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CHAPTER I

INTRODUCTION

1.1 Introduction

The Sun is the nearest star to the Earth. Sometimes it has strong activity,

such as the solar flares or the coronal mass ejections. This activity can produce

the solar energetic particles (SEPs). The SEPs are mostly charged particles, so

their trajectories follow the magnetic field lines from the Sun. The interplanetary

magnetic field lines are dragged out of the Sun by the supersonic stream of ions

flowing out from the Sun called the solar wind. Because the solar wind is very

strongly turbulent, the magnetic field lines from the Sun are turbulent, too.

There are two reports about the solar energetic particles from an im-

pulsive solar flare which seem contradictory. Mazur et al. (2000) reported that

the flux particles near the Earth exhibits dropouts (to be explained in detail in

§2.1.3). The dropouts imply that the SEPs experience little perpendicular dif-

fusion. On the other hand, McKibben et al. (2001) reported the data from two

spacecraft which were at different sides and latitudes from the Sun. The data

from the two spacecraft showed the same characteristics of the flux intensity vs.

time. That means the SEPs propagated throughout space with high diffusion. In

the year 2003, by using the two-component model of the magnetic fluctuations,

Ruffolo et al. (2003) explained the paradox of dropouts. They confirmed that

there is small scale topology in the solar wind called magnetic islands. The SEPs

can be trapped by the magnetic islands for a while before spreading throughout

space.
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In this work, we develop and use various statistical methods, i.e., the

Box-Counting Method, the Anisotropy Method, the Dual Lattice Method, and

the Principal Component Method to explain the behavior of the magnetic field

lines in the turbulent field. We also vary some parameters such as the energy ratio

between the slab turbulence and the 2D turbulence, the energy ratio between the

fluctuations and the mean field, the size of the initial circle of the magnetic field

lines, and the parallel and the perpendicular length scales, to study their effects

on the magnetic field lines.

1.2 Objectives

• To develop the numerical methods to analyze the behavior of the magnetic

field lines in the turbulent field.

• To explain the behavior of the magnetic field lines in the turbulent field as

a function of various parameters.

1.3 Outline

This thesis contains 5 chapters. CHAPTER I introduces the motiva-

tions, the objectives, and the outline of this work. CHAPTER II provides the

background knowledge about the interplanetary magnetic field, the transport of

SEPs, and the model and simulation of the magnetic turbulence. CHAPTER III

provides the methods for analyzing data of the magnetic field lines in the turbu-

lent field. In CHAPTER IV, the results from the analytical methods are shown

and discussed. CHAPTER V provides the summary of this work.



CHAPTER II

THEORETICAL BACKGROUND

This chapter presents some background knowledge and motivation of this

work. First, I would like to introduce the nearest star, our Sun, and its effects

on the Earth. Then, I will examine characteristics of the magnetic field in in-

terplanetary space between the Sun and the Earth. Next, I will introduce the

phenomenon called “dropouts,” which motivates us to study the nature of groups

of particles and magnetic field lines from the Sun. Finally, I will show the model

of magnetic turbulence used in this work.

2.1 The Sun and Interplanetary Magnetic Field

2.1.1 Solar Activity

Solar activity is related to sunspots. The sunspots are areas on the sur-

face of the Sun which have a concentrated magnetic field. The concentrated mag-

netic field can inhibit convection flows beneath the surface of the Sun. Therefore,

the sunspots have a lower temperature and less brightness than the surrounding

area. The magnetic field lines over the sunspots have elasticity. Because of ro-

tation of the Sun and photospheric flows, the magnetic field lines can sometimes

twist like rubber bands. When they untwist, they will change the elastic potential

to be light, thermal energy and kinetic energy, and release these kinds of energy

in the form of solar flares and coronal mass ejections (CMEs). These sudden

events are called solar activity, or solar storms.

Some solar activity can affect our Earth. The strong events can produce

interplanetary shocks and high energy particles called “solar energetic particles”
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a)

b)

Figure 2.1: a) Groups of sunspots and location of a major flare that occurred
on October 28th, 2003. The picture on the left was taken in white light, and
shows the active region (sunspot group) that caused the flare. The picture on
the right was taken in extreme ultraviolet light, showing the flare. b) A coronal
mass ejection, which occurred on August 18th, 1980. This picture was taken in
white light by blocking the Sun, shading the strong sunlight. (Picture credits:
a) http://earthobservatory.nasa.gov/Newsroom/NewImages/
images.php3?img id=16345 b) P. Charbonneau and O. R. White)
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Figure 2.2: Effect of solar energetic particles and interplanetary shocks to the
Earth. (Picture credit: L. J. Lanzerotti)

or SEPs. When SEPs hit the solar cell panels or electronic parts of a spacecraft,

they can damage these instruments. The SEPs are also a hazard to astronauts

if they are not in a protected area. As the shock pushes on the magnetosphere,

trapped particles in the Earth’s radiation belts can transfer energy to the atmo-

spheric molecules. This causes these molecules to release light in the sky, known

as an “aurora.”

When an interplanetary shock comes to Earth, it can compress the nat-

ural magnetic field around the Earth. The changing magnetic field can produce

electric currents in some objects, e.g., electric transformers or pipelines. This elec-

tric current can damage those objects and cause some problems. For example,
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the damage of electric transformers in electric power plants can cause electricity

failures, as in Canada on March 13th, 1989, or the damage of pipelines to transfer

oil can lead to oil leaks.

2.1.2 Interplanetary Magnetic Field

Because the corona of the Sun has a very high temperature of ∼ 106 K,

the plasma of the corona forms an outgoing flow. This stream of plasma is called

the “solar wind.” The solar wind flows out of the Sun in all directions with an

average speed of about 400 km/s at 1 AU. However, the solar wind has a very

low density, with only about 10 particles per cm3 on average, compared with

the density of the Earth’s atmosphere, ∼ 1023 molecules per cm3 (Foukal 1989).

From these properties of the solar wind, we can infer that the solar wind’s flow is

strongly turbulent. The turbulence phenomenon will be explained more in §2.2.

The interplanetary magnetic field or IMF is dragged out from the Sun by

the solar wind. The shape of the interplanetary magnetic field is an Archimedean

spiral because of the rotation of the Sun. As we know, the solar wind has strong

turbulence, which makes the IMF strongly turbulent also. We would like to

know about characteristics of the IMF because SEPs, which are mostly charged

particles, will follow the IMF.

2.1.3 Paradox of Dropouts

In the year 2000, there was a report about particles from impulsive solar

flares detected by the Advanced Composition Explorer (ACE) spacecraft (Mazur

et al. 2000), which was launched on August 25th, 1997 by NASA. This report

from Mazur et al. showed that near the Earth, the group of SEPs at low energy

exhibits dropouts. Dropouts are a phenomenon where the particles’ flux appears,
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Figure 2.3: The structure of solar wind, the interplanetary magnetic field and
the trajectory of high energy particles along the interplanetary magnetic field.
(Picture credit: Chuychai 2005)

disappears and reappears again. That means the flux of low-energy SEPs is highly

irregular and has little diffusion in some areas (Fig. 2.4).

However, in the year 2001, there was another report about SEP propaga-

tion (McKibben et al. 2001). This paper used data from two spacecraft, Ulysses,

launched by NASA on October 6th, 1990, and IMP-8, launched by NASA on

October 26th, 1973, which were located at opposite sides of the Sun and different

solar latitudes at the time of the observations (Fig. 2.5). The data show that

characteristics of flux of SEPs versus time detected by both spacecraft looks the
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Figure 2.4: Data of two impulsive solar flares occurring on January 9th − 10th,
1999 as detected by the ULEIS instrument on the ACE spacecraft. (a) Scatter
plot of energy of H-Fe ions in MeV per nucleon versus arrival time at 1 AU. (b)
H-Fe counts versus time in ∼ 14 minute bins. The vertical lines show dropout
features. (c) Interplanetary magnetic field angle in the geocentric solar ecliptic
(GSE) x-y plane. (d) Interplanetary magnetic field angle normal to the GSE x-y
plane. We see that dropouts do not correspond to IMF discontinuities. (Picture
credit: Mazur et al. 2000)

same. That means the propagation of SEPs is smooth and highly diffusive (Fig.

2.6).

The two reports appear contradictory. The report from McKibben et

al. (2001) implies such rapid diffusion of the magnetic field lines that dropout

would not exist, whereas Giacalone et al. (2000) neglects diffusion altogether and

propose that the convection at the surface of the Sun lead to a field line random
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Figure 2.5: Locations of Ulysses during Day 250, 2000 to Day 17, 2001 compared
with the Sun, Earth, and equatorial plane. (Picture credit: McKibben et al.
2001)

Figure 2.6: Plot between the flux of ∼ 30 − 70 MeV of solar energetic protons
versus time (six hour averages) during Day 250, 2000 to Day 17, 2001. The black
line traces data from the Ulysses spacecraft and the light line traces data from
the IMP-8 spacecraft. (Picture credit: McKibben et al. 2001)
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walk that is consistent with dropouts. Therefore, we cannot use the perpendicular

transport, which is the transport of the energetic particles perpendicular to the

mean magnetic field, of a diffusive nature to explain both observations.

However, in the year 2003, there was work that showed that if we use

the two-component model of magnetic fluctuations (to be explained in detail in

§2.2), we can explain the paradox of dropouts of the magnetic field lines’ flux

(Ruffolo, Matthaeus and Chuychai 2003). By using the two-component magnetic

fluctuation model, we can consider that the SEPs are trapped in some regions,

which may be called the “magnetic islands”, for a while before diffusing to all

space (Fig. 2.7).

Ruffolo et al. (2003) propose that dropouts occur from SEPs trapped in

topological structures which developed in the solar wind, not at the surface of

the Sun. Thus, SEPs can rapidly diffuse after escaping from topological traps,

in agreement with McKibben et al. (2001). For another class of solar events,

e.g., gradual flares or CMEs, SEPs are injected from a much wider region on the

surface of the Sun than the magnetic islands, so the dropout phenomena cannot

occur, in agreement with Mazur et al. (2000) and Giacalone et al. (2000).

