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CHAPTER I

INTRODUCTION

Financial markets, including capital and derivatives markets, are worldwide ex-

changes for small and large businesses to raise capital and hedge against different types of

risks. Capital markets include stock and bond markets, and derivatives markets include

futures and options markets. Investors may invest in these markets directly through banks

and online stockbrokers and indirectly through mutual funds and pension funds. Deriva-

tives have become increasingly important in finance. Futures and options are actively

traded on many exchanges throughout the world. Many different types of derivatives are

entered into by financial institutions, fund managers, and corporate treasurers. Deriva-

tives are added to bond issues, used in executive compensation plans, embedded in capital

investment opportunities, used to transfer risks in mortgages from the original lenders to

investors, and so on. Derivatives are securities whose value is determined by an underlying

asset (stocks, commodities, equities, interest rates and currencies) on which it is based.

Therefore the underlying asset determines the price and if the price of the asset changes,

the derivative changes along with it. The purpose of derivatives is to give producers and

manufacturers the possibility to hedge risks. There are three types of derivative market:

forward/futures, options and swaps.

Moment swaps are essentially forward contracts on the realized higher moments of

the log-returns of a specified underlying asset. More specifically, their payoff is a func-

tion of powers of the (daily) log-returns of the underlying asset at certain pre-specified

discretely sampled points. According to recent studies by Schoutens [17] and Rompolis

and Tzavalis [13], moment swaps play such an important role in financial markets to cover

different kinds of market shocks. Speculators trade variance swaps (second order moment

swaps) as an easy way to gain exposure to future levels of variance, and they may need to

hedge against their portfolio volatility risk. Skewness swaps (third order moment swaps)

provide protection against changes in the symmetry of the underlying distribution. Kurto-

sis swaps (fourth order moment swaps) provide protection against unexpected occurrences
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of very large jumps or changes in the tail behavior of the underlying distribution. These

studies suggest that using variance and higher-moment swaps to hedge European options

gives better performance compared with traditional delta hedging strategies. Therefore,

it is meaningful to define and price higher-moment swaps to hedge the existing skewness

and kurtosis risks.

As a result of the increasing trading activities of variance swaps, Zhu and Lian [23],

[24] obtain a closed-form formula under Heston stochastic volatility model for the un-

derlying asset price process by solving a coupled system of partial differential equations.

However, Zhu and Lian’s results [23, 24] are still too complicated for facilitating market

practitioners. Rujivan and Zhu [16, 15] simplified the formulas of [23, 24] by employing

the dimension-reduction technique. Zheng and Kwok [22] also extended Zhu and Lian’s

results [24] to price variance swaps under the stochastic volatility models with simultane-

ous jumps in the asset price where the variance processe relies on the availability of the

analytical expression of the joint moment generating function of the underlying processe.

Moreover, Rujivan [14] presented a simple closed-form formula for pricing discretely sam-

pled gamma swaps based on Heston stochastic volatility model. Recently, Weraprasert-

sakun and Rujivan [19] presented an analytical approach for pricing discretely-sampled

variance swaps on commodities described by the Schwartz model. Due to the launching

of CBOE Skew Index (SKEW) to measure the skewness risk in the financial market by

the Chicago Board Options Exchange (CBOE) in 2011, the study of skewness and kur-

tosis risks is tremendous growth. Neuberger [11] studied a set of tools to improve the

measurement of the skewness of asset returns. Kozhan et al. [7] measured the skew risk

premium in the equity index market through the skewness swap. Zhao et al. [21] approx-

imated the skewness and kurtosis swap contracts. Zhang et al. [20] studied the skewness

of stock returns under the Heston model. For study on moment swaps, Schoutens [17] de-

fined higher-moment swaps using daily log-returns for the realized moments, and claimed

that moment swaps can protect against incorrectly estimated skewness or kurtosis and

Rompolis and Tzavalis [13] suggested perfect hedging strategies of contingent claims un-

der stochastic volatility and/or random jumps of the underlying asset price. However,

Schoutens [17] and Rompolis and Tzavalis [13] did not derive an exact pricing formula for
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moment swaps.

In this thesis, an analytical method is derived to price the discretely-sampled mo-

ment swaps introduced by Schoutens [17]. The study begins by considering a probability

space (Ω,F , Q) with a filtration {Ft}t≥0 and a risk-neutral probability measure Q. The

dynamics of the underlying asset price St is assumed to follow the Black-Scholes and

Schwartz model, described by the Itô process.

The thesis is organized into five chapters. Chapter 2 provides some basic knowledges

in Itô process, moment swaps and methods using in this research. Our analytical approach

for obtaining the fair price of moment swaps and its interesting topic based on the Black-

Scholes and Schwartz model are presented in chapter 3 and 4, respectively. Finally, in

chapter 5, we conclude the result of thesis and compare the fair price of moment swaps

for underlying asset described by the Black-Scholes and Schwartz model.



CHAPTER II

PRELIMINARIES

In this chapter, we review the concept of Itô process and introduce the moment

swaps, which are used to investigate the closed-form formula. The chapter is divided into

three sections: Itô process, Moment swaps, and Methods.

2.1 Itô Process

Itô process is a branch of stochastic process that operates on differential equation. It

allows a consistent theory of integration to be defined for integrals of stochastic processes

with respect to Brownian motion. It is used to model systems that behave randomly. The

Itô process has been widely applied in financial mathematics and economics to model the

stock price, commodity price, interest rates, etc. More details on Itô process can be found

in [4], [6], [9] and [12].

Definition 2.1. A stochastic process {Xt}t≥0 is a family of random variables Xt :

Ω× [0,∞) → R with the continuous map t 7→ Xt(ω) for each ω ∈ Ω.

Definition 2.2. A Brownian motion {Wt}t≥0 is a stochastic process that satisfies the

following:

1. Wt is continuous and W0 = 0 a.s.,

2. Wt has independent increments,

3. The increment ∆Wt = Wt+∆t − Wt is normally distributed with zero mean and

variance ∆t, ∆Wt ∼ N(0,∆t).

Definition 2.3. An Itô process is a stochastic process {Xt}t≥0 that can be written in

the form

Xt = X0 +

∫ t

0
µ(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs, (2.1)
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where µ and σ are known as drift and diffusion terms, respectively. The integral∫ t

0
σ(s,Xs)dWs is called the Itô integral. It is usual to rewrite (2.1) in differential form

or stochastic differential equation (SDE)

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt. (2.2)

Theorem 2.4 (Itô lemma). Let St be an Itô process given by

dSt = µ(t, St)dt+ σ(t, St)dWt.

Let g(t, s) ∈ C1,2([0,∞)× R). Then

Xt = g(t, St)

is again an Itô process, and

dXt =
∂g

∂t
dt+

∂g

∂s
dSt +

1

2

∂2g

∂s2
(dSt)

2

where (dSt)
2 is computed according to the rules

(dt)2 = dtdWt = dWtdt = 0 and (dWt)
2 = dt.

Lemma 2.5. According to Theorem 2.4, for Xt = g(t, St) and Yt = h(t,Xt) such that

h(t, x) ∈ C1,2([0,∞)× R), then Yt is also an Itô process with

dYt =

[
∂h

∂t
+

∂h

∂x

∂g

∂t
+ µ(t, St)

∂h

∂x

∂g

∂s
+

1

2
σ2(t, St)

∂h

∂x

∂2g

∂s2
+

1

2
σ2(t, St)

∂2h

∂x2

(
∂g

∂s

)2
]
dt

+ σ(t, St)
∂h

∂x

∂g

∂s
dWt.
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Proof. From Theorem 2.4,

dXt =
∂g

∂t
dt+

∂g

∂s
dSt +

1

2

∂2g

∂s2
(dSt)

2

=
∂g

∂t
dt+

∂g

∂s

[
µ(t, St)dt+ σ(t, St)dWt

]
+

1

2

∂2g

∂s2

[
µ(t, St)dt+ σ(t, St)dWt

]2
=

∂g

∂t
dt+ µ(t, St)

∂g

∂s
dt+ σ(t, St)

∂g

∂s
dWt +

1

2

∂2g

∂s2
µ2(t, St)(dt)

2

+
∂2g

∂s2
µ(t, St)σ(t, St)dtdWt +

1

2

∂2g

∂s2
σ2(t, St)(dWt)

2

=
∂g

∂t
dt+ µ(t, St)

∂g

∂s
dt+ σ(t, St)

∂g

∂s
dWt +

1

2

∂2g

∂s2
σ2(t, St)dt

=

[
∂g

∂t
+ µ(t, St)

∂g

∂s
+

1

2
σ2(t, St)

∂2g

∂s2

]
dt+ σ(t, St)

∂g

∂s
dWt.

Applying Theorem 2.4 to Yt = h(t,Xt), we get

dYt =
∂h

∂t
dt+

∂h

∂x
dXt +

1

2

∂2h

∂x2
(dXt)

2

=
∂h

∂t
dt+

∂h

∂x

[[
∂g

∂t
+ µ(t, St)

∂g

∂s
+

1

2
σ2(t, St)

∂2g

∂s2

]
dt+ σ(t, St)

∂g

∂s
dWt

]
+

1

2

∂2h

∂x2

[[
∂g

∂t
+ µ(t, St)

∂g

∂s
+

1

2
σ2(t, St)

∂2g

∂s2

]
dt+ σ(t, St)

∂g

∂s
dWt

]2
=

[
∂h

∂t
+

∂h

∂x

∂g

∂t
+ µ(t, St)

∂h

∂x

∂g

∂s
+

1

2
σ2(t, St)

∂h

∂x

∂2g

∂s2
+

1

2
σ2(t, St)

∂2h

∂x2

(
∂g

∂s

)2
]
dt

+ σ(t, St)
∂h

∂x

∂g

∂s
dWt.

Itô process is usually used to describe the stock and commodity prices, the Black-

Scholes and Schwartz model, respectively.

2.1.1 The Extended Black-Scholes Model

The Black-Scholes (BS) model is one of the most important concepts in modern

financial theory. It was developed in 1973 by Fisher Black, Robert Merton and Myron

Scholes and is still widely used to described the stock. The dynamics of the stock price
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St is assumed to follow the SDE

dSt = rStdt+ σStdWt, (2.3)

where r is the risk-free interest rate, σ is the volatility of the stock prices and Wt is a

Brownian motion on the probability space (Ω,F , Q) [1]. Moreover, Merton [10] suggested

that the Black-Scholes model (2.3) also holds for time dependent risk-free interest rate r(t)

and volatility σ(t), which hereinafter refer as the extended Black-Scholes (EBS) model,

dSt = r(t)Stdt+ σ(t)StdWt. (2.4)

In addition to the BS model, the assumption of time-dependent parameters provides

flexibility to describe the possible events, politically or economically, that may occur in

different time.

2.1.2 The Schwartz Model

In 1997, Schwartz [18] described the spot commodity price, denoted by St, follows

the SDE,

dSt = κ (µ− lnSt)Stdt+ σStdWt, (2.5)

where µ is the long-run mean, κ is the speed of the reversion, σ is the volatility of the

commodity prices, and Wt is a Brownian motion on the probability space (Ω,F , Q).

This dynamic of commodity prices is different from those of equities, interest rates, or

currencies, but similar to physically produced, transported, stored and consumed. It is

natural to expect that they should be treated differently from financial security markets.
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2.2 Moment Swaps

Moment swaps are essentially forward contracts on the realized higher moments

of returns of a specified underlying asset, which play an important role in protection

against different kinds of market shocks rapid changes of prices. Variance, skewness, and

kurtosis swaps are examples of moment swaps traded in derivative markets. In literature,

methods of calculating realized moment are classified into two categories: continuous and

discrete sampling. The continuous sampling one has greatly increased the mathematical

tractability. The discrete sampling is divided based on two different definitions, the actual

return-based realized moment and the log-return realized moment [17]. The annualized

realized mth-moment, m ≥ 2, in terms of discrete sampling over the contract life [0, T ]

for a maturity time T > 0 on an underlying asset St is

MOMS(m) = N ′ ×
N∑
i=1

lnm

(
Sti

Sti−1

)

where Sti are the closing prices of the underlying asset observed at times ti, for i =

0, 1, ..., N , and N ′ is the nominal amount, N ′ = AF
N when AF is the annualized factor

for converting to annualized higher moments. If the sampling frequency is calculated

daily, then AF = 252, assuming that there are 252 trading days in one year; if weekly,

then AF = 52; and if monthly, then AF = 12. Typically, T =
N

AF
with equally-spaced

discrete observations ∆t = ti−ti−1 > 0, for i = 1, 2, ..., N . The annualized factor becomes

AF =
N

T
=

1

∆t
, and the typical formula for the measure of realized mth-moment is

MOMS(m) =
1

T

N∑
i=1

lnm

(
Sti

Sti−1

)
=

1

T

N∑
i=1

(
Xti −Xti−1

)m (2.6)

where Xt := lnSt, a log price process.

In a risk-neutral world, the value of an mth-moment swap at time t, denoted by Vt,

is the expected present value of the future payoff

Vt = EQ
t

[
e−

∫ T

t
r(s)ds(MOMS(m) −Km)L

]
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where Km is the annualized delivery price for the mth-moment swap and L is the notional

amount of the swap. The value of Vt should be zero at the beginning of contract because

both parties pay zero cost to enter into a forward contract. Therefore, the fair delivery

price of the mth-moment swap when V0 = 0, is

Km = EQ
0 [MOMS(m)]. (2.7)

The valuation problem for an mth-moment swap is reduced to calculating the conditional

expectation of the realized mth-moment (2.6) in the risk-neutral world which are solved

by the method of next section.

2.3 Methods for computing conditional moments

This section introduces two well-known techniques for obtaining the conditional

expectation of Itô process, i.e., the Monte Carlo simulation and the Feynman-Kac formula.

