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CHAPTER I

INTRODUCTION

This chapter will provide an overview of optimization methods which covers impor-

tant topics related to this research. The subchapter states an optimization problem in

general, a linear programming model [1] and a review of the standard method for solving

a linear programming problem including the basic concept of the jump method. The

objectives and scopes of the thesis will be presented at the end of this chapter.

1.1 Optimization problem in general

Most real-world optimization problems are subject to many restrictions that it is

difficult to intuitively decide what is the best solution. One way of solving this issue

is to apply the mathematical concept to the problem. Normally, the problem will be

transformed into a mathematical model and then be solved by an optimization solver.

The model is a mathematical description that contains the goal of the problem and all

restricted conditions, such as the number of raw materials. These restrictions will be

formed as equations or inequalities which control the possible values of the solutions.

Afterward, the model will be solved to obtain the solution that corresponds to the desired

goal that called the optimal solution. In this study, a linear programming problem [1] is

stated as the constraint optimization problem with all linear constraints.

1.2 Why linear programming?

Linear programming [1] is used to obtain optimal solutions for operations research

to find the best, most economical solution to a problem within all of its limitations or con-

straints. Linear programming techniques are used in many fields to make their processes

more efficient. These include food and agriculture [7], engineering [2], transportation [9],

and energy [8]. For instances, it is used to maximize profitability, to determine the lowest
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value for reducing production costs, and to control appropriate activities. These processes

have been done with a linear mathematical model which is an advantage of this method

because it is easy to manipulate and solve. The use of linear programming for optimiza-

tion began in the 1940s by a Soviet economist Leonid Kantorovich [15], while looking for

a way to assign resources appropriately during World War II. It is a compensation plan

to reduce the cost of the Soviet army and increase the damage to the enemy. For a linear

programming problem, which began to use in the US military, it was solved by George

B. Dantzig [4]. He was the discoverer of the mathematical method for solving a linear

programming problem, which was the simplex method. However, the method was kept

secret until 1947 since it was being used in the war. The theory of linear programming

had been developed for use in applications after the war ended [5]. Linear programming

was published in the scientific journal and it became popular among researchers, including

numerical analysts, mathematicians, and economists who controlled business benefits. At

present, linear programming is widely used in many areas in operations research. There

are many practical problems in the operations research which are described by linear pro-

gramming problems such as network flow problems and product flow problems. Moreover,

linear programming techniques are used in many fields to determine the best scenarios

such as agricultural economics and management of industrial production [6].

Nowadays, there are many solution methods to search for the optimal solution of

a linear programming problem. They rely on concepts such as the graphical method

[10], the criss-cross method [13], the interior point method [11]. However, the simplex

method is still a powerful method which is the most commonly used for solving a linear

programming problem.

1.3 Linear programming model

The linear programming model is an algebraic description of the objective to be

maximized/minimized and constraints to be satisfied. Variables are like activities that

have to comply with constraints. These variables can be written as x1 through xn. Each

constraint depends on the number of available units or required units which is represented
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by bi. In a general linear programming problem, the problem can be formulated as

Maximize/Minimize z = c1x1 + c2x2 + ...+ cjxj + ...+ cnxn

subject to a11x1 + a12x2 + ...+ a1jxj + ...+ a1nxn ≤ b1
...

ai1x1 + ai2x2 + ...+ aijxj + ...+ ainxn ≤ bi
...

am1x1 + am2x2 + ...+ a1jxj + ...+ a1nxn ≤ bm

x1, x2, ..., xn ≥ 0

The problem can be written using summations as follows.

Maximize z =
∑n

j=1 cjxj

subject to
∑n

j=1 aijxj ≤ bi, i = 1, 2, ...,m

xj ≥ 0, j = 1, 2, ..., n,

where m = number of constraints,

n = number of decision variables,

aij = coefficient of ith contraint and jth variable,

bi = right-hand side value of ith constraint,

cj = cost per unit of jth variable,

xj = jth decision variable.