2.2 Model of the Magnetic Turbulence

2.2.1 Turbulence in Nature

Turbulence is a type of fluid flow that is unsteady, irregular, seemingly

random and chaotic, and surely the motion of every eddy or droplet is unpre-

dictable (Pope 2000). We can see turbulent flows in everyday life, such as smoke

from a car’s exhaust pipe, clouds on the sky, or milk stirred into coffee. These

are some characteristics of turbulent flows (Tennekes and Lumley 1994):
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Figure 2.7: Illustration of interplanetary magnetic field lines populated with solar
energetic particles from a localized source region near the Sun, as expected for an
impulsive solar flare. At the radius of Earth orbit, some magnetic field lines are
trapped in some regions of the “core” while other magnetic field lines are spread
out widely in the “halo” region. (Picture credit: Ruffolo et al. 2003)

• Irregularity or randomness. Irregularity implies that we can determine

turbulent motions only by statistical methods.

• Diffusivity. Diffusivity is another important feature of turbulent flows.

If a flow pattern looks random but does not exhibit spreading of velocity

fluctuations through the surrounding fluid, it is surely not turbulent.

• Large Reynolds numbers. The dimensionless Reynolds number of a flow
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is defined as

Re =
UL
ν

, (2.1)

where

Re is the Reynolds number,

U is the characteristic velocity of the flow,

L is a length scale of the flow, and

ν is the kinematic viscosity of the fluid.

Normally, a laminar flow, which is steady, will become a turbulent flow

when its Reynolds number increases more than a critical value, typically of

order 103. For the solar wind, the Reynolds number is 1012. Thus, the solar

wind is strongly turbulent.

• Three-dimensional vorticity fluctuations. Turbulence is characterized

by high levels of fluctuating vorticity, which may be called “eddies.” How-

ever, the random vorticity fluctuations could not maintain themselves if the

velocity fluctuations were two dimensional. Thus, the turbulence must have

three-dimensional vorticity fluctuations.

• Dissipation. Turbulent flows are always dissipative. Turbulence is com-

posed of eddies of different sizes. Normally the large eddies are unstable

and break up. They will transfer their energy to smaller eddies. These

smaller eddies are also unstable, break up, and transfer energy to even

smaller eddies. This is called an energy cascade. The energy cascade will

continue until the Reynolds number of an eddy is small enough to make

the eddy motion stable, and the viscosity dissipates the kinetic energy most

effectively. Because of energy dissipation, we have to put energy into the

turbulent system all the time to maintain the turbulence.
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2.2.2 Turbulence in the Interplanetary Magnetic Field

In this work, the model of the magnetic field is

�B = B0ẑ +�b(x, y, z), (2.2)

where

�B is the total magnetic field,

B0ẑ is the mean magnetic field, and

�b(x, y, z) is the fluctuation of the magnetic field.

The direction of the magnetic fluctuation is always perpendicular to the

mean field, so �b ⊥ ẑ. Note that the z direction is the direction along the mean

magnetic field and that x and y are the directions perpendicular to the mean

magnetic field.

We can separate the fluctuation of the magnetic field into two parts. One

part depends on only z, called “slab” fluctuations or slab turbulence. The other

part depends on x and y, called “2D” fluctuations or 2D turbulence. This idea was

first introduced by Matthaeus, Goldstein, and Roberts (1990), motivated by the

observation that solar wind fluctuations are concentrated at nearly parallel and

nearly perpendicular wave numbers. The model has provided a useful description

of solar wind turbulence and particle transport (Bieber et al. 1994, 2004).

Now, the fluctuation of the magnetic field becomes

�b(x, y, z) = �bslab(z) +�b2D(x, y), (2.3)

so

�B = B0ẑ +�bslab(z) +�b2D(x, y). (2.4)

For slab turbulence, from the definition, �bslab will have a constant same

magnitude and direction in x-y plane in each z. Furthermore, if we trace the
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Figure 2.8: Trace of five magnetic field lines in pure slab field with varied initial
positions. Because �bslab depends on only z, all magnetic field lines undergo the
same random walk in x(z) and y(z).

magnetic field lines in pure slab field, all of magnetic field lines will look the same

with each other by not depending on the initial position (Fig. 2.8).

Considering the 2D turbulence, from Maxwell’s equation we know that

�∇ · �B = 0. (2.5)

By putting equation (2.4) in equation (2.5), we will get that

�∇ · B0ẑ + �∇ ·�bslab(z) + �∇ ·�b2D(x, y) = 0. (2.6)

Because B0ẑ does not depend on position and �bslab(z) depends on z but has only
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x and y components, that means

�∇ · B0ẑ = 0, (2.7)

and

�∇ ·�bslab(z) =
∂bslab

x

∂x
+

∂bslab
y

∂y
= 0. (2.8)

Therefore, equation (2.6) will reduce to

�∇ ·�b2D(x, y) = 0. (2.9)

If we assign a(x, y)ẑ as the vector potential for the 2D component,

�b2D(x, y) = �∇× [a(x, y)ẑ] (2.10)

automatically satisfies eq. (2.9). We call a(x, y) the potential function (Fig. 2.9).

If we plot contours of constant a(x, y), the magnetic field lines must follow those

contours (Fig. 2.10).

The model of slab+2D turbulence can explain the dropouts of particles

from impulsive solar flares in terms of filamentary magnetic connection to the

particle source regions as we discussed in a previous section (Ruffolo, Matthaeus

and Chuychai 2003). First, we have to define the areas near relative maxima

or minima of a(x, y) as O-points and areas near saddle points of a(x, y) as X-

points. Ruffolo, Matthaeus and Chuychai (2003) show that, out to Earth orbit,

the magnetic field lines will be trapped at the regions near O-points while the

magnetic field lines near X-points can spread out through space (see also Fig.

2.7). By using the idea that SEPs normally follow the magnetic field lines, we

can explain the dropout observations. When a spacecraft passes a region near an

O-point, it will detect a high intensity of particles, but when it passes a region
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Figure 2.9: Contour plot of the potential function a(x, y). Light areas are the
local maxima and dark areas are the local minima.

near an X-point, it will detect a low intensity of particles. On the other hand,

far beyond Earth orbit, all of the magnetic field lines can spread all over space.

Then, we will not be able to detect dropouts there.

2.2.3 Diffusion Coefficient

The first calculation of the diffusion coefficient of the magnetic field

line random walk in slab+2D turbulence was presented by Matthaeus et al.
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Figure 2.10: Trace of a magnetic field line in pure 2D turbulence. This trace uses
the potential function shown in Fig. 2.9. If we project the magnetic field line into
x-y plane, it follows a contour of constant a(x, y).

(1995). They showed that the total diffusion coefficient (D⊥), defined as D⊥ =

〈(Δx)2〉/2Δz, is not simply the sum of the diffusion coefficients of the slab compo-

nent (Dslab) and the 2D component (D2D). By comparing with hydrodynamics,

we can expect the diffusion coefficient of the field line random walk in mag-

netic turbulence to be D⊥ ≈ λ̃δb/B0, where λ̃ is the appropriate length scale

(Matthaeus et al. 1995; Ruffolo et al. 2004).

We start with the definition of a magnetic field line. A magnetic field line

is tangent everywhere to the magnetic field. Thus,

d�l × �B = 0, (2.11)
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where d�l is an arc length, d�l = îdx+ĵdy+k̂dz. From equation (2.11), the equation

of a magnetic line should be (Ruffolo, Matthaeus and Chuychai 2004)

dx

Bx
=

dy

By
=

dz

Bz
. (2.12)

In our work, the model of magnetic field is �B = B0ẑ + bxx̂ + by ŷ, the equation

(2.12) becomes

dx

bx
=

dy

by
=

dz

B0
. (2.13)

We can use equation (2.13) to calculate the perpendicular displacements, Δx and

Δy, over a distance Δz along the mean magnetic field B0 (Fig. 2.11):

Δx ≡ x(Δz) − x(0) =
1

B0

∫ Δz

0

bx[x(z′), y(z′), z′]dz′, (2.14)

Δy ≡ y(Δz) − y(0) =
1

B0

∫ Δz

0

by[x(z′), y(z′), z′]dz′. (2.15)

Then, the ensemble average of (Δx)2 is given by

〈(Δx)2〉 =
1

B2
0

∫ Δz

0

∫ Δz

0

〈bx[x(z′), y(z′), z′]bx[x(z′′), y(z′′), z′′]〉dz′dz′′

=
1

B2
0

∫ Δz

0

∫ Δz

0

〈bx(x
′, y′, z′)bx(x

′′, y′′, z′′)〉dz′dz′′, (2.16)

where we use the notation x′ for x(z′), etc., and for (Δy)2 this is

〈(Δy)2〉 =
1

B2
0

∫ Δz

0

∫ Δz

0

〈by(x
′, y′, z′)by(x

′′, y′′, z′′)〉dz′dz′′. (2.17)

If we define Δx′ ≡ x′′−x′, Δy′ ≡ y′′−y′ and Δz′ ≡ z′′−z′ (Fig. 2.12), and assume

the magnetic turbulence is statistically homogeneous, we can write equations

(2.16) and (2.17) as

〈(Δx)2〉 =
1

B2
0

∫ Δz

0

∫ Δz−z′

−z′
〈bx(0, 0, 0)bx(Δx′, Δy′, Δz′)〉dΔz′dz′,

(2.18)

〈(Δy)2〉 =
1

B2
0

∫ Δz

0

∫ Δz−z′

−z′
〈by(0, 0, 0)by(Δx′, Δy′, Δz′)〉dΔz′dz′.

(2.19)
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Figure 2.11: Illustration of the magnetic field line random walk perpendicular to
the mean field (Δx), displacement between nearby field lines (X ≡ x2 − x1), and
their separation (ΔX ≡ X − X0). (Picture credit: Ruffolo et al. 2004)

Figure 2.12: Schematic of two random field lines and definitions of various quan-
tities. (Picture credit: Ruffolo et al. 2004)
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In general, for a homogeneous turbulent field, we can define the perpendicular

diffusion coefficient of the magnetic field lines as (Matthaeus et al. 1995)

D⊥ =
〈(Δ�x⊥)2〉

4Δz
, (2.20)

where Δ�x⊥ is the perpendicular displacement. Assuming the turbulence is axi-

symmetric, that is 〈(Δx)2〉 = 〈(Δy)2〉, equation (2.20) becomes

D⊥ =
〈(Δx)2〉

2Δz
. (2.21)

If we substitute equation (2.18) into equation (2.21), we will get the diffusion

coefficient of a magnetic field line.