2.3.1 Monte Carlo Simulations

Monte Carlo (MC) simulations are the method for calculating conditional expec-

tation based on probability simulations by repeated random sampling. MC simulations

are often used practically in many areas such as finance, engineer, project management,

manufacturing, environment and other forecasting models because it is easy to implement

even with a complicated stochastic model. However, in practice the accuracy of MC sim-

ulations is a trade-off with computational time. In general, there are many well-known

MC simulations such as Euler-Maruyama (EM) scheme, Milstein Scheme ([3], [6]). In this

thesis, the conditional expectations of the log price process, Xt = lnSt,

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt. (2.8)

is calculated via MC simulation by EM scheme to compare with the obtained closed-form

formula. The simplest way is EM discretization for the log price process (2.8) on the time
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interval [0, T ],

Xtj (ω) = Xtj−1
(ω) + µ(tj , Xtj )∆t+ σ(tj , Xtj )

√
∆tZtj (ω), (2.9)

where ω ∈ Ω,∆t = T
Me

, tj = j∆t, j = 0, 1, ...,Me, Me is a positive integer representing the

number of time steps used in the discretization, and Ztj is the standard normal random

variable.

To compute the realized mth-moment defined in (2.6), we set Me = N for simplicity

and this gives us the approximate of Xti at the observation time ti, i = 1, 2, ..., N. Next,

we introduce an approximate of Km(T,N) obtained by MC simulations as

Km(T,N ;Np) :=

Np∑
p=1

(
1

T

N∑
i=1

(
Xti(ωp)−Xti−1

(ωp)
)m)

Np
,

for ωp ∈ Ω and p = 1, 2, ..., Np, where Np is the number of sample paths used in MC

simulations.

2.3.2 Feynman-Kac Theorem

The Feynman-Kac formula, named after Richard Feynman and Mark Kac, estab-

lishes a link between the solutions of partial differential equations and the conditional

expectations of Itô processes [12]. This technique is the quite efficient in terms of compu-

tational times when compared with MC simulations for finding conditional expectations,

especially when high accuracy is required.

Theorem 2.6 (Feynman-Kac Formula). Suppose that Xt follows the Itô process

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt,

where Wt is a Brownian motion. If u(t, x) ∈ C1,2([0, T ] × K), for a compact support
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K ⊆ R, follows the PDE

∂u

∂t
+ µ(t, x)

∂u

∂x
+

1

2
σ2(t, x)

∂2u

∂x2
− V (t, x)u = 0, (2.10)

subject to the terminal condition u(T, x) = f(x) with bounded below V . Then,

u(t, x) = E
[
e−

∫ T

t
V (r,Xr)drf(XT ) | Xt = x

]
. (2.11)

Moreover, u is unique, i.e., if w(t, x) ∈ C1,2([0, T ]×K) and solves (2.10) with the terminal

conditional, then w(t, x) = u(t, x) for all t ∈ [0, T ] and x ∈ K.

Example 2.7. Consider the problem of pricing of a forward contract on stock described

by BS model (2.3). Let f be a forward contract on the underlying where forward payoff

at maturity time T is f(ST ). The value of the forward contract at time t is

u(t, s) := E[e−r∗(T−t)f(ST ) | St = s],

for 0 ≤ t ≤ T . This conditional expectation is of the form that occurs in the Feynman-

Kac formula (2.11) with constant V (r, Sr) = r∗. Therefore, u(t, s) satisfies the partial

differential equation

∂u

∂t
+ rs

∂u

∂s
+

1

2
σ2s2

∂2u

∂s2
− r∗u = 0

with the terminal condition u(T, s) = f(s). This is the Black-Scholes-Merton partial

differential equation.

Example 2.8. For t ≥ 0, consider the discount process

D(t) = e−
∫ t

0
rtdt

defined on the interest rate process rt,

drt = µ(t, rt)dt+ σ(t, rt)dWt.
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For a zero-coupon bond that pays $1 at time T , the value of the bond at time t ∈ [0, T ]

is given by

v(t, r) := E[e−
∫ T

t
rudu | rt = r].

for 0 ≤ t ≤ T . Using the Feynman-Kac formula (2.11), by uniqueness, v(t, r) satisfies the

partial differential equation

∂v

∂t
+ µ(t, r)

∂v

∂r
+

1

2
σ2(t, r)

∂2v

∂r2
− rv = 0

with the terminal condition v(T, r) = 1.

In this thesis, the Feynman-Kac formula is applied to find conditional moment by

solving the solution of PDE associated with EBS model (2.4), which is equivalent to

solving the system of ordinary differential equations (ODEs). Moreover, the efficiency of

this technique is investigated through the computational times by comparing with MC

simulations.



CHAPTER III

CLOSED-FORM FORMULA FOR PRICING

MOMENT SWAPS UNDER THE EXTENDED

BLACK-SCHOLES MODEL

This chapter provides a simple and easy-to-use pricing formula for moment swaps

based on discrete sampling under the EBS model (2.4) and BS model (2.3) for the un-

derlying stock prices. The formulas are obtained by using Feynman-Kac theorem and

combinatorial techniques. Moreover, some interesting observations of the fair prices are

presented.

In section 3.1, we obtain the analytical formula for the conditional moment, which

is used for deriving the fair price in section 3.2. The positivity and the relation of the

fair prices for moment swaps are provided in sections 3.3 and 3.4, respectively. Finally, in

section 3.5, we conduct Monte Carlo simulations to provide a verification of the correctness

of the pricing formula and demonstrate with numerical examples to show the sensitivity

of the parameters and the relations of fair prices.

3.1 Conditional Moments

This section presents the closed-form formula for kth-conditional moment of the

EBS model (2.4) and the BS model (2.3) in the two conditions of parameters.

Theorem 3.1. Suppose that k ≥ 2 is an integer and St follows the EBS model in (2.4).

We set Xt = lnSt and ∆ti = ti − t for all i = 1, 2, . . . , N . If r(t), σ(t) > 0 are integrable

on [ti−1, ti] in which r(t)− 1
2σ

2(t) is not a zero function on [ti−1, ti] then

EQ
ti−1

[Xk
t ] = EQ[Xk

t | Xti−1
= x] =

k∑
j=0

xk−jAj(∆ti; ti, k) (3.1)
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for all t ∈ [ti−1, ti] and x ∈ (−∞,∞), where we define x0 := 1 for all x ∈ (−∞,∞) and

A0(∆ti; ti, k) = 1, (3.2)

A1(∆ti; ti, k) = k

∫ ∆ti

0

(
r(ti − η)− 1

2
σ2(ti − η)

)
dη, (3.3)

Aj(∆ti; ti, k) = (k − (j − 1))

∫ ∆ti

0

(
r(ti − η)− 1

2
σ2(ti − η)

)
Aj−1(η; ti, k)dη

+
1

2
(k − (j − 2)) (k − (j − 1))

∫ ∆ti

0
σ2(ti − η)Aj−2(η; ti, k)dη (3.4)

for j = 2, 3, . . . , k.

Proof. We let g(t, s) = ln s, h(t, x) = xk and note that

dg

dt
= 0,

dg

ds
=

1

s
,
d2g

ds2
= − 1

s2
,
dh

dt
= 0,

dh

dx
= kxk−1,

d2h

dx2
= k(k − 1)xk−2.

This implies from Lemma 2.5 to the transformation Xt = lnSt and Yt = Xk
t that Yt

follows the Ito process

dYt =

[
r(t)kXk−1

t − 1

2
σ2(t)kXk−1

t +
1

2
k(k − 1)σ2(t)Xk−2

t

]
dt+ kσ(t)Xk−1

t dWt

=

[(
r(t)− 1

2
σ2(t)

)
kXk−1

t +
1

2
k(k − 1)σ2(t)Xk−2

t

]
dt+ kσ(t)Xk−1

t dWt

=

[(
r(t)− 1

2
σ2(t)

)
kY

1− 1

k

t +
1

2
k(k − 1)σ2(t)Y

1− 2

k

t

]
dt+ kσ(t)Y

1− 1

k

t dWt. (3.5)

Consider a real-valued function defined by

U
(k)
i (y, t) := EQ[Yt | Yti−1

= y], (3.6)

for all (y, t) ∈ R× [ti−1, ti). Applying the Feynman-Kac formula (2.10) to (3.5) and (3.6),
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we have that U
(k)
i satisfies the PDE

∂U
(k)
i

∂t
+

[(
r(t)− 1

2
σ2(t)

)
ky1−

1

k +
1

2
k(k − 1)σ2(t)y1−

2

k

]
∂U

(k)
i

∂y

+
1

2

[
kσ(t)y1−

1

k

]2 ∂2U
(k)
i

∂y2
= 0 (3.7)

subject to the terminal condition

U
(k)
i (y, ti) = y (3.8)

for all (y, t) ∈ R× [ti−1, ti). Let τ = ti−t. We solve the PDE (3.7) subject to the terminal

condition (3.8) by assuming that the solution can be written in the form

U
(k)
i (y, t) =

k∑
j=0

y1−
j

kAj(τ ; ti, k) (3.9)

where Aj(τ ; ti, k) is the function depend on τ , ti and k for j = 0, 1, . . . , k. Calculating all

partial derivatives of U (k)
i in (3.7) by using the solution form (3.9) yields

∂U
(k)
i

∂t
= −

 k∑
j=0

y1−
j

k
dAj

dτ

 , (3.10)

∂U
(k)
i

∂y
=

k−1∑
j=0

(
1− j

k

)
y−

j

kAj , (3.11)

∂2U
(k)
i

∂y2
=

k−1∑
j=0

(
1− j

k

)(
− j

k

)
y−

j

k
−1Aj . (3.12)
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Inserting (3.10)–(3.12) into (3.7), we obtain

0 = −

 k∑
j=0

y1−
j

k
dAj

dτ


+

[(
r(ti − τ)− 1

2
σ2(ti − τ)

)
ky1−

1

k +
1

2
k(k − 1)σ2(ti − τ)y1−

2

k

]k−1∑
j=0

(
1− j

k

)
y−

j

kAj


+

[
1

2
k2σ2(ti − τ)y2−

2

k

]k−1∑
j=1

(
1− j

k

)(
− j

k

)
y−

j

k
−1Aj


=: −A1 +A2 +A3 +A4,

where

A1 =

k∑
j=0

y1−
j

k
dAj

dτ
,

A2 =

(
r(ti − τ)− 1

2
σ2(ti − τ)

)
k

k−1∑
j=0

(
1− j

k

)
Ajy

1− (j+1)

k ,

A3 =
1

2
k(k − 1)σ2(ti − τ)

k−1∑
j=0

(
1− j

k

)
Ajy

1− (j+2)

k ,

A4 =
1

2
k2σ2(ti − τ)

k−1∑
j=1

(
1− j

k

)(
− j

k

)
Ajy

1− (j+2)

k .

To find coefficients Aj , we will collect the coefficients of y1−
j

k for j = 0, 1, . . . , k by

considering A1, A2, A3, A4. First, we separate A1 into three terms as A1 =: A1,1+A1,2+

A1,3, where

A1,1 = y
dA0

dτ
, A1,2 = y1−

1

k
dA1

dτ
, A1,3 =

k∑
j=2

y1−
j

k
dAj

dτ
.

Next, considering A2 =: A2,1 +A2,2, where

A2,1 =

(
r(ti − τ)− 1

2
σ2(ti − τ)

)
kA0y

1− 1

k ,

A2,2 =

(
r(ti − τ)− 1

2
σ2(ti − τ)

)
k

k∑
j=2

(
1− (j − 1)

k

)
Aj−1y

1− j

k
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with shifting index j in to j − 1. Then, we investigate A3 =: A3,1 +A3,2, where

A3,1 =
1

2
k(k − 1)σ2(ti − τ)

k∑
j=2

(
1− (j − 2)

k

)
Aj−2y

1− j

k ,

A3,2 =
1

2
(k − 1)σ2(ti − τ)Ak−1y

− 1

k

with shifting index j in to j − 2. Finally, we divided A4 =: A4,1 +A4,2, where

A4,1 =
1

2
k2σ2(ti − τ)

k∑
j=2

(
1− (j − 2)

k

)(
−(j − 2)

k

)
Aj−2y

1− j

k ,

A4,2 = −1

2
(k − 1)σ2(ti − τ)Ak−1y

− 1

k

with shifting index j into j − 2. Since A3,2 +A4,2 = 0, we have

A1,1 +A1,2 +A1,3 = A2,1 + (A2,2 +A3,1 +A4,1) .

By collecting the coefficients of y1−
j

k for j = 0, 1, . . . , k, this implies a system of ODEs

that

dA0

dτ
= 0, (3.13)

dA1

dτ
= k

(
r(ti − τ)− 1

2
σ2(ti − τ)

)
A0, (3.14)

dAj

dτ
= (k − (j − 1))

(
r(ti − τ)− 1

2
σ2(ti − τ)

)
Aj−1

+
1

2
(k − (j − 2)) (k − (j − 1))σ2(ti − τ)Aj−2 (3.15)

for j = 2, 3, ..., k, subject to the initial conditions derived from the terminal condition

(3.8) as

A0(0; ti, k) = 1 and Aj(0; ti, k) = 0 for j = 1, 2, . . . , k. (3.16)

The solution of (3.13), (3.14) and (3.15) subject to the initial conditions (3.16) can be

found by integration as expressed in (3.2), (3.3), and (3.4), respectively. This completes
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the proof of the theorem.

Next, we investigate the relation of parameters in case that r(t)− 1
2σ

2(t) is a zero

function on [0, T ] which can be obtained by the following corollary.

Corollary 3.2. Suppose that k ≥ 2 is an integer and St follows the EBS model in (2.4).

We set Xt = lnSt and ∆ti = ti − t for all i = 1, 2, . . . , N . If r(t), σ(t) > 0 are integrable

on [ti−1, ti] in which r(t)− 1
2σ

2(t) is a zero function on [ti−1, ti] then

EQ
ti−1

[Xk
t ] = EQ[Xk

t | Xti−1
= x] =

⌊ k

2
⌋∑

j=0

xk−2jA2j(∆ti; ti, k)

for all t ∈ [ti−1, ti] and x ∈ (−∞,∞), where we define x0 := 1 for all x ∈ (−∞,∞) and

A0(∆ti; ti, k) = 1, (3.17)

A2(∆ti; ti, k) =
1

2
k(k − 1)

∫ ∆ti

0
σ2(ti − η)dη, (3.18)

A2j(∆ti; ti, k) =
1

2j

(
2j−1∏
r=0

(k − r)

)∫ ∆ti

0

∫ ηj

0
· · ·
∫ η2

0
σ2(ti − η1) · · ·σ2(ti − ηj)dη1 · · · dηj

(3.19)

for j = 2, 3, . . . , ⌊k2⌋.

