, N, do; Np) := Km(T.N, d0) x 100%

for any dg. The percentage relative errors of variance, skewness and kurtosis swaps are

less that 1% as displayed in Figure 4.3.
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Figure 4.3: The percentage relative errors obtained by using the MC simulations for
variance, skewness and kurtosis swaps

In addition to comparison in Figure 4.3, we define the average percentage relative

error (¢™) from using MC simulations by

N (i) (4)
__ 1 K™(T,N,6,") — Kt~(T,N,dp"; N,
(T, N, 8o, Noyi Np) i= —— > _ ( o) MC((Z.) 0 i Np)| 100%
Ns, = K™(T,N,d;")
for 56”,1’ = 1,2,...,Ns, where N, is the number of dy to measure the levels of accu-

racy which is shown in the Table 4.1 for N, = 10,000, 30,000 and 50,000 and Jy =
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—-1,-0.8,-0.6,...,1and T = 1.

th m m
m Ko Kigs

moment N, e™(%) Comp. (s) Comp. (s)

10,000 0.348  476.105
m =2 30,000 0.320  1501.048 0.078
50,000 0.312  2447.938

10,000 0.512  480.204
m=3 30,000 0.507 = 1441.286 0.125
50,000 0.477  2394.559

10,000 0.752  487.097
m =4 30,000 0.711  1507.094  0.172
50,000 0.705  2464.436

Table 4.1: Average percentage relative errors e™ and computational times (Comp.) of
MC simulations for pricing variance swaps (m = 2), skewness swaps (m = 3) and kurtosis
swaps (m = 4) for N, = 10,000, 30,000, and 50,000, comparing with computational
times of the closed-form formula

Table 4.1 confirms in addition that the results from the closed-form formula and
the MC simulations match with high accuracy with very small e™ for all cases of m and
N,, the highest is 0.7% when m = 4 and N, = 10,000. Moreover, the accuracy for MC
simulations is improved when N, increases, trade-off with increasing in computational
times. The experiment showed that the computational time from closed-form formula is

extremely faster that that from MC simulation, around 3,000 times faster.

Example 4.12 (Sensitivity of parameters). In this study, we investigate the sensitivity
of fair prices for moment swaps (m = 2, 3,4) based on small changes of parameters in the
Schwartz model with u = 2.857,0 = 0.129, k = 0.099, calibrated from oil market data as
proposed by Schwartz [18] and the convenience yield 6y = 2.773. To check the sensitivity

of each parameter separately, the change of fair price is computed corresponding to the
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change of one parameter while the other three parameter are fixed. The sensitivity is
measured based on the percentage relative errors of the fair price AK™ and parameter

AP, defined by

/

K™(P) — K™(P')
K (P)

P —
AP = ' x 100% and AK™(P, P') := x 100%,

with fixed T =1 and N = 252. The results are shown in Table 4.2—4.3.



P P AP(%) AK?*(P,P) %) AK3P,P)%) AKYP,P)%)
kK =102k 2 3.312 x 107° 1.335 x 107° 1.337 x 1078
K =104k 4 6.589 x 107> 2.664 x 107° 2.706 x 1078
K =106k 6 9.831 x 107*  3.989 x 107®  4.020 x 1078
K =108k 8 1.304 x 107*  5.310 x 107 5.357 x 1078
k' =110k 10 1.621 x 1074 6.625 x 107° 6.639 x 1078
poop=1.02u 2 2.943 x 107° 1.187 x 107° 1.209 x 108
=104 4 5.864 x 1075 2.373 x 107° 2.410 x 1078
'=1.06p 6 8.761 x 107> 3.556 x 107®  3.599 x 1078
W =108y 8 1.163 x 10~* 4.738 x 107¢ 4.778 x 1078
p =1.10p 10 1449 x 107* 5918 x 107 5.948 x 1078
o o =1020, 2 6.738 x 107* 5599 x 10°¢  3.026 x 1077
o' =1.0d0y 4 1.361 x 1073 L131 x 107> 6.224 x 1077
o' =1.0600 6 2.061 x 103 1.715x 107> 9.599 x 1077
o' =1.080, 8 2.775 x 1073 2.310 x 107° 1.316 x 107°
o' =1.100y 10 3.502 x 1073 2.916 x 107° 1.691 x 107°
So Oh=1.020, 2 1.009 x 1073 2.492 x 107° 5.839 x 1077
5 =1.046, 4 2.040 x 1073 5.049 x 107° 1.189 x 107°
6 = 1.066, 6 3.093 x 1073 7.671 x 107° 1.816 x 10~
6 =1.0860 8 4.168 x 1073 1.036 x 107*  2.765 x 107°
6y = 1.106, 10 5.265 x 1073 1.312 x 10~* 3.137 x 107°

Table 4.2: The percentage relative errors of the fair prices of moment swaps AK™(m =
2,3,4) for AP =2,4,6,8,10% of parameters «, u, o and &gy

Moreover, since Table 4.2 shows that AK™ depends linearly on AP, suggesting
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that the order of sensitivity S)" of each parameter is computed as the average of %,

)

w1
=0 AP,

n

" AK™(P;, P!
3 ( )

=1

as shown in Table 4.3.