However, the integrand in equation (2.18) is in Lagrangian form, which

is in an ensemble average over representations of the magnetic turbulence, which

the positions themselves depend on the representation. We can use Corrsin’s

hypothesis (Corrsin 1959) to separate the statistics of the magnetic fluctuations

out of the probability. Thus, equation (2.18) becomes (Ruffolo et al. 2004)

〈bx(0, 0, 0)bx(Δx′(Δz′), Δy′(Δz′), Δz′)〉

=

∫ ∞

−∞

∫ ∞

−∞
Rxx(Δx′, Δy′, Δz′)P (Δx′|Δz′)P (Δy′|Δz′)dΔx′dΔy′,

(2.22)

where Rxx(Δx′, Δy′, Δz′) = 〈bx(0, 0, 0)bx(Δx′, Δy′, Δz′)〉 is the correlation func-

tion in standard (Eulerian) form, and P (Δx′|Δz′) and P (Δy′|Δz′) are probability

functions. The Fourier transform of that correlation function is the power spec-

trum,

Pij(�k) =
1

(
√

2π)3

∫ ∞

−∞
Rij(�r)e

i�k·�rd�r. (2.23)

This hypothesis works when the two positions are displaced by more than a

coherence length in the parallel or perpendicular direction. Then, we assume
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that the distributions of probabilities P (Δx′|Δz′) and P (Δy′|Δz′) are Gaussian

distributions,

P (Δx′|Δz′) =
1√
2πσ2

x

exp

[
−(Δx′)2

2σ2
x

]
,

P (Δy′|Δz′) =
1√
2πσ2

y

exp

[
−(Δy′)2

2σ2
y

]
. (2.24)

Finally, we assume the variances σ2
x = 〈(Δx)2〉 and σ2

y = 〈(Δy)2〉 are diffusive

and statistically axisymmetric, that is

〈(Δx)2〉 = 〈(Δy)2〉 = 2D⊥|Δz′|. (2.25)

Because slab and 2D fluctuations are orthogonal under the ensemble av-

erage, we can calculate diffusion coefficients in both slab and 2D terms. For the

slab term, for the limit Δz → ∞, the diffusion coefficient is

〈(Δx)2〉slab

2Δz
→ 1√

2πB2
0

∫ ∞

−∞
πδ(kz)P

slab
xx (kz)dkz

=

√
π

2

Pxx(0)

B2
0

≡ Dslab. (2.26)

For kz � k0z, where k0z is a wave number related to the outer scale (	0), P slab
xx

is roughly constant. The outer scale will be explained in detail in § 2.3. We can

write the diffusion coefficient of the slab field as

Dslab
⊥ =

〈bslab
x 〉
B2

0

	c, (2.27)

where 	c is the slab correlation length defined as

	c =

∫ ∞
0

Rslab
xx (z)dz

Rslab
xx (z = 0)

. (2.28)

For the 2D term, we have to distinguish the spectrum and random phases

of 2D fluctuations (Matthaeus et al. 1995). First, we imagine a box of infinite
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extent in the z direction but finite in the x and y directions. Then, use the Fourier

transform of the integrand of equation (2.18),

〈�b2D(�x⊥(z)) ·�b2D(0)〉 =
∑
�k⊥

〈|�b2D(�k⊥)|2ei�k⊥·�x⊥(z)〉. (2.29)

The amplitude |�b2D(�k⊥)|2, with �k⊥ satisfying �k⊥ · ẑ = 0, would become the power

spectrum after ensemble averaging. By using Corrsin’s hypothesis, we can sepa-

rate equation (2.29) to

〈|�b2D(�k⊥)|2ei�k⊥·�x⊥(z)〉 = 〈|�b2D(�k⊥)|2〉〈ei�k⊥·�x⊥(z)〉. (2.30)

Considering the term 〈ei�k⊥·�x⊥(z)〉, if we assume that x(z) and y(z) are identically

Gaussian distributions and are uncorrelated, by expansion of the exponential and

the definition of the diffusion coefficient, this term becomes

〈ei�k⊥·�x⊥(z)〉 = e−k2
⊥D⊥z. (2.31)

By substituting equations (2.29), (2.30) and (2.31) into equation (2.18), the dif-

fusion coefficient will be

〈(Δx)2〉2D

2Δz
=

1

2

∑
�k⊥

〈|�b2D(�k⊥)|2〉
B2

0

∫ ∞

0

e−k2
⊥D⊥zdz

=

⎛
⎝1

2

∑
�k⊥

〈|�b2D(�k⊥)|2〉
2k2

⊥B2
0

⎞
⎠ 1

D⊥
=

D2
2D

D⊥
,

(2.32)

where

D2D =

⎛
⎝∑

�k⊥

〈|�b2D(�k⊥)|2〉
2k2

⊥B2
0

⎞
⎠

1
2

. (2.33)

By comparing with hydrodynamics and equation (2.27), we can write

D2D ≡ 〈b2D〉
B0

λ̃, (2.34)
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where λ̃ is the so-called “ultrascale,” defined by the weighting of the spectrum

we used. Physically, λ̃ may be related to the largest area or “island” over which

the magnetic field lines are typically trapped. Mathematically, we find

λ̃ ≡
√

〈a2〉
〈b2

2D〉
. (2.35)

In summary, D⊥ is a combination of diffusion coefficients in the pure slab

case and pure 2D case,

〈(Δx)2〉
2Δz

=
〈(Δx)2〉slab

2Δz
+

〈(Δx)2〉2D

2Δz
, (2.36)

that is

D⊥ = Dslab +
D2

2D

D⊥
, (2.37)

with the general solution

D⊥ =
Dslab +

√
D2

slab + 4D2
2D

2
. (2.38)

2.3 Simulations of Turbulent Magnetic Fields

2.3.1 Energy Cascade and Kolmogorov Spectrum

From the previous section, we know that one of the properties of turbu-

lence is an energy cascade. The idea of the energy cascade was first introduced by

Richardson (1922). He stated that turbulence contains eddies in different sizes.

The large eddies are not stable. They will break up and transfer their energy to

smaller eddies (Fig. 2.13). The rate of energy transfer per unit mass ε depends on

three variables: the eddy size 	, the characteristic velocity v(	) and the timescale

τ(	) ≡ 	/v(	). The energy transfer rate per unit mass is ε = v2/τ = v3/	.

The theory about the energy cascade has been further developed by Kol-

mogorov (1941). He stated three hypotheses motivated by the idea that if 	
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Figure 2.13: Illustration of the Richardson cascade. (Picture credit:
http://www.ipp.mpg.de/∼fsj/PAPERS 1/tutorial 1.pdf)

decreases, v and τ will decrease, too. His first hypothesis is the hypothesis of

local isotropy: “at sufficiently high Reynolds number, the small-scale turbulent

motions (	 � 	0) are statistically isotropic.” This hypothesis introduces the

length scale 	0 which is the length scale of the largest eddies. This length scale

and its related velocity v0 are called “outer scales.” The range 	 > 	0 is called

the “energy-containing range.”

Kolmogorov’s second hypothesis is the first similarity hypothesis: “In

every turbulent flow at sufficiently high Reynolds number, the statistics of the

small-scale motions (	 < 	0) have a universal form that is uniquely determined

by ν and ε,” where ε is the dissipation rate (or the energy transfer rate per unit
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mass in Richardson’s theory) and ν is the viscosity. With this hypothesis, by

dimensional analysis, the smallest eddy length, velocity and timescale can be

written only as η ≡ (ν3ε)1/4, v ≡ (νε)1/4 and τ ≡ (ν/ε)1/2, respectively. These

smallest scales are called “inner scales.” The range 	 < η is called the dissipation

range.

Kolmogorov’s final hypothesis is the second similarity hypothesis: “in

every turbulent flow at sufficiently high Reynolds number, the statistics of the

motions of scale 	 in the range 	0  	  η have a universal form that is uniquely

determined by ε, independent of ν.” The range 	0  	  η is called the “inertial

range.”

Consider the spectrum in the inertial range, written as

ū2 =

∫ ∞

0

S(k)dk, (2.39)

where S(k) is the spectrum and k is wave number. Because of Kolmogorov’s

second similarity hypothesis, by using dimensional analysis, we will get

S(k) ∝ ε2/3k−5/3. (2.40)

This relation is called “Kolmogorov’s law,” and a spectrum that obeys this theory

is called a “Kolmogorov spectrum.” All turbulent phenomena in three dimensions

have a Kolmogorov spectrum (Fig. 2.14).

2.3.2 Generating Representations of Turbulent Magnetic
Fields

Because the turbulent magnetic field is a random function, we cannot

specify the function of the magnetic field directly in real space. However, the spec-

trum of the magnetic turbulence is a Kolmogorov spectrum, so we can generate
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Figure 2.14: The Kolmogorov spectrum. (Picture credit: Chuychai 2005)

the power spectrum of the magnetic field in Fourier space. The omnidirectional

power spectrum depends on k−5/3 in the inertial range.

For slab turbulence, we generate the power spectrum for the simulations

as (Ruffolo et al. 2004)

P slab
xx (kz) = P slab

yy (kz) =
Cslab

[1 + (kz	z)2]5/6
, (2.41)

where Cslab is a normalization constant and 	z is the parallel coherence length

related to correlation length in equation (2.22). Because the power spectrum is

the Fourier transform of the magnetic correlation function Rij = 〈bi(0)bj(�r)〉, and

Rslab
xx (z = 0) = 〈b2〉, the slab fluctuations in kz are

bslab
x (kz) =

√
P slab

xx (kz)e
iφx(kz), (2.42)

bslab
y (kz) =

√
P slab

yy (kz)e
iφy(kz), (2.43)
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where i is
√−1 and φ is a random phase for each kz varying from 0 → 2π. Finally,

we use the inverse fast Fourier transformation (Press et al. 1992) to transform

the magnetic field to real space:

bslab
x (z) =

1√
2π

∫ ∞

−∞
bslab
x (kz)e

−ikzzdkz, (2.44)

bslab
y (z) =

1√
2π

∫ ∞

−∞
bslab
y (kz)e

−ikzzdkz, (2.45)

�bslab(z) = bslab
x (z)x̂ + bslab

y (z)ŷ. (2.46)

For 2D fluctuations, we can follow steps as for slab fluctuations. However,

instead of using the power spectrum of the magnetic field directly, we will generate

the power spectrum of the potential function a(x, y). The power spectrum in the

simulations is

A(k⊥) =
C2D

[1 + (k⊥	⊥)2]7/3
, (2.47)

where A(k⊥) is the power spectrum of a(x, y), C2D is a normalization constant,

k⊥ =
√

k2
x + k2

y and 	⊥ is the perpendicular coherence length related to λ̃ in

equation (2.35). The potential function in Fourier space is

a(kx, ky) =
√

A(k⊥)eiφ(kx,ky). (2.48)

From �b2D(x, y) = �∇× a(x, y)ẑ, in Fourier space, the equation should be

�b2D(kx, ky) = −i�k × a(kx, ky)ẑ. (2.49)

This ensures that �∇ ·�b2D(x, y) = 0. Finally, use the inverse Fourier transform of

�b2D(kxky) to real space

b2D
x (x, y) =

1

2π

∫ ∞

−∞

∫ ∞

−∞
b2D
x (kx, ky)e

−i(�r·�k)dkxdky, (2.50)

b2D
y (x, y) =

1

2π

∫ ∞

−∞

∫ ∞

−∞
b2D
y (kx, ky)e

−i(�r·�k)dkxdky. (2.51)
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In this work, for tracing the magnetic field lines numerically, we use a com-

puter program developed by Mr. Peera Pongkitiwanichkul (Pongkitiwanichkul

2005).