Proof. Since r(t) − 1
2σ

2(t) is a zero function [ti−1, ti], we can reduce A1(∆ti; ti, k) and

Aj(∆ti; ti, k) defined as (3.3) and (3.4) to the form

Aj(∆ti; ti, k) =


0, j odd,
1

2
(k − (j − 2)) (k − (j − 1))

∫ ∆ti

0
σ2(ti − η)Aj−2(η; ti, k)dη, j even,

for j = 1, 2, . . . , k. This proof is complete.

Next, we consider the BS model where r and σ > 0 are constants with r ̸= 1

2
σ2.

From Theorem 3.1, the ODEs (3.2)-(3.4) subject to the initial conditions (3.16) can be



19

solved analytically as proposed in the following theorem.

Theorem 3.3. Suppose that St follows the BS model in (2.3) such that r ̸= 1
2σ

2 and k ≥ 1

is an integer. Then, the solution of ODEs (3.13)–(3.15) subject to the initial conditions

(3.16) can be expressed as

Aj(τ ; ti, k) =
k!

(k − j)!

⌊ j

2⌋∑
n=0

σ2n

2nn!(j − 2n)!

(
r − 1

2
σ2

)j−2n

τ j−n (3.20)

for τ ≥ 0 and j = 0, 1, ..., k.

Proof. It suffices to show that Aj(τ ; ti, k) satisfies the ODEs (3.13)-(3.15) subject to the

initial conditions (3.16) for all j = 0, 1, ..., k with r(t) = r and σ(t) = σ. We begin to

consider in case of j = 0, 1, 2.

A0(τ ; ti, k) = 1 =
k!

(k − 0)!

⌊ 0

2⌋∑
n=0

σ2n

2nn!(0− 2n)!

(
r − 1

2
σ2

)0−2n

τ0−n,

A1(τ ; ti, k) = kτ

(
r − 1

2
σ2

)
=

k!

(k − 1)!

⌊ 1

2⌋∑
n=0

σ2n

2nn!(1− 2n)!

(
r − 1

2
σ2

)1−2n

τ1−n

and

A2(τ ; ti, k) = (k − 1)

∫ τ

0

(
r − 1

2
σ2

)
A1(η; ti, k)dη +

1

2
k(k − 1)

∫ τ

0
σ2A0(η; ti, k)dη

= (k − 1)

∫ τ

0
k

(
r − 1

2
σ2

)2

ηdη +
1

2
k(k − 1)

∫ τ

0
σ2dη

=
k!

(k − 2)!

[
1

2

(
r − 1

2
σ2

)2

τ2 +
1

2
σ2τ

]

=
k!

(k − 2)!

⌊ 2

2⌋∑
n=0

σ2n

2nn!(2− 2n)!

(
r − 1

2
σ2

)2−2n

τ2−n,

this show that the solution of ODEs (3.13)-(3.15) can be written in the form (3.20) when

j = 0, 1, 2.
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For other j, we divide it into two cases. If j = 2ℓ + 1 for ℓ ∈
{
1, 2, . . . ,

⌊
k − 1

2

⌋}
, we

have

A2ℓ+1(τ ; ti, k)

= (k − 2ℓ)

(
r − 1

2
σ2

)∫ τ

0
A2ℓ(η; ti, k)dη

+
1

2
σ2 (k − (2ℓ− 1)) (k − 2ℓ)

∫ τ

0
A2ℓ−1(η; ti, k)dη

= (k − 2ℓ)

(
r − 1

2
σ2

)∫ τ

0

 k!

(k − 2ℓ)!

⌊ 2ℓ

2 ⌋∑
n=0

σ2n

2nn!(2ℓ− 2n)!

(
r − 1

2
σ2

)2ℓ−2n

η2ℓ−n

 dη

+
1

2
σ2 (k − (2ℓ− 1)) (k − 2ℓ)

∫ τ

0

 k!

(k − (2ℓ− 1))!

⌊ 2ℓ−1

2 ⌋∑
n=0

σ2n

2nn!((2ℓ− 1)− 2n)!

(
r − 1

2
σ2

)(2ℓ−1)−2n

η(2ℓ−1)−n

 dη

=
k!

(k − (2ℓ+ 1))!

[ ⌊ 2ℓ

2 ⌋∑
n=0

σ2n

2nn!(2ℓ− 2n)!(2ℓ− n+ 1)

(
r − 1

2
σ2

)2ℓ−2n+1

τ2ℓ−n+1 (3.21)

+

⌊ 2ℓ−1

2 ⌋∑
n=0

σ2n+2

2n+1n!((2ℓ− 1)− 2n)!(2ℓ− n)

(
r − 1

2
σ2

)(2ℓ−1)−2n

τ2ℓ−n

]

=
k!

(k − (2ℓ+ 1))!
[A1 +A2 +A3] , (3.22)

where

A1 =
1

(2ℓ+ 1)!

(
r − 1

2
σ2

)2ℓ+1

τ2ℓ+1, (3.23)

A2 =

⌊ 2ℓ

2 ⌋∑
n=1

σ2n

2nn!(2ℓ− 2n)!(2ℓ− n+ 1)

(
r − 1

2
σ2

)2ℓ−2n+1

τ2ℓ−n+1, (3.24)

A3 =

⌊ 2ℓ−1

2 ⌋∑
n=0

σ2n+2

2n+1n!((2ℓ− 1)− 2n)!(2ℓ− n)

(
r − 1

2
σ2

)(2ℓ−1)−2n

τ2ℓ−n.

Then, we shift index from n into n− 1 of A3 to get that

A3 =

⌊ 2ℓ−1

2 ⌋+1∑
n=1

σ2n

2n(n− 1)!(2ℓ− 2n+ 1)!(2ℓ− n+ 1)

(
r − 1

2
σ2

)2ℓ−2n+1

τ2ℓ−n+1. (3.25)



21

From (3.24) and (3.25),

A2 +A3 =

⌊ 2ℓ+1

2 ⌋∑
n=1

[
σ2

2nn!(2ℓ− 2n)!(2ℓ− n+ 1)
+

σ2

2n(n− 1)!(2ℓ− 2n+ 1)!(2ℓ− n+ 1)

]
(
r − 1

2
σ2

)2ℓ−2n+1

τ2ℓ−n+1

=

⌊ 2ℓ+1

2 ⌋∑
n=1

σ2n

2nn!((2ℓ+ 1)− 2n)!

(
r − 1

2
σ2

)(2ℓ+1)−2n

τ (2ℓ+1)−n. (3.26)

We conclude form (3.22), (3.23) and (3.26),

A2ℓ+1(τ ; ti, k) =
k!

(k − (2ℓ+ 1))!

⌊ 2ℓ+1

2 ⌋∑
n=0

σ2n

2nn!((2ℓ+ 1)− 2n)!

(
r − 1

2
σ2

)(2ℓ+1)−2n

τ (2ℓ+1)−n,

(3.27)

which can be written in the form of (3.20) when set j = 2ℓ+ 1 in this case.
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If j = 2ℓ+ 2 for ℓ ∈
{
1, 2, . . . ,

⌊
k − 2

2

⌋}
, we have

A2ℓ+2(τ ; ti, k)

= (k − (2ℓ+ 1))

(
r − 1

2
σ2

)∫ τ

0
A2ℓ+1(η; ti, k)dη

+
1

2
σ2 (k − 2ℓ) (k − (2ℓ+ 1))

∫ τ

0
A2ℓ(η; ti, k)dη

= (k − (2ℓ+ 1))

(
r − 1

2
σ2

)
∫ τ

0

 k!

(k − (2ℓ+ 1))!

⌊ 2ℓ+1

2 ⌋∑
n=0

σ2n

2nn!(2ℓ+ 1− 2n)!

(
r − 1

2
σ2

)2ℓ+1−2n

η2ℓ+1−n

 dη

+
1

2
σ2 (k − 2ℓ) (k − (2ℓ+ 1))

∫ τ

0

 k!

(k − 2ℓ)!

⌊ 2ℓ

2 ⌋∑
n=0

σ2n

2nn!(2ℓ− 2n)!

(
r − 1

2
σ2

)2ℓ−2n

η2ℓ−n

 dη

=
k!

(k − (2ℓ+ 2))!

[ ⌊ 2ℓ+1

2 ⌋∑
n=0

σ2n

2nn!(2ℓ+ 1− 2n)!(2ℓ+ 2− n)

(
r − 1

2
σ2

)2ℓ+2−2n

τ2ℓ+2−n

+

⌊ 2ℓ

2 ⌋∑
n=0

σ2n+2

2n+1n!(2ℓ− 2n)!(2ℓ+ 1− n)

(
r − 1

2
σ2

)2ℓ−2n

τ2ℓ+1−n

]

=:
k!

(k − (2ℓ+ 2))!
[B1 +B2 +B3 +B4] (3.28)

where

B1 =
1

(2ℓ+ 2)!

(
r − 1

2
σ2

)2ℓ+2

τ2ℓ+2, (3.29)

B2 =

⌊ 2ℓ+1

2 ⌋∑
n=1

σ2n

2nn!(2ℓ+ 1− 2n)!(2ℓ+ 2− n)

(
r − 1

2
σ2

)2ℓ+2−2n

τ2ℓ+2−n, (3.30)

B3 =

⌊ 2ℓ

2 ⌋−1∑
n=0

σ2n+2

2n+1n!(2ℓ− 2n)!(2ℓ+ 1− n)

(
r − 1

2
σ2

)2ℓ−2n

τ2ℓ+1−n,

B4 =
σ2ℓ+2

2ℓ+1(ℓ+ 1)!
τ ℓ+1. (3.31)
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Shifting index n into n− 1 of B3, we obtain that

B3 =

⌊ 2ℓ

2 ⌋∑
n=1

σ2n

2n(n− 1)!(2ℓ− 2n+ 2)!(2ℓ+ 2− n)

(
r − 1

2
σ2

)2ℓ+2−2n

τ2ℓ+2−n (3.32)

From (3.30) and (3.32),

B2 +B3

=

⌊ 2ℓ+1

2 ⌋∑
n=1

[
σ2n

2nn!(2ℓ+ 1− 2n)!(2ℓ+ 2− n)
+

σ2n

2n(n− 1)!(2ℓ− 2n+ 2)!(2ℓ+ 2− n)

]
(
r − 1

2
σ2

)2ℓ+2−2n

τ2ℓ+2−n

=

⌊ 2ℓ+1

2 ⌋∑
n=1

σ2n

2nn!((2ℓ+ 2)− 2n)!

(
r − 1

2
σ2

)(2ℓ+2)−2n

τ (2ℓ+2)−n. (3.33)

We conclude from (3.28), (3.29), (3.31) and (3.33),

A2ℓ+2(τ ; ti, k) =
k!

(k − (2ℓ+ 2))!

⌊ 2ℓ+2

2 ⌋∑
n=0

σ2n

2nn!((2ℓ+ 2)− 2n)!

(
r − 1

2
σ2

)(2ℓ+2)−2n

τ (2ℓ+2)−n,

which can be written in the form of (3.20) when set j = 2ℓ+ 2 in this case.

The next corollary is a special case of Corollary 3.2 when r =
1

2
σ2 described by BS

model.

Corollary 3.4. Suppose that St follows the BS model in (2.3) such that r = 1
2σ

2 and

k ≥ 1 is an integer. Then, the solution of ODEs (3.17)–(3.19) can be express as

A2j(τ ; ti, k) =


1, j = 0,(

2j−1∏
r=0

(k − r)

)
σ2j

2jj!
τ j , j = 1, 2, . . . , ⌊k2⌋,

(3.34)

for τ ≥ 0.

Proof. It suffices to show that A2j(τ ; ti, k) satisfies (3.17)-(3.19) for all j = 1, 2, ..., ⌊k2⌋
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with r(t) = r and σ(t) = σ. We begin to consider in case of j = 1.

A2(τ ; ti, k) =
1

2
k(k − 1)σ2τ.

If j = 2, . . . , ⌊k2⌋, we write the counterpart form of (3.19) as

A2j(τ ; ti, k) =
1

2
(k − (2j − 2)) (k − (2j − 1))

∫ τ

0
σ2A2j−2(η; ti, k)dη

=
1

2
(k − (2j − 2)) (k − (2j − 1))

∫ τ

0
σ2

((
2j−3∏
r=0

(k − r)

)
σ2(j−1)

2j−1(j − 1)!
τ j−1

)
dη

=

(
2j−1∏
r=0

(k − r)

)
σ2j

2jj!
τ j .

This show that (3.34) holds for j = 0, 1, . . . , ⌊k2⌋.

3.2 Pricing Moment Swaps

This section derives analytical formulas for pricing discretely-sampled moment swaps

under the EBS model (2.4) and the BS model (2.3) based on two cases of condition on

parameters, r(t)− 1

2
σ2(t) ̸= 0 or r(t)− 1

2
σ2(t) = 0 for all t.

The following lemmas will be used to derive the fair delivery price of moment swaps

under the EBS model (2.4).

Lemma 3.5. Let τ, ζ ∈ R, j ∈ N ∪ {0} and let Aj(τ ; ζ, k1), Aj(τ ; ζ, k2) be the sequence

of function defined as (3.2), (3.3) and (3.4). Then,

Aj(τ ; ζ, k1) =
k1!

(k1 − j)!

(k2 − j)!

k2!
Aj(τ ; ζ, k2) (3.35)

for all k1, k2 ∈ {j, j + 1, ...}.

Proof. We shall prove the lemma by using the strong induction principle. First, we will
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to investigate that (3.35) holds for j = 0, 1, 2. Hence,

A0(τ ; ζ, k1) = 1 = A0(τ ; ζ, k2),

A1(τ ; ζ, k1) = k1

∫ τ

0

(
r(ζ − η)− 1

2
σ2(ζ − η)

)
dη

=
k1!

(k1 − 1)!

(
k2!

k2!

)∫ τ

0

(
r(ζ − η)− 1

2
σ2(ζ − η)

)
dη

=
k1!

(k1 − 1)!

(k2 − 1)!

k2!
k2

∫ τ

0

(
r(ζ − η)− 1

2
σ2(ζ − η)

)
dη

=
k1!

(k1 − 1)!