Moment swaps S} S/T Sm 5o

m =2 9.796 x 107° 8.738 x 1075 2.075 x 107* 3.115 x 1073
m =3 3.985 x 1079 3.554 x 1076 1.726 x 107> 7.738 x 107°
m =4 4.012 x 1078 2589 x 1078 9.783 x 1077 1.838 x 1076

Table 4.3: The orders of sensitivity of fair prices for m = 2,3,4 corresponding to
parameters k, u, o and dg

Table 4.3 shows that AK™ depends linearly on AP for all cases (m = 2,3,4 and
all parameters). The results shows that K is more sensitive to the convenience yield d
than the others. When comparing using the orders of sensitivity, the results display that

K™ is more sensitive to dg > o > Kk > pu.

4.5 Comparison of Fair Delivery Prices between Underlyings Stocks and

Commodities

In this section, we compare the behavior of the fair prices of moment swaps based on
the underlying assets, the extended Black-Scholes model for stocks and Schwartz model
for commodities. The closed-form formula of pricing moment swaps with underlying

commodities described by Schwartz model,

m N

1 - )

K&(T, N, Xo) = DD Ap (At tia) (Xo)
j=0 i=1
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~ )
where A, j(At,t;—1) defined in (4.11), depends on the initial commodity price Xy = y
K

The convenience yield at the current time Jy is associated with the storage of products
or physical goods, which impacts the commodity prices. There is an inverse relationship
between the commodity prices and storage levels; when the storage levels are low, the
commodity prices tend to rise, and vice verse. However, The closed-form formula with
underlying stocks described by extended Black-Scholes model,
| N
=1
where A, (At;t;, m) defined in (3.2)—(3.4), does not depend on X because the storage is

not required for stocks.

To illustrate this phenomena, the numerical experiment is carried out using parame-
ters N =252, T =1, r(T) = 0.125+0.057", o(T) = +/0.03 + 0.02T", u = 2.857,0 = 0.129
and k = 0.99. The comparisons of fair prices Kfiq and K" for m = 2,3, 4 are displayed

in Figure 4.4.
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Figure 4.4: Comparisons of fair delivery prices obtained from the closed-form solutions
B and Kg* for given initial X of (A) variance, (B) skewness, and (C) kurtosis swaps

Figure 4.4 shows the fair prices of moment swaps Kysg for m = 2,3,4 described
by the the extended Black-Scholes model which do not depend on the initial value Xj.

However, it is not the case for the K" of the Schwartz model, where the fair prices depend
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continuously on Xj.

Remark 4.13.

1. There are many different factors that affect commodity prices and one of the main
factor is the convenience yield. Our results show that the behavior of moment
swaps price for commodity depends on the convenience yield as appeared in the
Schwartz model but not the extended Black-Scholes model. This implies that the

extended Black-Scholes model is not suitable for describing the commodity prices.

2. In this study, the results are valid for the extended Black-Scholes and Schwartz
model. The results can be applied to other underlying assets that are also described

by the extended Black-Scholes and Schwartz model.

4.6 Conclusion

In this chapter, we have presented a simple and easy-to-use pricing formula for
discretely-sampled moment swaps when the realized higher moments defined in terms of
m!M-moment of the log-returns of a specified underlying asset described by the Schwartz
model. We have improved the conditional expectations of Weraprasertsakun and Rujivan
[19] by using combinatorial technique to obtain the closed-form formula. We also applied
the formula to extract the convenience yields of commodity, given that the prices of
moment swaps are observed. In addition, we confirmed the result by comparing with that
MC simulations. Moreover, the sensitivity of the fair prices respect to the parameters was
examined numerically, showing that the fair price was more sensitive to the convenience
yield when m > 2. Finally, we showed that the fair prices of moment swaps for underlying
commodity depend on the initial price of the commodity X, which was in contrast to the

moment swaps for underlying stocks, where the fair prices did not depend on the initial

stock price.



CHAPTER V

CONCLUSIONS

This thesis provided simple closed-form formulas for pricing discretely-sample mo-
ment swaps with underlying assets described by It6 process, extended Black-Scholes model

for stock prices and Schwartz model for commodity prices.

The obtained formulas for extended Black-Scholes model was developed based on
the Feynman-Kac formula for the conditional moments, and simplified to obtained the

simple-closed form formulas by combinatorial techniques.

The formula for Schwartz model was obtained by improving the result from Wer-
aprasertsakun and Rujivan [19] for the conditional expectations by solving analytically

the system of ODEs, and simplified by combinatorial techniques.

The formulas were shown numerically to have substantial advantage in terms of both
accuracy and time efficiency over Monte Carlo simulations and other implicit formula.
This studied can be beneficial to market practitioners to use the formulas in practice

when there is obviously increasing demand of trading moment swaps in financial markets.
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