CHAPTER III

DATA ANALYSIS METHODS

In this chapter, I would like to present a few ways to analyse our data.

These are:

• Box-Counting Dimension. This method is used to find the dimension

of an object. In the case of the group of magnetic field lines in the slab+2D

field, we may use the dimension of the group of magnetic field lines to

consider the length in the z direction over which the group of the magnetic

field lines breaks apart or diffuses.

• Anisotropy. This method is developed from the box-counting method

aiming to measure the edge length of the group of magnetic field lines.

We consider that when the group of magnetic field lines expands or breaks

apart, its edge length will increase.

• Dual Lattice. This method is also developed from the box-counting

method. It uses the relationship of the number of magnetic field lines be-

tween any two neighboring boxes. The Dual Lattice Method also aims to

measure the edge length of the group of magnetic field lines.

• Principal Components. This method is used to find the length and ratio

of the principal components of the group of magnetic field lines. We can use

the ratio of the principal components to find the length over the z direction

which the group of magnetic field lines is sheared by the magnetic potential

or diffuses.
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3.1 Box-Counting Dimension

3.1.1 Method

The first method used to analyse data is box counting, a method for

determining a fractal dimension. First, we have to know the definition of “di-

mension.” Basically, we know that a line has one dimension because we need only

one independent variable to describe a neighborhood of any point. Therefore, a

surface will have two dimensions and a solid cube will have three dimensions.

Consider that, if we have cubes of side length ε < 1, we need 1/ε cubes to cover

a unit line, 1/ε2 to cover a unit surface, and 1/ε3 to cover a unit cube (Fig. 3.1).

By the way, in the case of the unit surface, we can also use squares of side length

ε and in the case of the unit line, we can also use squares of side length ε or

segments of length ε, the number of squares or segment will be the same as using

the cubes of side length ε. However, we use the cubes because they can be used

in the whole unit line, unit surface, and unit cube cases. If N is the number of

ε-size cubes which are required to cover the geometric shapes we want and D

is dimension of those geometric shapes, it obvious to show that (Simanca and

Sutherland 2002)

D = − lim
ε→0

log(N)

log(ε)
. (3.1)

This definition can also be used for an object with fractional (non-integral) di-

mension, i.e., a fractal.

For tracing magnetic field lines, we set the initial locations inside a specific

circle in the x-y plane. Then, we trace the magnetic field lines along the z

direction and collect the (x, y) positions of the magnetic field lines at each Δz.
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Figure 3.1: Covering a line, a surface, and a solid cube with cubes of side length
ε. (Picture credit: http://www.math.sunysb.edu/∼scatt/Book331/
Fractal Dimension.html).

However, because the limit of the memory of the computer, we can only trace a

finite number N of magnetic field lines. The object for which we want to measure

the fractal dimension in this work is the set of the locations of magnetic field lines

at each Δz.

By looking at the scatter plot of the group of magnetic field lines traced

in a slab+2D field (Fig. 3.2), we can divide it into three regions, at z = 0, over

low z, and over high z. At z = 0 or at initial positions, we start all magnetic field

lines at random locations in a circle. Over low z, by the effect of 2D turbulence,

the group of magnetic field lines breaks apart into small groups, some of which

are trapped in specific magnetic islands for a while. In this step, the group of

magnetic field lines looks very much like a fractal. Finally, over high z, the

group of magnetic field lines can overcome the suppression and diffuse all over

the x-y space. This because the magnetic field lines trapped in a magnetic island

move rapidly and decorrelate the radial component of the perturbation at low

z, suppressing the process of diffusive escape, but for higher z the effect of slab
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turbulence makes the magnetic field lines escape from the magnetic island and

diffuse (Chuychai et al. 2005). When we determine the box-counting dimension

for the group of magnetic field lines in the slab+2D field, we expect to obtain

different values of the dimension in these two regions.

3.1.2 Process

• For a given value of Δz, define boxes of size ε over the entire simulation

region (in x and y). We start with setting a square of size G which can

cover all the data points. Then, define the largest length ε as G/3, rounding

log(ε) to the nearest 0.05.

• Count the number of boxes (N) which have magnetic field lines inside.

• Reduce the size of boxes. In this work, we reduce the log of the box size

log(ε) by 0.05. Then, we count the number of boxes which have magnetic

field lines inside again.

• Repeat the previous step until ε is less than the limit value. In this work,

we set the limit value to be 0.01 λ⊥.

• Plot between log(N) and log(ε) in each step. When the plot is linear, the

slope of this plot is minus one times the box-counting dimension (−D).

3.2 Anisotropy

3.2.1 Method

As we know from Chapter II, there are different spreading and diffusion

coefficients of magnetic field lines affected by pure slab turbulence and slab+2D
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Figure 3.2: Scatter plot of magnetic field lines in slab+2D turbulent field, for
varying distance Δz along the mean field. The energy ratio between the slab and
2D components in this simulation is 20:80 and all initial positions of magnetic
field lines are at z = 0.
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Figure 3.3: Initial positions of magnetic field lines in a pure slab turbulent field.

turbulence. In this work, for a pure slab turbulent field, we generate magnetic

field lines by setting initial positions in a circle in the x-y plane with random

z in order to visualize the distribution of field lines (Fig. 3.3). However, in our

“scatter plots,” we will plot magnetic field lines after the same Δz for comparison,

instead of z.

For a pure slab turbulent field, from a scatter plot of magnetic field lines

(Fig. 3.4), we can easily see that the group of magnetic field lines can spread

throughout space without sharp boundaries and does not break apart into small

groups at any Δz (unlike Figure 3.2). That means there are no “droupouts” as

we discussed in the previous chapter for a pure slab field.
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Figure 3.4: Scatter plot of magnetic field lines in pure slab turbulence. The initial
positions of these magnetic field lines are in a specific circle in the x-y plane but
at random z locations.
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On the other hand, the distribution of magnetic field lines starting within

a certain circle and then subject to slab+2D turbulence can break apart into small

groups. Some field lines are trapped in magnetic islands for a while. There are

also some sharp boundaries in the distribution in the x-y plane over a range of

Δz (Fig. 3.2). This is because of the 2D field can suppress the magnetic field line

motion at some locations in the x-y plane (Chuychai et al. 2005). We call these

locations “Local Trapping Boundaries” or LTBs (Meechai 2003).

Suppose that we are at the edge of a group of magnetic field lines. Then

we look over some length and measure the direction vectors of those magnetic

field lines. Because we are at the edge of the group of magnetic field lines, we

will see the magnetic field lines located a toward one direction in x-y plane more

than the other directions. Therefore, the summation of direction vectors from

our location to each field line will point to the group of magnetic field lines.

However, if we are inside or outside a group of magnetic field lines by more than

the length we set and measure the direction vectors of magnetic field lines in the

same way, the summation of direction vectors should be close to zero. Our idea

is that if we are outside the group of magnetic field lines, we will not see many

magnetic field lines, and if we are inside the group of magnetic field lines, we

will see magnetic field lines in all directions in about the same number (Fig. 3.5).

We call this phenomenon “anisotropy.” In this work, we consider that if the sum

of direction vectors in a box is greater than 5λ⊥, that box is at the edge of the

group of magnetic field lines. The anisotropy method is analogous to measuring

the anisotropy of SEPs by using a spacecraft. If the spacecraft is outside a group

of SEPs, the instrument on the spacecraft will not detect any particles. If the

spacecraft is at the edge of a group of SEPs, the instrument on the spacecraft
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summation of direction vectors

1

2

Figure 3.5: Illustration of the summation of direction vectors as a measure of
anisotropy. Area 1 is at the edge of a group of magnetic field lines while area
2 is inside a group of magnetic field lines. Direction vectors to point within the
dashed circle are summed. We can see that the summation of direction vectors
in area 1 is larger than the summation of direction vectors in area 2. The energy
ratio between the slab and 2D component in this simulations is 20:80. The initial
positions of magnetic field lines are located in a circle with radius equal 0.5λ⊥ in
x-y plane at z = 0.

will detect some particles in one direction more than the other directions. If the

spacecraft is inside a group of SEPs, the instrument on the spacecraft will detect

many particles with a similar intensity in all directions.

Now, let us look back to our turbulent fields and apply our idea about

anisotropy to them. As we discussed before, the group of magnetic field lines in

a pure slab field does not break apart and does not exhibit boundaries within the

group of magnetic field lines, unlike the slab+2D field. That means that if we
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set boxes over all space and measure the summation of direction vectors, then we

can set a value to decide whether the amplitude of the summation of direction

vectors in each box is greater than this value and whether this box is at the edge

of a group of magnetic field lines. By plotting the number of boxes that are at the

edge of a group of magnetic field lines, or is so-called the “anisotropy number,”

vs. Δz, we may see different behaviors of groups of magnetic field lines between

pure slab and slab+2D fields and as a function of Δz.

3.2.2 Process

• Set a grids and boxes representing areas where we will calculate direction

vectors. In this work, the box size is set to be equal to λ⊥.

• For a given Δz, set the length over which to sum direction vectors from the

center of the box to each magnetic field line within that length.

• For each box, sum those direction vectors.

• If the summation of direction vectors is greater than value we set, it means

this box is at the boundary of a group of magnetic field lines. In this work,

we decide that if a box has a summation of direction vectors greater than

5 times λ⊥, that box is at the boundary of a group of magnetic field lines.