(k2 − 1)!

k2!
A1(τ ; ζ, k2)

and

A2(τ ; ζ, k1) = (k1 − 1)

∫ τ

0

(
r(ζ − η)− 1

2
σ2(ζ − η)

)
A1(η; ζ, k1)dη

+
1

2
k1(k1 − 1)

∫ τ

0
σ2(ζ − η)A0(η; ζ, k1)

= (k1 − 1)

∫ τ

0

(
r(ζ − η)− 1

2
σ2(ζ − η)

)(
k1!

(k1 − 1)!

(k2 − 1)!

k2!
A1(η; ζ, k2)

)
dη

+
1

2
k1(k1 − 1)

∫ τ

0
σ2(ζ − η)A0(η; ζ, k2)dη

=
k1!

(k1 − 2)!

(k2 − 2)!

k2!
(k2 − 1)

∫ τ

0

(
r(ζ − η)− 1

2
σ2(ζ − η)

)
A1(η; ζ, k2)dη

+ k1(k1 − 1)
1

k2(k2 − 1)

1

2
k2(k2 − 1)

∫ τ

0
σ2(ζ − η)A0(η; ζ, k2)dη

=
k1!

(k1 − 2)!

(k2 − 2)!

k2!
(k2 − 1)

∫ τ

0

(
r(ζ − η)− 1

2
σ2(ζ − η)

)
A1(η; ζ, k2)dη

+
k1!

(k1 − 2)!

(k2 − 2)!

k2!

1

2
k2(k2 − 1)

∫ τ

0
σ2(ζ − η)A0(η; ζ, k2)dη

=
k1!

(k1 − 2)!

(k2 − 2)!

k2!
A2(τ ; ζ, k2).

Let n ∈ N. We assume that (3.35) holds for j = 0, 1, . . . , n. From (3.4), we separate to

two terms as

An+1(τ ; ζ, k1) = A′
n+1(τ ; ζ, k1) +A′′

n+1(τ ; ζ, k1),
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where

A′
n+1(τ ; ζ, k1) = (k1 − n)

∫ τ

0

(
r(ζ − η)− 1

2
σ2(ζ − η)

)
An(η; ζ, k1)dη,

A′′
n+1(τ ; ζ, k1) =

1

2
(k1 − (n− 1))(k1 − n)

∫ τ

0
σ2(ζ − η)An−1(η; ζ, k1)dη.

By the hypothesis for k1, k1 ≥ n, using (3.35) with j = n and j = n− 1 gives

A′
n+1(τ ; ζ, k1)

= (k1 − n)

∫ τ

0

(
r(ζ − η)− 1

2
σ2(ζ − η)

)
An(η; ζ, k1)dη,

= (k1 − n)

∫ τ

0

(
r(ζ − η)− 1

2
σ2(ζ − η)

)(
k1!

(k1 − n)!

(k2 − n)!

k2!
An(η; ζ, k2)

)
dη,

=
k1!

(k1 − (n+ 1))!

(k2 − (n+ 1))!

k2!
(k2 − n)

∫ τ

0

(
r(ζ − η)− 1

2
σ2(ζ − η)

)
An(η; ζ, k2)dη

and

A′
n+1(τ ; ζ, k1)

=
1

2
(k1 − (n− 1))(k1 − n)

∫ τ

0
σ2(ζ − η)An−1(η; ζ, k1)dη

=
1

2
(k1 − (n− 1))(k1 − n)

∫ τ

0
σ2(ζ − η)

(
k1!

(k1 − (n− 1))!

(k2 − (n− 1))!

k2!
An−1(η; ζ, k2)

)
dη

=
k1!

(k1 − (n+ 1))!

(k2 − (n+ 1))!

k2!

1

2
(k2 − (n− 1))(k2 − n)

∫ τ

0
σ2(ζ − η)An−1(η; ζ, k2)dη,

respectively. Therefore, from (3.4),

An+1(τ ; ζ, k1) =
k1!

(k1 − (n+ 1))!

(k2 − (n+ 1))!

k2!
An+1(τ ; ζ, k2). (3.36)

This show that (3.35) holds for j = n+ 1, hence, it is true for all j ∈ N.

Lemma 3.6. For 0 ≤ j ≤ m− 1, we have

m∑
k=j

(
m

k

)
(−1)m−k k!

(k − j)!
= 0.
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Proof. By combinatorial techniques, we obtain that

m∑
k=j

(
m

k

)
(−1)m−k k!

(k − j)!
=

m∑
k=j

(−1)m−k m!

(m− k)!k!

k!

(k − j)!
(by combination)

=

m∑
k=j

(−1)m−k m!

(m− k)!(k − j)!

=

m∑
k=j

(−1)m−k

(
m− j

k − j

)
m!

(m− j)!

=

m−j∑
k=0

(−1)m−(k+j)

(
m− j

k

)
m!

(m− j)!
(by shifting index)

=
m!

(m− j)!
(−1)m−j

m−j∑
k=0

(
m− j

k

)
(−1)k

=
m!

(m− j)!
(−1)m−j (1 + (−1))m−j (by binomial theorem)

= 0.

In the following theorem, we derive the fair delivery price of the mth-moment swap

under the EBS model (2.4) by utilizing Theorem 3.1, Lemma 3.5 and Lemma 3.6.

Theorem 3.7. Suppose that St follows the EBS model (2.4) and m ≥ 2 is an integer.

Then, the fair delivery price of the mth-moment swap under the EBS model (2.4) in which

r(t)− 1
2σ

2(t) is not a zero function on [0, T ], denoted by Km
EBS, can be expressed as

Km
EBS(T,N) =

1

T

N∑
i=1

Am(∆t; ti,m) (3.37)

where ∆t = T
N , ti = i∆t, i = 0, 1, ..., N , and Am(∆t; ti,m) are defined in (3.2)–(3.4).

Proof. From (2.6) and (2.7), we have

Km
EBS(T,N) = EQ

0

[
1

T

N∑
i=1

(
Xti −Xti−1

)m]
=

1

T

N∑
i=1

EQ
0

[(
Xti −Xti−1

)m]
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It suffices to show that

EQ
0

[(
Xti −Xti−1

)m]
= Am(∆t; ti,m). (3.38)

Hence,

EQ
0

[(
Xti −Xti−1

)m]
= EQ

0

[
m∑
k=0

(
m

k

)
(−1)m−kXm−k

ti−1
Xk

ti

]
(by binomial theorem)

= EQ
0

[
m∑
k=0

(
m

k

)
(−1)m−kXm−k

ti−1
EQ

ti−1

[
Xk

ti

]]
(by Tower property)

= EQ
0

 m∑
k=0

(
m

k

)
(−1)m−kXm−k

ti−1

 k∑
j=0

Aj(∆t; ti, k)X
k−j
ti−1

 (by Theorem 3.1)

= EQ
0

 m∑
k=0

(
m

k

)
(−1)m−k

k∑
j=0

Aj(∆t; ti, k)X
m−j
ti−1


= EQ

0

 m∑
j=0

m∑
k=j

(
m

k

)
(−1)m−kAj(∆t; ti, k)X

m−j
ti−1

 (by rearrangement of summation)

= EQ
0

 m∑
j=0

m∑
k=j

(
m

k

)
(−1)m−k

(
k!

(k − j)!j!
Aj(∆t; ti, j)

)
Xm−j

ti−1

 (by Lemma 3.5)

= EQ
0

 m∑
j=0

 m∑
k=j

(
m

k

)
(−1)m−k k!

(k − j)!

 1

j!
Aj(∆t; ti, j)X

m−j
ti−1


= EQ

0

[
m−1∑
j=0

 m∑
k=j

(
m

k

)
(−1)m−k k!

(k − j)!

 1

j!
Aj(∆t; ti, j)X

m−j
ti−1

+Am(∆t; ti,m)

]

= EQ
0 [Am(∆t; ti,m)] (by Lemma 3.6)

= Am(∆t; ti,m). (by deterministic function)

We can derive the next corollary by using Corollary 3.2 with Theorem 3.7.

Corollary 3.8. Suppose that St follows the EBS model (2.4) and m ≥ 2 is an integer.

Then, the fair delivery price of the mth-moment swap under the EBS model (2.4) in which
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r(t)− 1
2σ

2(t) is a zero function on [0, T ], denoted by Km
EBS∗ , can be expressed as

Km
EBS∗(T,N) =


0, m odd,

1

T

N∑
i=1

Am(∆t; ti,m), m even,

where ∆t = T
N , ti = i∆t, i = 0, 1, ..., N , and Am(∆t; ti,m) are defined in (3.17)–(3.19).

Proof. From Theorem 3.7 and utilizing (3.17), (3.18) and (3.19) in Corollary 3.2. This

completes the proof.

Applying Theorem 3.3 and Theorem 3.7, the fair delivery price of moment swaps

under the BS model (2.3) when r ̸= 1

2
σ2 can be deduced as follows.

Theorem 3.9. Suppose that St follows the BS model (2.3) such that r ̸= 1
2σ

2 and m ≥ 2

is an integer. Then, the fair delivery price of the mth-moment swap under the BS model

(2.3), denoted by Km
BS, can be expressed as

Km
BS(T,N) =

⌊m

2 ⌋∑
n=0

m!

2nn!(m− 2n)!
σ2n

(
r − 1

2
σ2

)m−2n

(∆t)m−n−1 (3.39)

where ∆t = T
N . In particular, the fair delivery prices of variance, skewness, and kurtosis

swaps under the BS model (2.3) can be expressed as

K2
BS(T,N) =

(
r − σ2

2

)2
T

N
+ σ2,

K3
BS(T,N) =

(
r − σ2

2

)3
T 2

N2
+ 3σ2

(
r − σ2

2

)
T

N
,

K4
BS(T,N) =

(
r − σ2

2

)4
T 3

N3
+ 6σ2

(
r − σ2

2

)2
T 2

N2
+ 3σ4 T

N
,

respectively.
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Proof. Utilizing (3.20) in Theorem 3.3, we have

Am(∆t; ti,m) =

⌊m

2 ⌋∑
n=0

σ2n

2nn!(m− 2n)!

(
r − 1

2
σ2

)m−2n

(∆t)m−n.

This implies from Theorem 3.7 that

Km
BS(T,N) =

1

T

N∑
i=1

Am(∆t; ti,m) (3.40)

=
1

T

N∑
i=1

⌊m

2 ⌋∑
n=0

σ2n

2nn!(m− 2n)!

(
r − 1

2
σ2

)m−2n

(∆t)m−n

=

⌊m

2 ⌋∑
n=0

σ2n

2nn!(m− 2n)!

(
r − 1

2
σ2

)m−2n

(∆t)m−n−1.

From Corollary 3.4 and Theorem 3.7, we can derive the fair delivery price of moment

swaps under the BS model (2.3) when r =
1

2
σ2 can be deduced as follows.

Theorem 3.10. Suppose that St follows the BS model (2.3) such that r = 1
2σ

2 and m ≥ 2

is an integer. Then, the fair delivery price of the mth-moment swap under the BS model

(2.3), denoted by Km
BS∗ , can be expressed as

Km
BS∗(T,N) =


0, m odd,(

m−1∏
r=0

(m− r)

)
σm

2
m

2 (m2 )!
∆t

m

2
−1, m even,

where ∆t = T
N .

Proof. Obviously, Km
BS∗(T,N) = 0 when m is odd. Utilizing (3.34) in Corollary 3.4, we

have

Am(∆t; ti,m) =

(
m−1∏
r=0

(m− r)

)
σm

2
m

2 (m2 )!
∆t

m

2
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This implies from Theorem 3.7 that

Km
BS∗(T,N) =

1

T

N∑
i=1

Am(∆t; ti,m)

=
1

T

N∑
i=1

(
m−1∏
r=0

(m− r)

)
σm

2
m

2 (m2 )!
∆t

m

2

=

(
m−1∏
r=0

(m− r)

)
σm

2
m

2 (m2 )!
∆t

m

2
−1.

3.3 Positivity of Validated Solution

The construction of the formula for pricing moment swaps under the EBS model

(2.4) presents some interesting discussions in terms of the validity of the solution. The

purpose of such an examination is to ensure the fundamental assumptions that the fair

delivery price of a moment swap is finite and strictly positive for a given set of parameters

determined from market data.

Theorem 3.11. According to Theorem 3.7, if the parameter functions r(t), σ(t) > 0 are

integrable and satisfy

r(t)− 1

2
σ2(t) > 0 (3.41)

for all t ∈ [0, T ]. Then,

0 < Km
EBS(T,N) < ∞ (3.42)

for all integer m ≥ 2.

Proof. Since the function r(t)− 1

2
σ2(t) is integrable on [0, T ], we can compute the coef-

ficient functions Aj(∆t; ti,m) for all i = 1, ..., N , and j = 1, 2, ..,m by (3.3) and (3.4).
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This implies that Am(∆t; ti,m) are bounded for all i = 1, . . . , N . Hence,

Km
EBS(T,N) =

1

T

N∑
i=1

Am(∆t; ti,m) < ∞.

Similarly, from (3.3) and (3.4), it follows that Aj(∆t; ti,m) > 0 for all i = 1, ..., N , and

j = 1, 2, ..,m by the positive condition (3.41).

3.4 Comparison of Fair Delivery Prices

This subsection provides a comparison theorem for the fair delivery prices of differ-

ent moment swaps under the BS model (2.3). The following theorem demonstrates that

trading variance swaps is more expensive than trading any higher moment swaps.

Theorem 3.12. According to Theorem 3.9, we suppose that r > 1
2σ

2 and m,n are integers

such that 2 ≤ n < m− 1. Then,

Km
BS(T,N) < Kn

BS(T,N) (3.43)

for T

N
∈ (0, τ∗m,n) where τ∗m,n is the smallest positive root of a polynomial function of

degree m− n+
⌊
n
2

⌋
with respect to τ defined by

Pm−n+⌊n

2 ⌋(s) :=
⌊m

2 ⌋∑
j=0

Cm,js
m−(n+j)+⌊n

2 ⌋ −
⌊n

2 ⌋∑
j=0

Cn,js
⌊n

2 ⌋−j ,

Cℓ,j :=
ℓ!

2jj!(ℓ− 2j)!
σ2j

(
r − 1

2
σ2

)ℓ−2j

(3.44)

for ℓ = m,n. In particular,

Km
BS(T,N) = Kn

BS(T,N) (3.45)

when T
N = τ∗m,n.
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Proof. Recall from (3.39),

Km
BS(T,N) =

⌊m

2 ⌋∑
j=0

m!