• Count the number of boxes which are determined to be at a boundary for

each Δz and plot the number of boxes vs. Δz.
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3.3 Dual Lattice

3.3.1 Method

Like the Anisotropy Method, the Dual Lattice Method aims to mea-

sure the diffusion and dispersion of a group of magnetic field lines in pure slab

and slab+2D turbulence. However, there is difference between the Anisotropy

Method and Dual Lattice Method. The Anisotropy Method uses the summation

of direction vectors from the center of each box to magnetic field lines in that

box to decide which box is at the edge of the group of magnetic field lines. The

Dual Lattice Method uses a ratio of the number of magnetic field lines in each

box with the neighboring boxes to decide which boxes are at the edge of a group

of magnetic field lines.

At the edge of a group of magnetic field lines, if we count the number

of magnetic field lines in the boxes, we will see that the number of magnetic

field lines in each box will change rapidly along a row. That means the ratio

of the number of magnetic field lines between a box at the edge of the group of

magnetic field lines and the neighboring box will much higher or lower than one.

On the other hand, if we are inside or outside the group of magnetic field lines,

the number of magnetic field lines will be rather constant. Therefore, the ratio

of number of the magnetic field lines between boxes inside or outside the group

of magnetic field lines and their neighbors will be close to one. In the case that

some boxes and their neighboring boxes contain zero or very few magnetic field

lines, we can consider that this pair of boxes is isolated and can neglect the result

of their dual lattice.

For example, in Figure 3.6, the ratio of the number of magnetic field lines

in the left box and the central box is 2.64:1, while the ratio of the number of
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magnetic field lines in the central box and the right box is 1:0.02. We can decide

that the junction between the left box and the central box is inside a group of

magnetic field lines. (Actually, this junction may be inside or outside a group of

magnetic field lines, but the picture clearly shows that it is inside.) The junction

between the central box and the right box is considered to be at the edge of a

group of magnetic field lines.

Using this idea, we can consider the distribution of magnetic field lines,

if we set boxes over all space and find the ratio of the number of magnetic field

lines for every pair of neighboring boxes. Then, by plotting between the number

of boundaries between two boxes where the ratio of the number of magnetic field

lines between those two boxes is greater than an assigned value, or is so-called

the “dual lattice number,” at each Δz versus Δz, we can better understand the

behavior of pure slab fields and slab+2D fields (Fig. 3.6).

3.3.2 Process

• Set boxes over all (x, y) space. In this work, the box’s size is set to equal

to λ⊥.

• Count the number of magnetic field lines in each box.

• Compare the number of magnetic field lines in each box with those in the

neighboring boxes in both x and y directions. In this work, we set that if

the ratio of the number of magnetic field lines between the current box and

the neighboring box is greater than 6 (or less than 1/6), we will count this

boundary as being at the edge of a group of magnetic field lines.

• Plot between the number of boundaries determined to be at the edge of a

group of magnetic field lines versus Δz.



41

# of magnetic field lines in each box are   
                290:110:2 = 2.64:1:0.02

Figure 3.6: Illustration of the Dual Lattice Method. In this work, we define that
if the number of magnetic field lines in one box more than 6 times greater or
lesser than that in the neighboring box, we will decide that the junction between
these boxes is at the edge of a group of magnetic field lines and count it. The
junction between the central box and the right box is considered to be at the
edge of a group of magnetic field lines, while that between the left box and the
central box is not.
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3.4 Principal Components

3.4.1 Method

This method uses a different idea from the previous methods. By looking

at the scatter plot of magnetic field lines again, we will see another, different

aspect of the behavior of the group of magnetic field lines between pure slab,

pure 2D and slab+2D fields.

For a pure slab field with random initial positions of magnetic field lines,

the group of magnetic field lines will diffuse with the same rate in all directions

in the x-y plane. This will occur all over Δz.

For a pure 2D field, normally a magnetic field line will follow the equipo-

tential line of the potential function, a(x, y). A group of magnetic field lines will

also do so. However, because the group of magnetic field lines has two dimensions,

it is subject to shearing.

For a slab+2D field, at low Δz, the group of magnetic field lines is sheared

along the equipotential line of the potential function like in a pure 2D field. Then,

it will diffuse a bit perpendicular to the equipotential line and also break apart

at higher Δz. Finally, it will diffuse throughout space like in a pure slab field.

We can use the Principal Component Method to analyse data from the

simulations. The Principal Component Method uses the idea of finding axes

that characterize the distribution of the data. The new axes, which are called

“principal components,” are more related to the dispersion of the data than the

original axes. If data spread out with the same rate in every direction in the

x-y plane, like the group of magnetic field lines in a pure slab field with random

initial z positions, the ratio of elongation along principal component will be close

to one. On the other hand, if the data spread out in one direction more than
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Figure 3.7: Illustration of the principal components. The top figures show the
group of magnetic field lines in pure slab turbulence with a random initial position
in z. The principal components of this group of magnetic field lines in both
directions have similar lengths. The figures on the bottom show the group of
magnetic field lines in a slab+2D field. The principal component of this group of
magnetic field lines is longer in one direction than the other one. Furthermore, the
ratio of principal components of the group of magnetic field lines in the slab+2D
field at low z is greater than the ratio of principal components at higher z.

the other direction, like the group of magnetic field lines in a slab+2D field over

low Δz, the ratio of data between each principal component will be much higher

than one (Fig. 3.7).

In this work, for the Principal Component Method, we would like to
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consider the results of the ratio between the principal component and the length

of the longest principal component of the group of magnetic field lines along

the z direction to understand the behavior of the group of magnetic field lines.

Furthermore, we also consider those results for a varying energy ratio between

slab and 2D turbulence. However, we use the results from the diffusion of the

magnetic field lines with random initial positions in z in the pure slab field as the

control run.

3.4.2 Process

• Find mean values in each dimension (x and y).

• Calculate the Covariance Matrix, defined as

C =

(
cov(x, x) cov(x, y)
cov(y, x) cov(y, y)

)
,

where cov(x, y) is the covariance, which is defined as

cov(x, y) =

∑n
i=1(xi − x)(yi − y)

(n − 1)
,

and so on.

• Calculate eigenvalues and eigenvectors of the Covariance Matrix and use

these eigenvectors as new axes of the data.

• Measure the ratio of principal components of the data along each axis.

• Plot the ratio of principal component and the longest principal component

of the data at each Δz vs. Δz.



CHAPTER IV

RESULTS AND DISCUSSIONS

4.1 Box-Counting Dimension

We use the Box-Counting Method to find the fractal dimension of the

group of the magnetic field lines at each Δz. We expect a change in the fractal

dimension over all Δz. By using the changing fractal dimension data, we hope to

indicate over which regions of Δz the magnetic field lines have the dropout behav-

ior and over which regions the magnetic field lines diffuse throughout all space.

In this simulation we use the following parameters: the energy ratio between the

fluctuations and the mean field is 0.5, the energy ratio of the fluctuations be-

tween the slab turbulence and the 2D turbulence is 20:80, the radius of the initial

circle is 0.5λ⊥, the parallel length scale is 1.0λ⊥, and the perpendicular length

scale is 10.0. The results show that the fractal dimension values at each Δz are

similar (Figures 4.1 to 4.6). We can trace only a finite number of magnetic field

lines, as we discussed in Chapter III, and the results depend on that number of

the magnetic field lines. However, we have developed other methods, such as

the Anisotropy Method and the Dual Lattice Method, from the Box-Counting

Method to improve the data analysis.
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Figure 4.1: The number of boxes containing the magnetic field lines vs. the size
of the boxes at Δz = 0.
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Figure 4.2: The number of boxes containing the magnetic field lines vs. the size
of the boxes at Δz = 20.
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Figure 4.3: The number of boxes containing the magnetic field lines vs. the size
of the boxes at Δz = 40.

y = -1.6191x + 4.8282

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5

log ε

lo
g

 N

Figure 4.4: The number of boxes containing the magnetic field lines vs. the size
of the boxes at Δz = 60.
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Figure 4.5: The number of boxes containing the magnetic field lines vs. the size
of the boxes at Δz = 80.
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Figure 4.6: The number of boxes containing the magnetic field lines vs. the size
of the boxes at Δz = 99.
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4.2 Anisotropy

For the Anisotropy Method, we vary four parameters: the ratio between

the turbulence fluctuations and the mean field (b/B0), the radius of the initial

circle (ρ), the parallel scale length (λ‖), and the perpendicular scale length (λ⊥).

All of the results in this section (and some in subsequent sections) are displayed

in this pattern: the top panel shows the results from the group of magnetic field

lines in the pure slab field with random initial positions in z, the middle panel

shows the results from the group of magnetic field lines in a turbulent field where

the energy ratio between the slab and 2D components is 99:1 with initial positions

at z = 0 within a certain circle in the x-y plane, and the bottom panel shows the

results from the group of magnetic field lines in a turbulent field where the energy

ratio between the slab and 2D components is 20:80 with initial positions at z = 0

within a certain circle in the x-y plane. As a default value, we take the turbulent

fluctuation energy to be 0.5 of the mean field energy. By the way, in this work,

we vary this parameter to be 0.25, 0.5, 0.75, 1.00, and 2.00. We also change the

energy ratio between the slab turbulence and the 2D turbulence between three

values: the pure slab field with random initial positions of the magnetic field

lines in z, the turbulent field where the energy ratio between the slab and 2D

components is 99:1 with initial positions at z = 0 within a certain circle in the

x-y plane, and the turbulent field where the energy ratio between the slab and

2D components is 20:80 with initial positions at z = 0 within a certain circle in

the x-y plane.

For the pure slab field with random initial positions in z, when we increase

the fluctuation ratio to the mean field, the width of graph will become more

narrow and peak of the anisotropy number decreases (Figures 4.7 to 4.11). This
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is because increasing the fluctuations makes the field lines separate more quickly.

The quick separation rate causes the group of magnetic field lines to spread

throughout all space and the edge of the group of magnetic field lines reaches

the edge of the simulation box quickly. Thus, we will measure a lower anisotropy

number.

When the energy ratio between the slab turbulence and the 2D turbulence

is 20:80, the results show that when we increase the energy of fluctuations, the

peak of the anisotropy number will appear at lower z. This because the anisotropy

ends when the slab turbulence fuzzes out the distribution of the magnetic field

lines. Comparing with the idea of dropouts in SEPs from Ruffolo et al. (2003),

the length of Δz at which the anisotropy number is high is analogous with the

region between z1 = ρ2/(4Dsep) and z2 = d2/(16Dslab), where ρ is the radius of

the circle where the SEPs are injected, Dsep is the diffusion coefficient of the field

line separation, d is the diameter of the magnetic island, and Dslab is the diffusion

coefficient of the slab fluctuations. In the region between z1 and z2, the spacecraft

can observe the dropout phenomenon.

By comparing the graphs of the anisotropy number for an energy ratio

between the slab and 2D turbulence of 99:1 with 20:80, the results show that

reducing the slab fluctuations makes the anisotropy number rise and fall at a

shorter Δz. This because Dsep = 2D2
2D/D⊥ (Ruffolo et al. 2004). While D⊥ has

a similar value, D2
2D is much larger for the 20:80 ratio. Thus, we can infer that

reduced slab the magnetic field lines separate and fuzz out at a shorter Δz.
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Figure 4.7: Anisotropy number vs. Δz when the turbulence fluctuation to mean
field ratio is 0.25.
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Figure 4.8: Anisotropy number vs. Δz when the turbulence fluctuation to mean
field ratio is 0.50.
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Figure 4.9: Anisotropy number vs. Δz when the turbulence fluctuation to mean
field ratio is 0.75.
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Figure 4.10: Anisotropy number vs. Δz when the turbulence fluctuation to mean
field ratio is 1.00.
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Figure 4.11: Anisotropy number vs. Δz when the turbulence fluctuation to mean
field ratio is 2.00.
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For the size of the initial circle of magnetic field line locations in the x-y

plane, we use the radius of the initial circle (ρ) as 0.5, 1.0, 2.0, 4.0, 8.0, 16.0, and

32.0 in the units of λ⊥. The default value is ρ = 0.5λ⊥. We test the effect of

the initial circle size on the separation and the diffusion of the group of magnetic

field lines.

Note that the results for ρ = 32λ⊥ are different from the others (Fig.

4.18), because in this simulation we trace a finite number (10,000) of magnetic

field lines and we set the size of boxes to measure the direction vectors equal

to λ⊥, so for ρ = 32λ⊥ each box will contain only a few magnetic field lines on

average. Thus, the anisotropy number for this ρ value is much less than for the

other ρ values.

In the pure slab field with random initial positions in z, at Δz = 0, when

we increase ρ the anisotropy number increases, too. This because the larger initial

circle gives the longer length along the boundary of that circle. Then, at higher

Δz, the anisotropy number reduces similarly at every ρ because the turbulence

makes the magnetic field lines diffuse throughout space.

When the energy ratio between the slab turbulence and 2D turbulence

is 99:1, the graphs of anisotropy number for all radii of the initial circle have a

similar amplitude and duration (Figures 4.12 to 4.17). However, the peak of the

graph appears at lower Δz when we increase ρ. Because the group of magnetic

field lines with a larger initial circle has the longer edge length at Δz = 0, so the

anisotropy number is higher at Δz = 0, too. However, because of the same value

of parallel and perpendicular length scales, the rate of field line separation and

the duration of trapping is similar. Thus, the graphs of the anisotropy number

rise with a similar rate and have a similar width for all ρ.
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When the energy ratio between the slab turbulence and 2D turbulence

is 20:80, the peak of the graph of anisotropy number appears at lower Δz for

the higher initial circle size while the amplitude and width of the graph are

similar. The reason is the same as for the 99:1 ratio. However, comparing the

graph between both energy ratios, the graphs of anisotropy number for 20:80

ratio rise faster but have a smaller amplitude and shorter duration. This because

the increased 2D turbulence makes the group of magnetic field lines separate and

diffuse much more rapidly.



58

Figure 4.12: Anisotropy number vs. Δz when the radius of the initial circle is
0.5λ⊥.
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Figure 4.13: Anisotropy number vs. Δz when the radius of the initial circle is
1.0λ⊥.
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Figure 4.14: Anisotropy number vs. Δz when the radius of the initial circle is
2.0λ⊥.
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Figure 4.15: Anisotropy number vs. Δz when the radius of the initial circle is
4.0λ⊥.
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Figure 4.16: Anisotropy number vs. Δz when the radius of the initial circle is
8.0λ⊥.
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Figure 4.17: Anisotropy number vs. Δz when the radius of the initial circle is
16.0λ⊥.
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Figure 4.18: Anisotropy number vs. Δz when the radius of the initial circle is
32.0λ⊥.
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The next parameter we want to test is the parallel length scale (λ‖). As

a default we set this parameter to 1.00. In this work, we vary this parameter as

0.25, 0.50, 1.00, 2.00, 5.00, 10.00, and 20.00 in units of λ⊥. The λ‖ value is related

to the correlation length of the magnetic field (�c), which affects the separation

of the field lines directly or indirectly. In the pure slab turbulence with random

initial z values, when λ‖ increases, the peak of the anisotropy number appears at

lower Δz (Figures 4.19 to 4.25). In that case Dsep = 2Dslab, where Dslab ∝ λ‖.

Therefore, when λ‖ increases, Dsep increases, too. Thus any changes occur at

lower Δz. On the other hand, if we add the 2D turbulence and start tracing

the magnetic field lines at z = 0, Dsep becomes Dsep = 2D2
2D/D⊥ (Ruffolo et al.

2004). Here D⊥ depends on Dslab weakly for the case of 20% slab energy and

strongly for 99% slab energy. In the latter case, Dsep depends on 1/λ‖. Thus,

when we increase λ‖, the anisotropy number will rise more slowly. Note that at

high Δz for λ‖ = 5 to 20, the group of magnetic field lines reaches the edge of

the simulation box. This makes the anisotropy number become zero suddenly.
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Figure 4.19: Anisotropy number vs. Δz when the parallel length scale is 0.25λ⊥.
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Figure 4.20: Anisotropy number vs. Δz when the parallel length scale is 0.5λ⊥.
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Figure 4.21: Anisotropy number vs. Δz when the parallel length scale is 1.0λ⊥.
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Figure 4.22: Anisotropy number vs. Δz when the parallel length scale is 2.0λ⊥.
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Figure 4.23: Anisotropy number vs. Δz when the parallel length scale is 5.0λ⊥.
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Figure 4.24: Anisotropy number vs. Δz when the parallel length scale is 10.0λ⊥.
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Figure 4.25: Anisotropy number vs. Δz when the parallel length scale is 20.0λ⊥.
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The last parameter we use to measure the anisotropy is the perpendicular

length scale (λ⊥). As a default value, we set this parameter to 10.0. For the test,

we vary this parameter to be 2.0, 5.0, 10.0, 20.0, and 40.0. Because λ⊥ is related to

the “ultrascale” introduced in Chapter III and the size of the magnetic islands,

the group of magnetic field lines generated in the pure slab field with random

initial positions in z is not affected by λ⊥ (Figures 4.26 to 4.30).

For the slab+2D field, the larger λ⊥ makes the graph of anisotropy have

a higher peak, shorter duration, and longer delay to peak. This because if the

island is small, the magnetic field lines can spread out easily. Thus, the boundary

of the groups of magnetic field lines will not be sharp enough to measure with the

Anisotropy Method, so the peak of the graph is lower than for the large islands

but with a shorter delay to peak. However, the small magnetic islands can better

trap the magnetic field lines, so the peak of anisotropy has a longer duration than

for the large magnetic islands. These results are analogous with the SEPs from

the gradual flares (and CMEs), where the SEPs are ejected from a wide region

on the surface of the Sun. This is confirmed by the control run from Ruffolo et

al. (2003).
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Figure 4.26: Anisotropy number vs. Δz when the perpendicular length scale is
2.0.
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Figure 4.27: Anisotropy number vs. Δz when the perpendicular length scale is
5.0.
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Figure 4.28: Anisotropy number vs. Δz when the perpendicular length scale is
10.0.
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Figure 4.29: Anisotropy number vs. Δz when the perpendicular length scale is
20.0.
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Figure 4.30: Anisotropy number vs. Δz when the perpendicular length scale is
40.0.
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4.3 Dual Lattice

For the Dual Lattice Method, we also change four variables like in the

Anisotropy Method: the ratio between the turbulence fluctuations and the mean

field (b/B0), the radius of the initial circle (ρ), the parallel scale length (λ‖), and

the perpendicular scale length (λ⊥).

For the fluctuations to the mean field ratio (b/B0), we use the values of

this parameter as 0.25, 0.50, 0.75, 1.00, and 2.00. Normally, in the solar wind, the

fluctuations to the mean field ratio is ≈ 0.50. The results from the Dual Lattice

Method (Figures 4.31 to 4.35) show that if the fluctuations to the mean field ratio

increases, we will see the peak of the graph of the dual lattice number vs. Δz at

the lower Δz. When the fluctuations increase, the groups of the magnetic field

lines separate and diffuse more quickly. Because the separation and diffusion of

the groups of magnetic field lines is analogous with the dropouts of the SEPs,

we may summarize that the higher fluctuations to the mean field ratio makes the

dropouts occur more quickly.

The reason why we show results for 5 different runs is because we want to

study whether the average behavior (solid line in the Figures) accurately reflects

the behavior of individual runs. In some cases (e.g., in Figure 3.34), we see that

results for one run (one set of symbols) is very different from the other. This

could be because the initial circle of the group of magnetic field lines was located

near an O-point. This makes the group of magnetic field lines expand more than

separate at low Δz, so the dual lattice number rises more slowly than the other

runs. However, the average can still reflect the behavior of the individual runs.
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Figure 4.31: Dual lattice number vs. Δz when the turbulence fluctuation to mean
field ratio is 0.25.
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Figure 4.32: Dual lattice number vs. Δz when the turbulence fluctuation to mean
field ratio is 0.50.
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Figure 4.33: Dual lattice number vs. Δz when the turbulence fluctuation to mean
field ratio is 0.75.
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Figure 4.34: Dual lattice number vs. Δz when the turbulence fluctuation to mean
field ratio is 1.00.
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Figure 4.35: Dual lattice number vs. Δz when the turbulence fluctuation to mean
field ratio is 2.00.
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For the size of the initial circle, we use the radius (ρ) of the initial circle as

0.5, 1.0, 2.0, 4.0, 8.0, 16.0, and 32.0 in units of λ⊥. The results from ρ = 32λ⊥ are

different from the other ρ values. For ρ = 32λ⊥, the dual lattice number does not

rise but rather falls immediately (Fig. 4.42). Because of the large initial circle,

the group of magnetic field lines can spread throughout space easily. Thus, the

behavior of the magnetic field lines from the large initial circle is like the control

run in Ruffolo et al. (2003).