2jj!(m− 2j)!
σ2j

(
r − 1

2
σ2

)m−2j

τm−j−1 =:

⌊m

2 ⌋∑
j=0

Cm,jτ
m−j−1

and

Kn
BS(T,N) =

⌊n

2 ⌋∑
j=0

n!

2jj!(n− 2j)!
σ2j

(
r − 1

2
σ2

)n−2j

τn−j−1 =:

⌊n

2 ⌋∑
j=0

Cn,jτ
n−j−1

one can derive the following relation

Km
BS(T,N)−Kn

BS(T,N) =

⌊m

2 ⌋∑
j=0

Cm,jτ
m−j−1 −

⌊n

2 ⌋∑
j=0

Cn,jτ
n−j−1

= τn−⌊
n

2 ⌋−1

⌊m

2 ⌋∑
j=0

Cm,jτ
m−(n+j)+⌊n

2 ⌋ −
⌊n

2 ⌋∑
j=0

Cn,jτ
⌊n

2 ⌋−j


=: τn−⌊

n

2 ⌋−1Pm−n+⌊n

2 ⌋(τ)

for τ =
T

N
. To obtain (3.43), we shall show that lim

s→0+
Pm−n+⌊n

2 ⌋(s) < 0 and note that

Pm−n+⌊n

2 ⌋(s)

=

⌊m

2 ⌋∑
j=0

Cm,js
m−(n+j)+⌊n

2 ⌋ −
⌊n

2 ⌋∑
j=0

Cn,js
⌊n

2 ⌋−j

= Cm,0s
m−n+⌊n

2 ⌋ +
⌊m

2 ⌋−1∑
j=1

Cm,js
m−(n+j)+⌊n

2 ⌋ + Cm,⌊m

2 ⌋s
m−(n+⌊m

2 ⌋)+⌊n

2 ⌋

−
⌊n

2 ⌋−1∑
j=0

Cn,js
⌊n

2 ⌋−j − Cn,⌊n

2 ⌋. (3.46)
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Since 2 ≤ n < m− 1 and r > 1
2σ

2, the limit can be deduced from

lim
s→0+

Pm−n+⌊n

2 ⌋(s) = −Cn,⌊n

2 ⌋

= − n!

2⌊
n

2 ⌋⌊n
2

⌋
!(n− 2

⌊
n
2

⌋
)!
σ2⌊n

2 ⌋
(
r − 1

2
σ2

)n−2⌊n

2 ⌋

< 0. (3.47)

Next, we consider the coefficient of the highest order (3.46) as sm−n+⌊n

2 ⌋. We note from

(3.44) that Cm,0 = (r − 1

2
σ2)m > 0 and this implies

lim
s→∞

Pm−n+⌊n

2 ⌋(s) = ∞. (3.48)

From (3.47) and (3.48), we immediately obtain that Pm−n+⌊n

2 ⌋(s) has at least one positive

root by the Intermediate Value Theorem and the continuity of Pm−n+⌊n

2 ⌋(s). We let τ∗m,n

be the smallest positive root. Therefore, (3.43) and (3.45) hold for T
N ∈ (0, τ∗m,n) and

T

N
= τ∗m,n, respectively.

Corollary 3.13. According to Theorem 3.12, if r > 1
2σ

2 then (3.43) and (3.45) hold for

all integers m,n such that m is odd and 2 ≤ n < m.

Proof. The proof is complete following the fact that when m is odd, (3.47) and (3.48)

hold for 2 ≤ n < m.

Corollary 3.14. According to Theorem 3.12, if r > 3
2σ

2 then (3.43) and (3.45) hold for

all integers m,n such that 2 ≤ n < m.

Proof. Since r > 3
2σ

2 > 1
2σ

2. Thus, we have the following facts: (i) (3.47) and (3.48) hold

for 2 ≤ n < m − 1 from Theorem 3.12 and (ii) (3.47) and (3.48) hold for m is odd and

2 ≤ n < m from Corollary 3.13. Next, we suffices to consider lim
s→0+

Pm−n+⌊n

2 ⌋(s) under
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the case that m is even and n = m−1. The limit can be deduced from (3.44), (3.46) that

lim
s→0+

Pm−n+⌊n

2 ⌋(s) = Cm,⌊m

2 ⌋ − Cn,⌊n

2 ⌋

= C2h,h − C2h−1,h−1

=
(2h)!

2hh!
σ2h − (2h− 1)!

2h−1(h− 1)!
σ2h−2

(
r − 1

2
σ2

)
=

(2h)!

2hh!
σ2h−2

(
σ2 −

(
r − 1

2
σ2

))
= −(2h)!

2hh!
σ2h−2

(
r − 3

2
σ2

)
< 0. (3.49)

where m = 2h for some positive integer h. Using (3.47) and (3.49), we now obtain (3.43)

and (3.45) for T
N ∈ (0, τ∗m,n) and T

N = τ∗m,n, respectively.

3.5 Numerical Results and Discussions

In this section, numerical examples are presented to demonstrating the correctness

of our closed-form formulas (3.37) and (3.39). We compare the results obtained from our

formulas and those from MC simulations. Although theoretically there would be no need

to discuss the accuracy of the closed-form formulas and present numerical results, some

comparisons with the MC simulations provide a sense of verification for the newly found

solutions. This is particularly so for some market practitioners who are very used to MC

simulations and would not trust analytical solutions that may contain algebraic errors,

unless they have seen numerical evidence of such a comparison.

Example 3.15 (Comparison to MC simulations). In this example, we confirm our closed-

form formula (3.28) by comparing with MC simulations. The parameters used in the

experiment are N = 252, and for various T = 0.1, 0.2, . . . , 1.0. The testing is taken on

the EBS with the parameter functions r(t) = 0.075 + 0.05t and σ(t) =
√
0.03 + 0.02t

satisfying the condition (3.41). The comparisons for m = 2, 3, 4 as displayed in Figure

3.1.
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Figure 3.1: Comparisons of fair delivery prices from the closed-form solution Km
EBS

and the MC simulations for pricing Km
MC: (A) variance swaps, (B) skewness swaps, and

(C) kurtosis swaps
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Figure 3.1 shows that the results from the closed-form solution and the MC sim-

ulations perfectly match, illustrating that the closed-form formula does not contain any

algebraic errors and practitioners can confidently use the formula for pricing moment

swaps.

In addition to the comparisons in Figure 3.1, we define the percentage relative error

(εm) from using MC simulations by

εm(T,N ;Np) :=

∣∣∣∣Km
EBS(T,N)−Km

MC(T,N ;Np)

Km
EBS(T,N)

∣∣∣∣× 100%,

to measure the levels of accuracy which is shown in the Table 3.1 for Np = 10, 000, 30, 000, 50, 000,

and T = 1.

mth Km
MC Km

EBS

moment Np εm(%) Comp. (s) Comp. (s)

10, 000 0.074 6403.919

m = 2 30, 000 0.053 19840.584 0.406

50, 000 0.033 34406.980

10, 000 4.421 6861.916

m = 3 30, 000 1.970 20313.791 3.609

50, 000 1.024 33784.318

10, 000 0.169 6314.332

m = 4 30, 000 0.087 18831.897 10.297

50, 000 0.050 31651.802

Table 3.1: Percentage relative errors εm and computational times (Comp.) of MC
simulations for pricing variance swaps (m = 2), skewness swaps (m = 3) and kurtosis
swaps (m = 4) for Np = 10, 000, 30, 000, and 50, 000, comparing with computational
times of the closed-form formula

Table 3.1 confirms in addition that the results from the closed-form formula and the
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MC simulations match with high accuracy with very small εm for all cases of m and Np,

the highest εm is 4.4% when m = 3 and Np = 10, 000. Moreover, the accuracy for MC

simulations is improved when Np increases, trade-off with increasing in computational

times. The experiment showed that the computational time from closed-form formula is

extremely faster than that from MC simulations, around 600 times faster.

Example 3.16 (Sensitivity of parameters). In this study, we investigate the sensitivity

of fair prices for moment swaps (m = 2, 3, 4) based on small changes of parameters

r(t) = r0 + r1t and σ(t) =
√
σ0 + σ1t in the EBS. Here, we use the same parameters

provided in Example 3.15 with r0 = 0.075, r1 = 0.050, σ0 = 0.030, and σ1 = 0.020. To

check the sensitivity of each parameter separately, the change of fair price is computed

corresponding to the change of one parameter while the other three parameters are fixed.

The sensitivity is measured based on the percentage relative errors of the fair price Km
EBS

and parameter ∆P , defined by

∆P :=

∣∣∣∣P − P ′

P

∣∣∣∣× 100%,∆Km
EBS(P, P

′) :=

∣∣∣∣Km
EBS(P )−Km

EBS(P
′)

Km
EBS(P )

∣∣∣∣× 100%,

with fixed T = 1 and N = 252. The results are shown in Tables 3.2–3.3.



39

P P ′ ∆P (%) ∆K2
EBS(P, P

′)(%) ∆K3
EBS(P, P

′)(%) ∆K4
EBS(P, P

′)(%)

r0 r′0 = 1.02r0 2 2.402× 10−3 1.838 4.800× 10−3

r′0 = 1.04r0 4 4.848× 10−3 3.675 9.688× 10−3

r′0 = 1.06r0 6 7.339× 10−3 5.513 1.463× 10−2

r′0 = 1.08r0 8 9.875× 10−3 7.350 1.973× 10−2

r′0 = 1.10r0 10 1.246× 10−2 9.188 2.488× 10−2

r1 r′1 = 1.02r1 2 8.625× 10−4 0.664 1.852× 10−3

r′1 = 1.04r1 4 1.732× 10−3 1.327 3.718× 10−3

r′1 = 1.06r1 6 2.607× 10−3 1.991 5.600× 10−3

r′1 = 1.08r1 8 3.490× 10−3 2.654 7.494× 10−3

r′1 = 1.10r1 10 4.379× 10−3 3.318 9.404× 10−3

σ0 σ′
0 = 1.02σ0 2 1.499 1.096 2.958

σ′
0 = 1.04σ0 4 2.997 2.181 5.960

σ′
0 = 1.06σ0 6 4.496 3.255 9.006

σ′
0 = 1.08σ0 8 5.994 4.318 12.095

σ′
0 = 1.10σ0 10 7.493 5.370 15.229

σ1 σ′
1 = 1.02σ1 2 0.500 0.397 1.063

σ′
1 = 1.04σ1 4 0.999 0.792 2.133

σ′
1 = 1.06σ1 6 1.499 1.186 3.210

σ′
1 = 1.08σ1 8 1.998 1.578 4.293

σ′
1 = 1.10σ1 10 2.498 1.968 5.382

Table 3.2: The percentage relative errors of the fair prices of moment swaps
∆Km

EBS(m = 2, 3, 4) for ∆P = 2, 4, 6, 8, 10% of parameters r0, r1, σ0 and σ1

Moreover, since Table 3.2 shows that ∆Km
EBS depends linearly on ∆P , the order of
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sensitivity Sm
p of each parameter is computed as the average of ∆Km

EBS
∆P ,

Sm
P :=

1

n

n∑
i=1

∆Km
EBS(Pi, P

′
i )

∆Pi
,

shown in Table 3.3.

Moment swaps Sm
r0

Sm
r1

Sm
σ0

Sm
σ1

m = 2 1.223× 10−3 4.346× 10−4 0.749 0.250

m = 3 0.919 0.332 0.543 0.198

m = 4 2.443× 10−3 9.331× 10−4 1.501 0.535

Table 3.3: The orders of sensitivity of fair prices for m = 2, 3, 4 corresponding to
parameters r0, r1, σ0, σ1

Table 3.2 shows that ∆Km
EBS depends linearly on ∆P for all cases (m = 2, 3, 4 and

all parameters). The results show that Km
EBS is more sensitive to the parameter σ0 than

the others. When comparing using the orders of sensitivity, the results display that when

m = 2, 4, Km
EBS is more sensitive to the volatility σ(t) than interest rate r(t), which is

not the case when m = 3.

Example 3.17 (Comparison fair prices). In this example, we compare the fair prices

Km
BS to illustrate Theorem 3.9 for the BS model. The fair prices Km

BS,K
n
BS are compared

based on two sets of parameters for various pairs (m,n) with m > n. The first set (I)

of parameters is from Broadie and Jain [2], r = 0.0319 and σ = 0.1326. The second set

(II) is from Khaled and Samai [5], r = 0.0013 and σ =
√
0.0009, which were used in the

likelihood function for the share price of gold for the period from April 2–December 31,

2007. The evaluation is performed with T = 1 and N = 252 to find τ∗m,n, the smallest

positive root defined in Theorem 3.12, for each pair of Km
BS and Kn

BS, where the existing

of τ∗m,n implies the order Km
BS(T,N) < Kn

BS(T,N) for all T
N ∈ (0, τ∗m,n). Note that the

first set of parameters satisfies r > 3
2σ

2, while the second set 1
2σ

2 < r < 3
2σ

2. The results

of τ∗m,n for several (m,n) pairs are shown in Table 3.4.
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(m,n) (3, 2) (4, 2) (4, 3) (6, 2) (6, 3) (6, 4) (6, 5)

τ ∗m,n I 19.10 14.12 6.36 11.56 8.72 9.38 4.59

II 481.71 305.35 – 245.78 156.90 196.34 –

Table 3.4: The τ∗m,n of various pairs of Km
BS and Kn

BS for the two sets of parameters

The results from Table 3.4 show that for the set I of parameters, r > 3
2σ

2, the τ∗m,n

exists for all (m,n) pairs, which supports Corollary 3.14 that τ∗m,n always exists in this

case. However, for the set II of parameters, 1
2σ

2 < r < 3
2σ

2, the τ∗m,n exists for all pairs

(m,n) except for the pairs (4, 3) and (6, 5), where n = m− 1 is odd. This illustrates that

when the set of parameters does not satisfy the condition of Corollary 3.14, the existence

of τ∗m,n depends on (m,n) according to Theorem 3.12 and Corollary 3.13, namely, the

τ∗m,n exists for all (m,n) except when n = m− 1 is odd.

3.6 Conclusion

This chapter presented a simple and easy-to-use pricing formula for discretely-

sampled moment swaps when the realized higher moments defined in terms of mth-

moment of the log-returns of a specified underlying asset described by BS model with

time-dependent parameters. The obtained analytical method is developed based on

Feynman-Kac theorem, where the PDE is solved analytically, and some combinatorial

techniques are used to simplify the sum of the conditional expectations. In terms of vali-

dation purposes, we have demonstrated that pricing formula has financial meaningfulness,

the fair prices for moment swaps are always finite and positive in the parameter space.

A comparison theorem has been proved in order to show that trading variance swaps is

more expensive than trading any higher moment swaps under the BS model. The first and

third numerical examples support the validity of our results. Namely, the first experiment

shows that MC simulations produce the same results as that from our formula, while the

third experiment illustrates the comparison results of moments for BS model. Moreover,

the second example gives the sensitivity of the fair prices respect to the parameters, and
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the results show that the fair price is more sensitive to the volatility parameters when

m = 2, 4 (even).



CHAPTER IV

CLOSED-FORM FORMULA FOR PRICING

MOMENT SWAPS UNDER THE SCHWARTZ

MODEL

This chapter derives a simple closed-form formula for pricing discretely-sampled

moment swaps based on the Schwartz model (2.5) for the underlying commodity price, by

improving the result from Weraprasertsakun and Rujivan [19]. Furthermore, the obtained

formula of moment swaps prices is applied to extract the current convenient yield and

commodity fair price.

In section 4.1, the system of recursive ordinary differential equations (ODEs) as-

sociated with the conditional moment from Weraprasertsakun and Rujivan [19] is solved

analytically. In addition, a pseudocode for computing conditional moments is provided

together with discussion of efficiency of the formula. The pricing formula is derived in sec-

tion 4.2 and used to extract the convenience yields in the parameter space in section 4.3.

Moreover, in section 4.4, we conduct Monte Carlo simulations to provide a verification

of the correctness of the pricing formula, demonstrate with numerical examples for the

sensitivity of the parameters. Finally, the fair price of moment swaps with initial value

between the extended Black-Scholes and Schwartz model is compared in section 4.5.

4.1 Conditional Moments

This section presents the closed-form formula for conditional moment of the Schwartz

model (2.5) by improving the following result [19].

Theorem 4.1 (Weraprasertsakun and Rujivan [19]). Suppose that St follows the dynamics
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described in (2.5) and k ∈ N. Let Xt = lnSt and α = µ− σ2

2κ
. Then

EQ
ti−1

[Xk
t ] = EQ[Xk

t | Xti−1
= x] =

 k∑
j=0

A
(k)
j (τ)xj

 e−kκτ (4.1)

for all t ∈ [ti−1, ti] and x ∈ R, where τ = t − ti−1 and A
(k)
j (τ), j = 0, 1, 2, . . . , k, can be

obtained by solving the system of linear ordinary differential equations (ODEs)

dA
(k)
j

dτ
= κ (k − j)A

(k)
j (τ) + (j + 1)καA

(k)
j+1(τ) +

1

2
(j + 1)(j + 2)σ2A

(k)
j+2(τ) (4.2)

subject to the initial conditions

A
(k)
j (0) = 0 for all j = k − 1, k − 2, . . . , 0, (4.3)

providing that A(k)
k (τ) = 1 and A

(k)
k+1(τ) = 0 for all τ ≥ 0.

Unfortunately, they solved the recursive ODEs (4.2) only for k = 1, 2, and used

the solutions to derive a closed-form formula for pricing variance swap on a commodity.

Moreover, they did not derive explicit formulas for A
(k)
j (τ), j = k − 1, k − 2, . . . , 0 for

k ≥ 3. Therefore, we shall complete their work by deriving a closed-form formula for

A
(k)
j (τ), j = k − 1, k − 2, . . . , 0 for k ≥ 3 as following theorem.

Theorem 4.2. The solution (4.2) can be written in the form

A
(k)
j (τ) =

(
k−j−1∏
r=0

(k − r)

) ⌊ k−j

2
⌋∑

ℓ=0

1

κℓ
αk−j−2ℓσ2ℓ (eκτ − 1)k−j−ℓ (eκτ + 1)ℓ c

(ℓ)
k,j , (4.4)
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where c
(ℓ)
k,j is defined using j = k − n as an index in

Ck,n =



c
(0)
k,k−n

c
(1)
k,k−n

...

c
(⌊n

2 ⌋)
k,k−n


∈ R⌊n

2
⌋+1,

which is defined recursively on n as follow;

Ck,1 =
[
c
(0)
k,k−1

]
=
[
1

]
, Ck,2 =

c(0)k,k−2

c
(1)
k,k−2

 =

1
2

1
4

 , (4.5)

for odd n ≥ 3,

Ck,n =
1

n

Ck,n−1 +
1

2

 0

Ck,n−2

 , (4.6)

and for even n ≥ 4,

Ck,n =
1

n

Ck,n−1

0

+
1

2

 0

Ck,n−2

 . (4.7)

Proof. It suffices to show that the solution of

dA
(k)
k−n

dτ
− nκA

(k)
k−n(τ)

= ((k − n) + 1)καA
(k)
(k−n)+1(τ) +

1

2
((k − n) + 1)((k − n) + 2)σ2A

(k)
(k−n)+2(τ) (4.8)

with conditions (4.3) when j = k − n is

A
(k)
k−n(τ) =

(
n−1∏
r=0

(k − r)

) ⌊n

2
⌋∑

ℓ=0

1

κℓ
αn−2ℓσ2ℓ (eκτ − 1)n−ℓ (eκτ + 1)ℓ c

(ℓ)
k,k−n, (4.9)

where c
(ℓ)
k,k−n for n = 1, . . . , k is defined through (4.5)–(4.7).
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For n = 1, the equation (4.8) is reduced to

dA
(k)
k−1

dτ
− κA

(k)
k−1(τ) = kκα,

with the solution subject to the initial condition (4.3) when j = k − 1,

A
(k)
k−1(τ) = eκτ

[
−kαe−κτ + kα

]
.

This can be written in the form of (4.9) when n = 1 as

A
(k)
k−1(τ) =

(
1−1∏
r=0

(k − r)

) ⌊ 1

2
⌋∑

ℓ=0

1

κℓ
α1−2ℓσ2ℓ (eκτ − 1)1−ℓ (eκτ + 1)ℓ c

(ℓ)
k,k−1,

where c
(0)
k,k−1 = 1.

For n = 2, the equation (4.8) becomes

dA
(k)
k−2

dτ
− 2κA

(k)
k−2(τ) = (k − 1)καA

(k)
k−1(τ) +

1

2
(k − 1)kσ2,

with the solution subject to the initial condition (4.3) when j = k − 2,

A
(k)
k−2(τ) = k(k − 1)e2κτ

[
−α2e−κτ +

1

2
α2e−2κτ − 1

4κ
σ2e−2κτ +

1

2
α2 +

1

4κ
σ2

]
.

By writing in the form of (4.9) when n = 2, we get

A
(k)
k−2(τ) = k(k − 1)

[
1

2
α2(eκτ − 1)2 +

1

4κ
σ2(eκτ − 1)(eκτ + 1)

]

=

(
2−1∏
r=0

(k − r)

) ⌊ 2

2
⌋∑

ℓ=0

1

κℓ
α2−2ℓσ2ℓ (eκτ − 1)2−ℓ (eκτ + 1)ℓ c

(ℓ)
k,k−2,

where c
(0)
k,k−2 =

1
2 and c

(1)
k,k−2 =

1
4 .
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For n = 3, the equation (4.8) becomes

dA
(k)
k−3

dτ
− 3κA

(k)
k−3(τ) = (k − 2)καA

(k)
k−2(τ) +

1

2
(k − 2)(k − 1)σ2A

(k)
k−1(τ)

with the solution in integral form

A
(k)
k−3(τ)

= e3κτ
∫

e−3κτ (k − 2)καA
(k)
k−2(τ)dτ + e3κτ

∫
e−3κτ 1

2
(k − 2)(k − 1)σ2A

(k)
k−1(τ)dτ

= e3κτ
∫

e−3κτ (k − 2)κα

((
1∏

r=0

(k − r)

)
1∑

ℓ=0

1

κℓ
c
(ℓ)
k,k−2α

2−2ℓσ2ℓ (eκτ − 1)2−ℓ (eκτ + 1)ℓ

)
dτ

+ e3κτ
∫

e−3κτ 1

2
(k − 2)(k − 1)σ2

((
0∏

r=0

(k − r)

)
0∑

ℓ=0

1

κℓ
c
(ℓ)
k,k−1α

1−2ℓσ2ℓ (eκτ − 1)1−ℓ (eκτ + 1)ℓ

)
dτ

=: R
(1)
0 (τ, 3) +R

(1)
1 (τ, 3) +R

(2)
0 (τ, 3),

where

R
(1)
0 (τ, 3) =

(
2∏

r=0

(k − r)

)
1

2
κα3e3κτ

∫
e−3κτ (eκτ − 1)2 dτ,

R
(1)
1 (τ, 3) =

(
2∏

r=0

(k − r)

)
1

4
ασ2e3κτ

∫
e−3κτ (eκτ − 1) (eκτ + 1) dτ,

R
(2)
0 (τ, 3) =

(
2∏

r=0

(k − r)

)
1

2
σ2αe3κτ

∫
e−3κτ (eκτ − 1) dτ.

By integration, we obtain the solution

R
(1)
0 (τ, 3) =

(
2∏

r=0

(k − r)

)
1

6
α3 (eκτ − 1)3 +R

(1)
0 (0, 3),

R
(1)
1 (τ, 3) +R

(2)
0 (τ, 3) =

(
2∏

r=0

(k − r)

)
1

4κ
ασ2 (eκτ − 1)2 (eκτ + 1) +R

(1)
1 (0, 3) +R

(2)
0 (0, 3).
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By the initial condition (4.3) when j = k− 3, R(1)
0 (0, 3)+R

(1)
1 (0, 3)+R

(2)
0 (0, 3) = 0, and

A
(k)
k−3(τ) = R

(1)
0 (τ, 3) +

[
R

(1)
1 (τ, 3) +R

(2)
0 (τ, 3)

]
=

(
2∏

r=0

(k − r)

) ⌊ 3

2
⌋∑

ℓ=0

1

κℓ
α3−2ℓσ2ℓ (eκτ − 1)3−ℓ (eκτ + 1)ℓ c

(ℓ)
n,n−3,

where c
(0)
n,n−3 =

1
6 and c

(1)
n,n−3 =

1
4 , which is the form of (4.9) when n = 3. This show that

(4.6) hold for n = 3,

c(0)k,k−3

c
(1)
k,k−3

 =

1
6

1
4

 =
1

3

1
2

1
4

+
1

2

0
1

 .

For n = 4, the equation (4.8) becomes

dA
(k)
k−4

dτ
− 4κA

(k)
k−4(τ) = (k − 3)καA

(k)
k−3(τ) +

1

2
(k − 3)(k − 2)σ2A

(k)
k−2(τ)

with the solution in integral form

A
(k)
k−4(τ) = e4κτ

∫
e−4κτ (k − 3)καA

(k)
k−3(τ)dτ + e4κτ

∫
e−4κτ 1

2
(k − 3)(k − 2)σ2A

(k)
k−2(τ)dτ

=: R
(1)
0 (τ, 4) +R

(1)
1 (τ, 4) +R

(2)
0 (τ, 4) +R

(2)
1 (τ, 4),

where

R
(1)
0 (τ, 4) =

(
3∏

r=0

(k − r)

)
1

6
κα4e4κτ

∫
e−4κτ (eκτ − 1)3 dτ,

R
(1)
1 (τ, 4) =

(
3∏

r=0

(k − r)

)
1

4
α2σ2e4κτ

∫
e−4κτ (eκτ − 1)2 (eκτ + 1) dτ,

R
(2)
0 (τ, 4) =

(
3∏

r=0

(k − r)

)
1

4
α2σ2e4κτ

∫
e−4κτ (eκτ − 1)2 dτ,

R
(2)
1 (τ, 4) =

(
3∏

r=0

(k − r)

)
1

8κ
σ4e4κτ

∫
e−4κτ (eκτ − 1) (eκτ + 1) dτ.
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By integration, we obtain the solution

R
(1)
0 (τ, 4) =

(
3∏

r=0

(k − r)

)
1

24
α4 (eκτ − 1)4 +R

(1)
0 (0, 4),

R
(1)
1 (τ, 4) +R

(2)
0 (τ, 4) =

(
3∏

r=0

(k − r)

)
1

8κ
α2σ2 (eκτ − 1)3 (eκτ + 1) +R

(1)
1 (0, 4) +R

(2)
0 (0, 4),

R
(2)
1 (τ, 4) =

(
3∏

r=0

(k − r)

)
1

32κ2
σ4 (eκτ − 1)2 (eκτ + 1)2 +R

(2)
1 (0, 4).

By the initial condition (4.3) when j = k − 4, R
(1)
0 (0, 4) + R

(1)
1 (0, 4) + R

(2)
0 (0, 4) +

R
(2)
1 (0, 4) = 0, and

A
(k)
k−4(τ) = R

(1)
0 (τ, 4) +

[
R

(1)
1 (τ, 4) +R

(2)
0 (τ, 4)

]
+R

(2)
1 (τ, 4)

=

(
3∏

r=0

(k − r)

) ⌊ 4

2
⌋∑

ℓ=0

1

κℓ
α4−2ℓσ2ℓ (eκτ − 1)4−ℓ (eκτ + 1)ℓ c

(ℓ)
k,k−4,

where c
(0)
k,k−4 = 1

24 , c
(1)
k,k−4 = 1

8 and c
(2)
k,k−4 = 1

32 , which is the form of (4.9) when n = 4.

This show that (4.7) hold for n = 4,


c
(0)
k,k−4

c
(1)
k,k−4

c
(2)
k,k−4

 =


1
24

1
8

1
32

 =
1

4




1
6

1
4

0

+
1

2


0

1
2

1
4


 .

For other n, the solution of (4.8) in integral form is

A
(k)
k−n(τ) := Q1(τ) +Q2(τ),

where

Q1(τ) = enκτ
∫

e−nκτ ((k − n) + 1)καA
(k)
(k−n)+1(τ)dτ,

Q2(τ) = enκτ
∫

e−nκτ 1

2
((k − n) + 1)((k − n) + 2)σ2A

(k)
(k−n)+2(τ)dτ.