Now we consider the other values of the initial circle size. For the pure

slab turbulence with random initial positions in z, by considering the dual lattice

number at Δz = 0, we found that when ρ increases the dual lattice number

increases, too (Figures 4.36 to 4.41). Over higher Δz, the dual lattice number

rises until peak and falls with the same characteristics for all initial circle sizes.

In this case, the dual lattice number rises because the field line separation makes

the group of magnetic field lines expand and the dual lattice number falls because

the magnetic field lines spread throughout space.

When the energy ratio between the slab and 2D turbulence is 99:1 and

20:80 with the initial positions of the magnetic field lines at z = 0, the graphs of

the dual lattice number for all of the initial circle sizes have a similar amplitude

and width for each energy ratio. However, when increasing the radius of the

initial circle, the dual lattice number rises more quickly, because the rate of the

separation of the magnetic field line depends on λ‖ and λ⊥. Thus, for the same

value of λ‖ and λ⊥, the field line separation rate and the trapping duration are

similar for small ρ. By the way, the graphs of the dual lattice number for the

energy ratio between the slab and 2D turbulence of 20:80 rise faster but have a

smaller amplitude than the graphs of the dual lattice number for the energy ratio
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between the slab and 2D turbulence of 99:1. This is because when 2D turbulence

increases a group of magnetic field lines separates and diffuses with a higher rate.
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Figure 4.36: Dual lattice number vs. Δz when the radius of the initial circle is
0.5λ⊥.
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Figure 4.37: Dual lattice number vs. Δz when the radius of the initial circle is
1.0λ⊥.
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Figure 4.38: Dual lattice number vs. Δz when the radius of the initial circle is
2.0λ⊥.
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Figure 4.39: Dual lattice number vs. Δz when the radius of the initial circle is
4.0λ⊥.
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Figure 4.40: Dual lattice number vs. Δz when the radius of the initial circle is
8.0λ⊥.
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Figure 4.41: Dual lattice number vs. Δz when the radius of the initial circle is
16.0λ⊥.
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Figure 4.42: Dual lattice number vs. Δz when the radius of the initial circle is
32.0λ⊥.
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For the parallel length scale (λ‖), we use the values of this parameter as

0.25, 0.50, 1.00, 2.00, 5.00, 10.00, and 20.00 in units of λ⊥. This parameter is

related to the slab correlation length �c by �c = 0.747λ‖ (Chuychai 2005). A

high λ‖ makes the magnetic field lines separate at a long distance from the initial

position while the low λ‖ makes the magnetic field lines separate at a shorter

distance from the initial position. From the graphs of the dual lattice number

(Figures 4.43 to 4.49), for the pure slab field with random initial z, the diffusion

coefficient of field line separation (Dsep) depends on λ‖ because Dsep = 2Dslab

and Dslab ∝ λ‖. In the case when the energy ratio of slab:2D turbulence is 20:80,

Dsep does not depend much on λ‖. For a ratio of 99:1 Dsep ∝ 1/λ‖ because

Dsep = 2D2
2D/D⊥ and D⊥ ∝ Dslab (Ruffolo et al. 2004).

Note that when the energy ratio of the slab turbulence to the 2D turbu-

lence is 99:1, for a high parallel length scale (λ‖ = 5.0, 10.0, 20.0), and at high

Δz, some magnetic field lines reach the limit of the simulation box size, so the

dual lattice number is case dependent and often becomes zero.
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Figure 4.43: Dual lattice number vs. Δz when the parallel length scale is 0.25λ⊥.
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Figure 4.44: Dual lattice number vs. Δz when the parallel length scale is 0.5λ⊥.



97

Figure 4.45: Dual lattice number vs. Δz when the parallel length scale is 1.0λ⊥.
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Figure 4.46: Dual lattice number vs. Δz when the parallel length scale is 2.0λ⊥.
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Figure 4.47: Dual lattice number vs. Δz when the parallel length scale is 5.0λ⊥.
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Figure 4.48: Dual lattice number vs. Δz when the parallel length scale is 10.0λ⊥.
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Figure 4.49: Dual lattice number vs. Δz when the parallel length scale is 20.0λ⊥.
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For the perpendicular scale length (λ⊥), we use the values of this variable

as 2.0, 5.0, 10.0, 20.0, and 40.0. This parameter is related to the ultrascale (λ̃)

and the sizes of the magnetic islands in the 2D turbulence. Thus, λ⊥ has no effect

on the group of magnetic field lines in the pure slab field with random initial z

(Figures 4.50 to 4.54).

When the energy ratio between the slab and 2D turbulence is 99:1, as

λ⊥ increases, the Δz range of the peak width decreases and the peak appears at

higher Δz. This because of the small value of λ⊥ (small magnetic island size),

for which the group of magnetic field lines can break apart easily and can be

trapped over a small perpendicular scale. Thus, the graph of the dual lattice

number rises quickly and has a long width in Δz. On the other hand, if λ⊥ is

large (large magnetic islands), the group of magnetic field lines is trapped over a

large perpendicular scale. Therefore, the graph of the dual lattice number rises

more slowly and has a shorter width in Δz.

When the ratio of the energy between the slab and 2D turbulence is 20:80,

the graph of the dual lattice number shows that the starting location (near an

O-point or an X-point) has an effect on the rate of separation or the diffusion of

the group of magnetic field lines.
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Figure 4.50: Dual lattice number vs. Δz when the perpendicular length scale is
2.0.
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Figure 4.51: Dual lattice number vs. Δz when the perpendicular length scale is
5.0.
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Figure 4.52: Dual lattice number vs. Δz when the perpendicular length scale is
10.0.
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Figure 4.53: Dual lattice number vs. Δz when the perpendicular length scale is
20.0.
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Figure 4.54: Dual lattice number vs. Δz when the perpendicular length scale is
40.0.
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4.4 Principal Component

For the Principal Component Method, we measure two variables: the

length of the longer principal component and the ratio between the principal

components. We vary the energy ratio between slab turbulence and 2D turbulence

as 99:1, 90:10, 50:50, and 20:80 by starting all of the magnetic field lines at the

same initial z but at random locations in a finite circle in the x-y plane. The

magnetic field lines in the pure slab field with random initial positions are used

to be the control run.

First, we consider the length of the longer principal axis. For the pure

slab case, the results show that the magnetic field lines with random initial z are

diffusive (Fig. 4.60). The increasing rate depends on z1/2, which implies that the

group of the magnetic field lines is diffusive. Thus, the simulation of magnetic

field lines with random initial z in the pure slab turbulence is a good control

run. For the slab+2D field with all of the magnetic field lines starting at the

same z, the length of the longer principal axis increases continually for all energy

ratios between the slab and 2D turbulence (Figure 4.61 to 4.64). However, the

rate of increase is not equal for each energy ratio. The ordering is 20:80 > 50:50

> 90:10 > 99:1. Thus, the group of the magnetic field lines expands because of

the separation of magnetic field lines. For the separation of magnetic field lines,

the slab turbulence does not contribute directly (Ruffolo et al. 2004). Moreover,

when the energy ratio between the slab and 2D turbulence is 99:1, at low Δz,

the graph of the longer principal axis vs. Δz is a straight line. In this region,

the behavior of the group of magnetic field lines is free streaming because the 2D

motion is not yet diffusive.
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Figure 4.55: The longer principal component vs. Δz for a pure slab field, starting
with random initial positions in z.

Figure 4.56: The longer principal component vs. Δz when the energy ratio be-
tween the slab and 2D turbulence is 99:1.
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Figure 4.57: The longer principal component vs. Δz when the energy ratio be-
tween the slab and 2D turbulence is 90:10.

Figure 4.58: The longer principal component vs. Δz when the energy ratio be-
tween the slab and 2D turbulence is 50:50.
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Figure 4.59: The longer principal component vs. Δz when the energy ratio be-
tween the slab and 2D turbulence is 20:80.
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Now we consider the ratio between the longer principal axis and the

shorter principal axis vs. Δz. For a pure slab field with random initial positions

in z, the group of magnetic field lines diffuses with a similar rate in all directions

in the x-y plane. Therefore, the ratio between the longer principal axis and the

shorter principal axis is close to one over all Δz (Fig. 4.65). For the slab+2D field,

we can separate the graphs of the ratio between the longer principal axis and the

shorter principal axis vs. Δz into two regions. At low Δz (Δz = 0 → 10, Δz =

0 → 15, Δz = 0 → 20, and Δz = 0 → 35 when the energy ratio of the slab to 2D

turbulence is 20:80, 50:50, 90:10, and 99:1, respectively), the ratio between the

longer principal axis and the shorter principal axis swings widely, mostly much

higher than one (Figures 4.66 to 4.69). This because the group of magnetic field

lines is sheared by the magnetic potential as we discussed in Chapter III. At

higher Δz, the ratio between the longer principal axis and the shorter principal

axis converges to one. This is because the effect of the slab turbulence makes

the group of magnetic field lines diffuse in the direction perpendicular to the

contour of the magnetic potential. Thus, the distances at Δz = 10, 15, 20, and

35 for the energy ratio between the slab and 2D turbulence of 20:80, 50:50, 90:10,

and 99:1, respectively, are the distances for the 2D turbulence to randomize the

distribution.

Moreover, when the energy ratio between the slab and 2D turbulence is

20:80, the group of magnetic field lines in the representations presented by �

and � has initial positions near an O-point, so they are trapped in a magnetic

island. We can see that the ratio between the longer principal axis and the

shorter principal axis of these representations is much higher than one over high

Δz. Thus, the ratio between the longer principal axis and the shorter principal
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axis when the energy ratio between the slab and 2D turbulence is 20:80 depends

on the shape of the magnetic island if the initial positions of the magnetic field

lines are near an O-point. For the other representations, the field lines start near

an X-point. Near X-points, the magnetic field lines can shear quickly at low Δz,

so the ratio between the longer principal axis and the shorter principal axis has a

high value. However, at high Δz, the group of magnetic field lines starting near

an X-point will have high diffusion perpendicular to the contour of the magnetic

potential. Therefore the ratio between the longer principal axis and the shorter

principal axis converges to one quickly. For other energy ratios, the effect of the

initial position of the group of magnetic field lines is not as clear. When the

slab turbulence dominates the magnetic field line trajectory more than the 2D

turbulence, the magnetic field lines spread out more than shear.
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Figure 4.60: Ratio of principal components vs. Δz for a pure slab field, starting
with random initial positions in z.