Based on the same idea, we introduce R
(i)
ℓ by splitting A

(k)
j (τ) in Q1(τ) and Q2(τ) as
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follows. By substituting A
(k)
(k−n)+1(τ) in Q1(τ), we have

Q1(τ) = enκτ
∫

e−nκτ ((k − n) + 1)κα(n−1)−1∏
r=0

(k − r)

 ⌊n−1

2
⌋∑

ℓ=0

1

κℓ
α(n−1)−2ℓσ2ℓ (eκτ − 1)(n−1)−ℓ (eκτ + 1)ℓ c

(ℓ)
k,k−(n−1)

 dτ

=

(
n−1∏
r=0

(k − r)

) ⌊n−1

2
⌋∑

ℓ=0

c
(ℓ)
k,k−(n−1)

1

κℓ−1
αn−2ℓσ2ℓenκτ

∫
e−nκτ (eκτ − 1)(n−1)−ℓ (eκτ + 1)ℓ dτ

=:

(
n−1∏
r=0

(k − r)

) ⌊n−1

2
⌋∑

ℓ=0

R
(1)
ℓ (τ, n).

By substituting A
(k)
(k−n)+2(τ) in Q2(τ), we have

Q2(τ) = enκτ
∫

e−nκτ 1

2
((k − n) + 1)((k − n) + 2)σ2(n−2)−1∏

r=0

(k − r)

 ⌊n−2

2
⌋∑

ℓ=0

1

κℓ
α(n−2)−2ℓσ2ℓ (eκτ − 1)(n−2)−ℓ (eκτ + 1)ℓ c

(ℓ)
k,k−(n−2)

 dτ

=

(
n−1∏
r=0

(k − r)

) ⌊n−2

2
⌋∑

ℓ=0

c
(ℓ)
k,k−(n−2)

1

2κℓ
α(n−2)−2ℓσ2ℓ+2enκτ

∫
e−nκτ (eκτ − 1)(n−2)−ℓ (eκτ + 1)ℓ dτ

=:

(
n−1∏
r=0

(k − r)

) ⌊n−2

2
⌋∑

ℓ=0

R
(2)
ℓ (τ, n).

For odd n, the splitting of R
(i)
ℓ (τ, n), for i = 1, 2, are combined to obtain A

(k)
k−n(τ)

according to the case of n = 3, namely, by the shifting index of R(2)
ℓ (τ, n),

A
(k)
k−n(τ) =

(
n−1∏
r=0

(k − r)

)⌊n−1

2
⌋∑

ℓ=0

R
(1)
ℓ (τ, n) +

⌊n−2

2
⌋∑

ℓ=0

R
(2)
ℓ (τ, n)


=

(
n−1∏
r=0

(k − r)

)R(1)
0 (τ, n) +

⌊n

2
⌋∑

ℓ=1

[
R

(1)
ℓ (τ, n) +R

(2)
ℓ (τ, n)

] .

By integration subject to initial condition (4.3) for j = k−n, the solution can be written

in the form of (4.9) where the coefficients c
(ℓ)
k,k−n satisfy (4.6). Similarly, the process of
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even n follows the case of k = 4, i.e.,

A
(k)
k−n(τ) =

(
n−1∏
r=0

(k − r)

)⌊n−1

2
⌋∑

ℓ=0

R
(1)
ℓ (τ, n) +

⌊n−2

2
⌋∑

ℓ=0

R
(2)
ℓ (τ, n)


=

(
n−1∏
r=0

(k − r)

)R(1)
0 (τ, n) +

⌊n

2
⌋−1∑

ℓ=1

[
R

(1)
ℓ (τ, n) +R

(2)
ℓ (τ, n)

]
+R

(2)

⌊n−2

2
⌋(τ, n)

 .

By integration subject to initial condition (4.3) for j = k−n, the solution can be written

in the form of (4.9) where the coefficients c
(ℓ)
k,k−n satisfy (4.7).

Remark 4.3. From the result, the closed-form formula for the conditional moments can

be obtained from following the pseudo code.

Algorithm 1 Algorithm of the coefficient functions

Input: k, x, κ, α, σ, τ

Output: kth condition moment

1. Set Ck,1 = {1}

2. Set Ck,2 = {1/2, 1/4}

3. For n = 3 to k do

4. If n is odd then

5. compute (4.6)

6. else

7. compute (4.7)

8. EndIf

9. EndFor

10. Compute (4.4)

11. Compute (4.1)
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Example 4.4. The first conditional moment is

EQ[Xt|Xti−1
= x] =

(
x+A

(1)
0 (τ)

)
e−κτ ,

where

A
(1)
0 (τ) = α (eκτ − 1) .

The second conditional moment is

EQ[X2
t |Xti−1

= x] =
(
x2 +A

(2)
1 (τ)x+A

(2)
0 (τ)

)
e−2κτ ,

where

A
(2)
1 (τ) = 2α (eκτ − 1)

A
(2)
0 (τ) = 2

(
1

2
α2 (eκτ − 1)2 +

1

4κ
σ2 (eκτ − 1) (eκτ + 1)

)
.

The third conditional moment is

EQ[X3
t |Xti−1

= x] =
(
x3 +A

(3)
2 (τ)x2 +A

(3)
1 (τ)x+A

(3)
0 (τ)

)
e−3κτ ,

where

A
(3)
2 (τ) = 3α (eκτ − 1) ,

A
(3)
1 (τ) = 6

(
1

2
α2 (eκτ − 1)2 +

1

4κ
σ2 (eκτ − 1) (eκτ + 1)

)
,

A
(3)
0 (τ) = 6

(
1

6
α3 (eκτ − 1)3 +

1

4κ
ασ2 (eκτ − 1)2 (eκτ + 1)

)
.
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4.1.1 Efficiency of Closed-Form Formula

In this section, the analytical formula (4.4) and the formula (4.2) by Weraprasert-

sakun and Rujivan [19] are compared for efficiency in term of computational time for

obtaining conditional moments (4.1), using Mathematica V9.0 program with symbolic

parameters under Microsoft Windows 10 64-bit, quad-processor Intel Core i7 3.4 GHz

machine with 32GB main memory. The comparison results are displayed in Figure 4.1.
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Figure 4.1: Comparison computational time between Weraprasertsakun and Rujivan
(WR) and our formula (CMR)

Figure 4.1 shows that the formula from WR consumed more time when increases

from 5 to 20, increase exponentially from 0.328 to 13.906 sec with the total time 74.563

sec. However, our formula only consumed 0.016 sec for the total, which is extremely fast,

around 4,000 times faster.

The result concludes that our formula simplifies the result of Weraprasertsakun and

Rujivan [19] for computing conditional moments, which is easier and faster to use without

solving the system of recursive ordinary differential equations.
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4.2 Pricing Moment Swaps

In the present section, we derive an analytical formula for pricing discretely-sampled

moment swaps under the Schwartz model (2.5).

Theorem 4.5. Suppose that St follows the dynamics described in (2.5). Let Xt = lnSt

and ∆t = t− ti−1 for all t ∈ [ti−1, ti]. Then,

EQ
0

[(
Xti −Xti−1

)m]
=

m∑
j=0

Ãm,j(∆t, ti−1)X
j
0 (4.10)

for all i = 1, 2, . . . , N and X0 > 0, where ∆t = ti − ti−1 and

Ãm,j(∆t, ti−1) =

m∑
ℓ=j

ℓ∑
k=0

(
m

k

)
(−1)kA

(m−k)
ℓ−k (∆t)A

(ℓ)
j (ti−1)e

−(m−k)κ∆te−ℓκti−1 . (4.11)

Proof.

EQ
0

[(
Xti −Xti−1

)m]
= EQ

0

[
m∑
k=0

(
m

k

)
(−1)kXk

ti−1
Xm−k

ti

]
(by binomial theorem)

= EQ
0

[
m∑
k=0

(
m

k

)
(−1)kXk

ti−1
EQ

ti−1

[
Xm−k

ti

]]
(by Tower property)

= EQ
0

 m∑
k=0

(
m

k

)
(−1)kXk

ti−1

m−k∑
j=0

A
(m−k)
j (∆t)Xj

ti−1

 e−(m−k)κ∆t


(by Theorem 4.1)

= EQ
0

 m∑
k=0

(
m

k

)
(−1)k

m−k∑
j=0

A
(m−k)
j (∆t)Xj+k

ti−1

 e−(m−k)κ∆t


= EQ

0

[
m∑
ℓ=0

ℓ∑
k=0

(
m

k

)
(−1)kA

(m−k)
ℓ−k (∆t)e−(m−k)κ∆tXℓ

ti−1

]
(by rearrangement of summation)
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=

m∑
ℓ=0

ℓ∑
k=0

(
m

k

)
(−1)kA

(m−k)
ℓ−k (∆t)e−(m−k)κ∆tEQ

0

[
Xℓ

ti−1

]

=

m∑
ℓ=0

ℓ∑
k=0

(
m

k

)
(−1)kA

(m−k)
ℓ−k (∆t)e−(m−k)κ∆t

 ℓ∑
j=0

A
(ℓ)
j (ti−1)X

j
0

 e−ℓκti−1


(by Theorem 4.1)

=

m∑
j=0

 m∑
ℓ=j

ℓ∑
k=0

(
m

k

)
(−1)kA

(m−k)
ℓ−k (∆t)A

(ℓ)
j (ti−1)e

−(m−k)κ∆te−ℓκti−1

Xj
0 .

(by rearrangement of summation)

Theorem 4.6. Suppose that St follows the Schwartz model (2.5) and m ≥ 2 is an integer.

Then, the fair delivery price of the mth-moment swap can be expressed as

Km
S (T,∆t, δ0) =

1

T

m∑
j=0

N∑
i=1

Ãm,j(∆t, ti−1)

(
δ0
κ

)j

, (4.12)

where ∆t = T
N , ti = i∆t, i = 0, 1, . . . , N , and δ0 = κ lnS0.

Proof. From (2.6) and (2.7), we note that

Km
S (T,N) = EQ

0

[
1

T

N∑
i=1

(
Xti −Xti−1

)m]
=

1

T

N∑
i=1

EQ
0

[(
Xti −Xti−1

)m] (4.13)

Insert (4.10) in Theorem 4.1 into (4.13), we immediately obtain (4.12).

Example 4.7. We use Theorem 4.1 to derive the special case of moment swaps when

m = 2, 3, 4 under the Schwartz model (2.5). The fair price of variance swaps can be

expressed as

K2
S(T,∆t, δ0) =

1

T

2∑
j=0

N∑
i=1

Ã2,j(∆t, ti−1)

(
δ0
κ

)j

, (4.14)
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where

Ã2,0(∆t, ti−1) =
1

2κ
e−2κ(ti−1+∆t)

(
eκ∆t − 1

) (
2σ2eκ(2ti−1+∆t)

(
eκ∆t − 1

) (
2α2κ− σ2

))
,

Ã2,1(∆t, ti−1) = −2αe−2κ(ti−1+∆t)
(
eκ∆t − 1

)2
,

Ã2,2(∆t, ti−1) = e−2κ(ti−1+∆t)
(
eκ∆t − 1

)2
,

for skewness swaps as

K3
S(T,∆t, δ0) =

1

T

3∑
j=0

N∑
i=1

Ã3,j(∆t, ti−1)

(
δ0
κ

)j

, (4.15)

where

Ã3,0(∆t, ti−1) =
α

2κ
e−3κ(ti−1+∆t)

(
eκ∆t − 1

)2 (
6σ2eκ(2ti−1+∆t) +

(
eκ∆t − 1

) (
2α2κ− 3σ2

))
,

Ã3,1(∆t, ti−1) =
3

2κ
e−3κ(ti−1+∆t)

(
eκ∆t − 1

)2 (−2σ2eκ(2ti−1+∆t) +
(
eκ∆t − 1

) (
σ2 − 2α2κ

))
,

Ã3,2(∆t, ti−1) = 3αe−3κ(ti−1+∆t)
(
eκ∆t − 1

)3
,

Ã3,3(∆t, ti−1) = −e−3κ(ti−1+∆t)
(
eκ∆t − 1

)3
,

and for kurtosis swaps as

K4
S(T,∆t, δ0) =

1

T

4∑
j=0

N∑
i=1

Ã4,j(∆t, ti−1)

(
δ0
κ

)j

, (4.16)
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where

Ã4,0(∆t, ti−1) =
1

4κ2
e−4κ(ti−1+∆t)

(
eκ∆t − 1

)2(
4α4κ2

(
eκ∆t − 1

)2 − 12α2κσ2
(
eκ∆t − 1

) (
−1 + eκ∆t − 2eκ(2ti−1+∆t)

)
+ 3σ4

(
1 + eκ∆t

(
−1 + 2e2κti−1

)))
,

Ã4,1(∆t, ti−1) =
2α

κ
e−4κ(ti−1+∆t)

(
eκ∆t − 1

)3 (−6σ2eκ(2ti−1+∆t) +
(
eκ∆t − 1

) (
−2α2κ+ 3σ2

))
,

Ã4,2(∆t, ti−1) =
3

κ
e−4κ(ti−1+∆t)

(
eκ∆t − 1

)3 (
2σ2eκ(2ti−1+∆t) +

(
eκ∆t − 1

) (
2α2κ− σ2

))
,

Ã4,3(∆t, ti−1) = −4αe−4κ(ti−1+∆t)
(
eκ∆t − 1

)4
,

Ã4,4(∆t, ti−1) = e−4κ(ti−1+∆t)
(
eκ∆t − 1

)4
.

4.3 Extraction of Convenience Yields From Fair Price of Moment swaps

In commodity markets, commodity prices depend on the convenience yield. Conse-

quently, the current convenience yield and the spot commodity price imply the fair price

of its moment swaps. However, the current convenience yield and commodity spot price

are not clearly observed in markets. If we can observe the price of commodity moment

swaps at current time t, then it can be used to extract the current convenience yields of

commodity, given that parameters κ, µ, σ are already correctly observed. Technically, by

solving the quadratic equation (4.14) based on the observed price of variance swap will

gives two values of convenience yield. To obtain suitable unique value, we compare with

the values extracted from observed price of the skewness swap or higher moment swaps.

We give the pseudo algorithm to extract a convenience yield as following.
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Algorithm 2 Extraction of convenience yields δt from observed markets prices
variance (p

(2)
t ) and skewness (p

(3)
t ) swaps.

Input: observed market prices of variance (p(2)t ) and skewness (p(3)t ) swaps at time t.

Output: a convenience yield δt.

1. Compute set of roots R2 = {δt ∈ R | K2(δt) = p
(2)
t },

2. R3 = {δt ∈ R | K3(δt) = p
(3)
t },

3. For i = 1, . . . ,#R2 and j = 1, . . . ,#R3 do

4. Compute dij = |R2,i −R3,j|.

5. If dmn = min(dij) do

6. set δt =
1
2
(R2,n +R3,m).

7. EndIf

8. EndFor

9. Return δt

Remark 4.8. The accuracy of the extraction of convenience yield can be improved by

adding higher moment swaps into the algorithm, for comparison.

Example 4.9. Assume that formulas of fair prices (4.14) and (4.15) are used based

on the parameters N = 252, κ = 0.099, µ = 2.857, σ = 0.129, and T = 1. Suppose

that the observed market price of variance and skewness swaps are 0.035 and 0.000589,

respectively. Here, the observed prices are pre-assumed by using the formulas (4.14)

and (4.15) based on the same parameters. Solving for quadratic (4.14) and cubic (4.15)

equation gives

R2,1 ≈ −2, R2,2 ≈ 2.549 and R3,1 ≈ −2.
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In this case, the suitable of convenience yield is the average of two closed solutions,

δ0 =
1

2
(R2,1 +R3,1) ≈ −2.

Remark 4.10. If we can observe a series of commodity moment swaps prices at anytime

t, we can use the formula of fair price of moment swaps with this technique to extract a

series of convenience yields in the commodity market.

4.4 Numerical Results and Discussion

For the purpose of demonstrating the correctness of our closed-form formula (4.12),

we present some numerical examples in this section. We compare the results obtained

from our formula and those from MC simulations and discuss the sensitivity of parameters.

Example 4.11 (Comparison to MC simulations). In this example, we confirm our closed-

form formula (4.12) by comparing with MC simulations when m = 2, 3, 4. The parameters

used in the experiment are N = 252, T = 1 and for various δ0 = −1,−0.8,−0.6, . . . , 1.

the testing is consumed on the Schwartz model with the parameter µ = 2.857, σ = 0.129

and κ = 0.99. The comparisons as displayed in Figure 4.2.
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Figure 4.2: Comparisons of fair delivery prices from the closed-form solution Km and
the MC simulations for pricing Km

MC of variance (A), skewness (B) and kurtosis (C)
swaps
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Figure 4.2 shows that the results from the closed-form solution and the MC sim-

ulations perfectly match, illustrating that the closed-form formula does not contain any

algebraic errors and practitioners cam confidently use the formula for pricing moment

swaps. Define the percentage relative error (εm) from using MC simulations by

εm(T,N, δ0;Np) :=

∣∣∣∣Km(T,N, δ0)−Km
MC(T,N, δ0;Np)

Km(T,N, δ0)

∣∣∣∣× 100%

for any δ0. The percentage relative errors of variance, skewness and kurtosis swaps are

less that 1% as displayed in Figure 4.3.

æ æ
æ æ æ

æ
æ

æ æ æ
æ

à

à à

à
à à

à
à

à

à

à

ì ì

ì ì

ì
ì

ì

ì

ì
ì

ì

-1.0 -0.5 0.0 0.5 1.0

0.5

1.0

1.5

2.0

∆0

Pe
rc

en
ta

ge
re

la
tiv

e
er

ro
rs

fo
r

m
om

en
t

sw
ap

s
¶
H%
L

ì ¶kurt

à ¶skew

æ ¶var

Figure 4.3: The percentage relative errors obtained by using the MC simulations for
variance, skewness and kurtosis swaps

In addition to comparison in Figure 4.3, we define the average percentage relative

error (εm) from using MC simulations by

εm(T,N, δ0, Nδ0 ;Np) :=
1

Nδ0

Nδ0∑
i=1

∣∣∣∣∣Km(T,N, δ
(i)
0 )−Km

MC(T,N, δ
(i)
0 ;Np)

Km(T,N, δ
(i)
0 )

∣∣∣∣∣× 100%

for δ
(i)
0 , i = 1, 2, . . . , Nδ0 where Nδ0 is the number of δ0 to measure the levels of accu-

racy which is shown in the Table 4.1 for Np = 10, 000, 30, 000 and 50, 000 and δ0 =



62

−1,−0.8,−0.6, . . . , 1 and T = 1.

mth Km
MC Km

EBS

moment Np εm(%) Comp. (s) Comp. (s)

10, 000 0.348 476.105

m = 2 30, 000 0.320 1501.048 0.078

50, 000 0.312 2447.938

10, 000 0.512 480.204

m = 3 30, 000 0.507 1441.286 0.125

50, 000 0.477 2394.559

10, 000 0.752 487.097

m = 4 30, 000 0.711 1507.094 0.172

50, 000 0.705 2464.436

Table 4.1: Average percentage relative errors εm and computational times (Comp.) of
MC simulations for pricing variance swaps (m = 2), skewness swaps (m = 3) and kurtosis
swaps (m = 4) for Np = 10, 000, 30, 000, and 50, 000, comparing with computational
times of the closed-form formula

Table 4.1 confirms in addition that the results from the closed-form formula and

the MC simulations match with high accuracy with very small εm for all cases of m and

Np, the highest is 0.7% when m = 4 and Np = 10, 000. Moreover, the accuracy for MC

simulations is improved when Np increases, trade-off with increasing in computational

times. The experiment showed that the computational time from closed-form formula is

extremely faster that that from MC simulation, around 3, 000 times faster.

Example 4.12 (Sensitivity of parameters). In this study, we investigate the sensitivity

of fair prices for moment swaps (m = 2, 3, 4) based on small changes of parameters in the

Schwartz model with µ = 2.857, σ = 0.129, κ = 0.099, calibrated from oil market data as

proposed by Schwartz [18] and the convenience yield δ0 = 2.773. To check the sensitivity

of each parameter separately, the change of fair price is computed corresponding to the
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change of one parameter while the other three parameter are fixed. The sensitivity is

measured based on the percentage relative errors of the fair price ∆Km and parameter

∆P , defined by

∆P :=

∣∣∣∣P − P ′

P

∣∣∣∣× 100% and ∆Km(P, P ′) :=

∣∣∣∣Km(P )−Km(P ′)

Km(P )

∣∣∣∣× 100%,

with fixed T = 1 and N = 252. The results are shown in Table 4.2–4.3.
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P P ′ ∆P (%) ∆K2(P, P ′)(%) ∆K3(P, P ′)(%) ∆K4(P, P ′)(%)

κ κ′ = 1.02κ 2 3.312× 10−5 1.335× 10−6 1.337× 10−8

κ′ = 1.04κ 4 6.589× 10−5 2.664× 10−5 2.706× 10−8

κ′ = 1.06κ 6 9.831× 10−4 3.989× 10−6 4.020× 10−8

κ′ = 1.08κ 8 1.304× 10−4 5.310× 10−6 5.357× 10−8

κ′ = 1.10κ 10 1.621× 10−4 6.625× 10−6 6.639× 10−8

µ µ′ = 1.02µ 2 2.943× 10−5 1.187× 10−6 1.209× 10−8

µ′ = 1.04µ 4 5.864× 10−5 2.373× 10−6 2.410× 10−8

µ′ = 1.06µ 6 8.761× 10−5 3.556× 10−6 3.599× 10−8

µ′ = 1.08µ 8 1.163× 10−4 4.738× 10−6 4.778× 10−8

µ′ = 1.10µ 10 1.449× 10−4 5.918× 10−6 5.948× 10−8

σ σ′ = 1.02σ0 2 6.738× 10−4 5.599× 10−6 3.026× 10−7

σ′ = 1.04σ0 4 1.361× 10−3 1.131× 10−5 6.224× 10−7

σ′ = 1.06σ0 6 2.061× 10−3 1.715× 10−5 9.599× 10−7

σ′ = 1.08σ0 8 2.775× 10−3 2.310× 10−5 1.316× 10−6

σ′ = 1.10σ0 10 3.502× 10−3 2.916× 10−5 1.691× 10−6

δ0 δ′0 = 1.02δ0 2 1.009× 10−3 2.492× 10−5 5.839× 10−7

δ′0 = 1.04δ0 4 2.040× 10−3 5.049× 10−5 1.189× 10−6

δ′0 = 1.06δ0 6 3.093× 10−3 7.671× 10−5 1.816× 10−6

δ′0 = 1.08δ0 8 4.168× 10−3 1.036× 10−4 2.765× 10−6

δ′0 = 1.10δ0 10 5.265× 10−3 1.312× 10−4 3.137× 10−6

Table 4.2: The percentage relative errors of the fair prices of moment swaps ∆Km(m =
2, 3, 4) for ∆P = 2, 4, 6, 8, 10% of parameters κ, µ, σ and δ0

Moreover, since Table 4.2 shows that ∆Km depends linearly on ∆P , suggesting
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that the order of sensitivity Sm
p of each parameter is computed as the average of ∆Km

∆P ,

Sm
P :=

1

n

n∑
i=1

∆Km(Pi, P
′
i )

∆Pi
,

as shown in Table 4.3.

Moment swaps Sm
κ Sm

µ Sm
σ Sm

δ0

m = 2 9.796× 10−5 8.738× 10−5 2.075× 10−3 3.115× 10−3

m = 3 3.985× 10−6 3.554× 10−6 1.726× 10−5 7.738× 10−5

m = 4 4.012× 10−8 2.589× 10−8 9.783× 10−7 1.838× 10−6

Table 4.3: The orders of sensitivity of fair prices for m = 2, 3, 4 corresponding to
parameters κ, µ, σ and δ0

Table 4.3 shows that ∆Km depends linearly on ∆P for all cases (m = 2, 3, 4 and

all parameters). The results shows that Km is more sensitive to the convenience yield δ0

than the others. When comparing using the orders of sensitivity, the results display that

Km is more sensitive to δ0 > σ > κ > µ.

4.5 Comparison of Fair Delivery Prices between Underlyings Stocks and

Commodities

In this section, we compare the behavior of the fair prices of moment swaps based on

the underlying assets, the extended Black-Scholes model for stocks and Schwartz model

for commodities. The closed-form formula of pricing moment swaps with underlying

commodities described by Schwartz model,

Km
S (T,N,X0) =

1

T

m∑
j=0

N∑
i=1

Ãm,j(∆t, ti−1) (X0)
j ,
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where Ãm,j(∆t, ti−1) defined in (4.11), depends on the initial commodity price X0 =
δ0
κ

.

The convenience yield at the current time δ0 is associated with the storage of products

or physical goods, which impacts the commodity prices. There is an inverse relationship

between the commodity prices and storage levels; when the storage levels are low, the

commodity prices tend to rise, and vice verse. However, The closed-form formula with

underlying stocks described by extended Black-Scholes model,

Km
EBS(T,N) =

1

T

N∑
i=1

Am(∆t; ti,m),

where Am(∆t; ti,m) defined in (3.2)–(3.4), does not depend on X0 because the storage is

not required for stocks.

To illustrate this phenomena, the numerical experiment is carried out using parame-

ters N = 252, T = 1, r(T ) = 0.125+0.05T , σ(T ) =
√
0.03 + 0.02T , µ = 2.857, σ = 0.129

and κ = 0.99. The comparisons of fair prices Km
EBS and Km

S for m = 2, 3, 4 are displayed

in Figure 4.4.
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Figure 4.4: Comparisons of fair delivery prices obtained from the closed-form solutions
Km

BS and Km
S for given initial X0 of (A) variance, (B) skewness, and (C) kurtosis swaps

Figure 4.4 shows the fair prices of moment swaps Km
EBS for m = 2, 3, 4 described

by the the extended Black-Scholes model which do not depend on the initial value X0.

However, it is not the case for the Km
S of the Schwartz model, where the fair prices depend
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continuously on X0.

Remark 4.13.

1. There are many different factors that affect commodity prices and one of the main

factor is the convenience yield. Our results show that the behavior of moment

swaps price for commodity depends on the convenience yield as appeared in the

Schwartz model but not the extended Black-Scholes model. This implies that the

extended Black-Scholes model is not suitable for describing the commodity prices.

2. In this study, the results are valid for the extended Black-Scholes and Schwartz

model. The results can be applied to other underlying assets that are also described

by the extended Black-Scholes and Schwartz model.

4.6 Conclusion

In this chapter, we have presented a simple and easy-to-use pricing formula for

discretely-sampled moment swaps when the realized higher moments defined in terms of

mth-moment of the log-returns of a specified underlying asset described by the Schwartz

model. We have improved the conditional expectations of Weraprasertsakun and Rujivan

[19] by using combinatorial technique to obtain the closed-form formula. We also applied

the formula to extract the convenience yields of commodity, given that the prices of

moment swaps are observed. In addition, we confirmed the result by comparing with that

MC simulations. Moreover, the sensitivity of the fair prices respect to the parameters was

examined numerically, showing that the fair price was more sensitive to the convenience

yield when m ≥ 2. Finally, we showed that the fair prices of moment swaps for underlying

commodity depend on the initial price of the commodity X0, which was in contrast to the

moment swaps for underlying stocks, where the fair prices did not depend on the initial

stock price.



CHAPTER V

CONCLUSIONS

This thesis provided simple closed-form formulas for pricing discretely-sample mo-

ment swaps with underlying assets described by Itô process, extended Black-Scholes model

for stock prices and Schwartz model for commodity prices.

The obtained formulas for extended Black-Scholes model was developed based on

the Feynman-Kac formula for the conditional moments, and simplified to obtained the

simple-closed form formulas by combinatorial techniques.

The formula for Schwartz model was obtained by improving the result from Wer-

aprasertsakun and Rujivan [19] for the conditional expectations by solving analytically

the system of ODEs, and simplified by combinatorial techniques.

The formulas were shown numerically to have substantial advantage in terms of both

accuracy and time efficiency over Monte Carlo simulations and other implicit formula.

This studied can be beneficial to market practitioners to use the formulas in practice

when there is obviously increasing demand of trading moment swaps in financial markets.
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