Figure 4.61: Ratio of principal components vs. Δz when the energy ratio between
the slab and 2D turbulence is 99:1.
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Figure 4.62: Ratio of principal components vs. Δz when the energy ratio between
the slab and 2D turbulence is 90:10.

Figure 4.63: Ratio of principal components vs. Δz when the energy ratio between
the slab and 2D turbulence is 50:50.
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Figure 4.64: Ratio of principal components vs. Δz when the energy ratio between
the slab and 2D turbulence is 20:80.



CHAPTER V

SUMMARY

In this chapter, we summarize the results from all of the data analysis

methods. In this project, we aim to understand the separation of the magnetic

field lines and measure the distance over which the group of the magnetic field

lines breaks apart and diffuses as in the dropouts of the SEPs. We develop and use

the methods of box counting, anisotropy, dual lattice, and principal components

to attain these objectives.

In the simulations, we set the initial position of the magnetic field lines

in a certain circle in the x − y plane. For the initial positions of the magnetic

field lines in z direction, we divide into two cases. In the case of the pure slab

field, the initial positions of the magnetic field lines in the z direction are random

in order to visualize the distribution of the magnetic field lines. In the case of

the slab+2D field, we set all of the initial positions of the magnetic field lines

at z = 0. From the initial positions, we trace and collect the positions of the

magnetic field lines along Δz.

For the Box-Counting Method, we count the number of boxes which con-

tain the magnetic field lines. The negative slope of the log-log plot between the

number of boxes containing magnetic field lines and the box size can be deter-

mined as the fractal dimension of that group of magnetic field lines. However,

the results show that the fractal dimension of the group of magnetic field lines at

each Δz depends strongly on the number of magnetic field lines.
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To determine the field line separation, we use the Anisotropy Method and

the Dual Lattice Method. Both methods are developed from the Box-Counting

Method but have the different details. The Anisotropy Method finds the number

of boxes in which the magnetic field lines in those boxes are anisotropic (not

uniform) in the x − y plane. A box with an anisotropy of magnetic field lines

in the x − y plane can be determined to be at the edge of a group of magnetic

field lines. The Dual Lattice Method compares the number of magnetic field lines

in each box with the neighboring boxes in both x and y directions. If the ratio

of the number of the magnetic field lines in that box to that neighboring box is

greater than six (or less than 1/6), that box can be counted to be at the edge

of a group of magnetic field lines. The anisotropy number and the dual lattice

number are related to the boundary length of the groups of the magnetic field

lines. Because of the separation of neighboring magnetic field lines, the group of

magnetic field lines will increase its size and can also break apart into smaller

groups, which makes the sum of the edge length increase, too.

We can understand the results in terms of the theory of field line sep-

aration (Ruffolo et al. 2004). When changing the fluctuation energy and the

parallel length scale, we found that in the pure slab case with random initial

positions in z, the field line separation depends on the slab fluctuations with

Dsep = 2Dslab. In the slab+2D case with the initial positions of the magnetic

field lines at z = 0, the field line separation depends on the both slab and 2D

turbulence with Dsep = 2D2
2D/D⊥ where D⊥ = (Dslab +

√
D2

slab + 4D2
2D)/2.
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The initial circle size of the group of magnetic field lines is analogous

with the injection area of the solar energetic particles. The small initial circle is

analogous with the injection area for the impulsive solar flares in which the parti-

cles are ejected over a small region. In this case, the results show the anisotropy

number and the dual lattice number rising and falling, implying that the group

of magnetic field lines breaks apart into smaller groups and then diffuses. On the

other hand, for a large initial circle, the anisotropy number and the dual lattice

number have high values at low Δz and decrease along Δz. At low Δz, the group

of magnetic field lines can only diffuse without breaking apart as in the control

run of Ruffolo et al. (2003). This case is related to the gradual solar flares, in

which the particles are ejected over a large region on the surface of the Sun. For

the gradual flares we cannot observe the dropout phenomena.

For the changing perpendicular length scale, the results have a physical

meaning similar to changing the size of the initial circle. Increasing the perpen-

dicular length scale is analogous with reducing the initial circle and vice versa.

For the Principal Component Method, we find the principal components

to characterize the distribution of the data. We measure two properties of the

principal components: the length of the longer axis and the ratio of those two

axes. In the pure slab case with the initial positions of the magnetic field line

random in z, the results show that the length of the longer principal component

is proportional to (Δz)1/2 all along Δz. Thus, the group of magnetic field lines is

diffusive for all Δz. In the slab+2D case with varying energy ratios and setting

the initial positions of the magnetic field line at z = 0, the results from the

ratio of the principal components show that there are two regions along Δz. At

low Δz, the group of magnetic field lines is sheared by the 2D potential more
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than diffusive while at higher Δz, the magnetic field lines diffuse in the direction

perpendicular to the contour of the 2D potential function.

In summary, we have explained the characteristics of the magnetic field

line trapping and separation in turbulent fields, which are qualitatively consistent

with the dropout phenomena of the SEPs. We describe conditions and length

scales over which dropouts can occur.
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Bieber, J. W., Evenson, P., Dröge, W., Pyle, R., Ruffolo, D., Rujiwarodom, M.,

Tooprakai, P., and Khumlumlert, T. Spaceship Earth Observations of the

Easter 2001 Solar Particle Event. Astrophys. J. Lett. 601 (2004) L103-

L106.

Chuychai, P., Model of random magnetic fields and some implications for turbulence

structure and particle transport in the heliosphere. Ph.D. Thesis. Chula-

longkorn University, 2005.

Chuychai, P., Ruffolo, D., Matthaeus, W. H., Rowlands, G. Suppressed diffusive

escape of topologically trapped magnetic field lines. Astrophys. J. Lett.

633 (2005): L49-L52.

Corrsin, S. in Advances in Geophysics, Volume 6: Atmospheric diffusion and air

pollution ed. F. Frenkel and P. Sheppard, New York: Academic Press, 1959.

Foukal, P., Solar Astrophysics New York: Wiley-Interscience, 1989.

Giacalone, J., Jokipii, J. R., and Mazur, J. E. Small-scale gradients and large-scale

diffusion of charged particles in the heliospheric magnetic field. Astrophys. J.

Lett. 532 (2000): L75-L78.

Kolmogorov, A. N. The local structure of turbulence in incompressible viscous fluids

for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30 (1941): 299-

303.



122

Matthaeus, W. H., Goldstein, M. L., and Roberts, D. A. Evidence for the presence of

quasi-two-dimensional nearly incompressible fluctuations in the solar wind.

J. Geophys. Res. 95 (1990): 20673-20683.

Matthaeus, W. H., Gray, P. C., Pontius, D. H., Jr., and Bieber, J. W. Spatial struc-

ture and field-line diffusion in transverse magnetic turbulence. Phys. Rev.

Lett. 75 (1995): 2136-2139.

Mazur, J. E., Mason, G. M., Dwyer, J. R., Giacolone, J., Jokipii, J. R., and Stone,

E. C. Interplanetary magnetic field line mixing deduced from implusive solar

flare particles. Astrophys. J. Lett. 532 (2000): L79-L82.

McKibben, R. B., Connell, J. J., Lopate, C., Zhang, M., Balogh, A., Dalla, S.,

Marsden, R. G., Sanderson, T. R., Tranquille, C., Anglin, J. D., Kunow,

H., Müller-Mellin, R., Heber, B., Raviart, A., and Paizis, C. ULYSSES

COSPIN observations of the energy and charge dependence of propagation

of solar energetic particles to the Sun’s south polar regions. Proc. 27th Int.

Cosmic Ray Conf. (Hamburg) 8 (2001): 3281-3284.

Meechai, J., Trapping boundary of turbulent magnetic field lines. B.Sc. Senior project.

Chulalongkorn University, 2004.

Pongkitiwanichkul, P., Sawtooth mechanism of particle acceleration at shocks in

random magnetic fields. M.Sc. Thesis. Chulalongkorn University, 2005.

Pope, S. B., Turbulent Flows Cambridge: Cambridge University Press, 2000.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. Numerical

recipes in FORTRAN: The art of scientific computing Cambridge:

Cambridge University Press, 1992.

Richardson, L. F., Water prediction by numerical process Cambridge: Cambridge

University Press, 1922.



123

Ruffolo, D., Matthaeus, W. H., and Chuychai, P. Trapping of solar energetic parti-

cles by the small-scale topology of solar wind turbulence. Astrophys. J. Lett.

597 (2003): L169-L172.

Ruffolo, D., Matthaeus, W. H., and Chuychai, P. Separation of magnetic field lines

in two-component turbulence. Astrophys. J. 614 (2004): 420-434.

Simanca, S. R. and Sutherland, S. Mathematical Problem Solving with Computers.

Lecture Notes. Stony Brook University, USA, 2002.

Smith, L. I. A tutorial on Principal Components Analysis. Lecture Notes. Univer-

sity of Otago, New Zealand, 2002.

Tennekes, H., and Lumbey, J. L. A First Course in Turbulence Massachusetts: the

MIT Press, 1994.



124

VITAE

Name: Mr. Nimit Kimpraphan

Born: November 24th, 1977 in Samut Prakan, Thailand

Address: 43 Moo 1 Bangduan, Phasi Charoen, Bangkok, Thailand

Education:

1999 Bachelor’s Degree of Science in Physics, Chulalongkorn University, Bangkok,

Thailand


	COVER (THAI)
	COVER (ENGLISH)
	ACCEPTED
	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	CONTENT
	CHAPTER I INTRODUCTION
	1.1 Introduction
	1.2 Objectives
	1.3 Outline

	CHAPTER II THEORETICAL BACKGROUND
	2.1 The Sun and Interplanetary Magnetic Field
	2.2 Model of the Magnetic Turbulence
	2.3 Simulations of Turbulent Magnetic Fields

	CHAPTER III DATA ANALYSIS METHODS
	3.1 Box-Counting Dimension
	3.2 Anisotropy
	3.3 Dual Lattice
	3.4 Principal Components

	CHAPTER IV RESULTS AND DISCUSSIONS
	4.1 Box-Counting Dimension
	4.2 Anisotropy
	4.3 Dual Lattice
	4.4 Principal Component

	CHAPTER V SUMMARY
	REFERENCES
	VITA