However, the constraints of the general linear programming model might contain

“ = ” or “ ≥ ” constraints. Linear programming problems have many sizes from a small

problem to a large problem. The small problem which contains less than 5 variables and

5 constraints can be easily solved. For the medium problem and the large problem, they

are very difficult to handle without a computer. The linear programming problem can be



4

formulated using the vector and matrix.

Maximize cTx

subject to Ax ≤ b (1.1)

x ≥ 0

where A = the m× n coefficient matrix.

b = the m× 1 vector of right-hand sides.

c = the n× 1 coefficient vector of the objective function.

x = the n× 1 decision variable vector.

This linear programming model is the canonical form having “ ≤ ” constraints for

the maximization problem. For the general linear programming model, it might contain

“ ≥ ” or “ = ” constraints in the model. So to begin solving the linear programming model

with the simplex method, slack variables will be added to each of inequalities converting

them into equations. After that this model will be called the standard form.

1.4 The standard form of a linear programming problem

Any linear programming model can be converted to the standard form, which is

solved by the simplex method. So before discussing the details of the method, there are

steps of converting the model to the standard form.

Maximize z = c1x1 + c2x2 + ...+ cm+nxm+n

subject to a11x1 + a12x2 + ...+ a1(m+n)xm+n = b1

a21x1 + a22x2 + ...+ a2(m+n)xm+n = b2

... (1.2)

am1x1 + am2x2 + ...+ am(m+n)xm+n = bm

x1, x2, ..., xm+n ≥ 0
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The linear programming model (1.1) is converted to (1.2) and it is called the standard

form. The objective function is to maximize or minimize. The constraints are in the form

of equations where all variables are nonnegative. The linear programming problem in the

standard form always consists of the following:

• If the problem is min z, convert it to −max−z.

• If the constraint is ai1xi + ai2x2 + ... + ainxn ≤ bi, convert it into an equality

constraint by adding the nonnegative slack variable si then the resulting constraint

is ai1x1 + ai2x2 + ...+ ainxn + si = bi where si ≥ 0.

• If the constraint is ai1xi + ai2x2 + ...+ ainxn ≥ bi, convert it into an equality con-

straint by subtracting the nonnegative surplus variable si. The resulting constraint

is ai1xi + ai2x2 + ...+ ainxn − si = bi where si ≥ 0.

• If some variable xj is unrestricted in sign, replace it everywhere in the formulation

by x+j − x−j where x+j ≥ 0 and x−j ≥ 0.

The standard form is

Maximize
m+n∑
j=1

cjxj

subject to
m+n∑
j=1

aijxj = bi, i = 1, 2, ..,m (1.3)

xj ≥ 0, j = 1, 2, ...,m+ n

1.5 Methods to solve a linear programming problem

The optimal solution of the linear programming problem is searched among all pos-

sible solutions subject to constraints and nonnegativity of variables which gives the highest

(or the lowest) z value. There are many techniques for solving the linear programming

problem that depends on the structure of the problem. The widely used techniques or
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methods are the graphical method, the simplex method and the method using artificial

variables.

1.5.1 The graphical method

Previously, the linear programming problem is formulated as the linear program-

ming model. It has an objective function which must be maximized or minimized while

satisfying several constraints. If there are only two variables in the linear programming

problem, it can use the graphical method to find the optimal solution. Consider the set

of constraints as the system of inequalities which is shown in Figure 1.1. The solution

of this system is the set of points, F , that belongs to all intersections of the constraints.

The point in the set F is called the feasible solution and the shaded area (blue area in

Figure 1.1) of this solution is called the feasible region. The objective function can be

evaluated for the different feasible solution representing by the dashed line (red dash) in

Figure 1.1.

Figure 1.1: Solving the linear programming problem by the graphical method

The system of linear inequality constraints gives the set of the feasible solutions

as shown in the Figure 1.1. To solve the linear programming problem, a user normally
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determines all corner points of this feasible region and looks for the highest objective

value. The highest value of the objective function is the optimal value and the corner

point (the vertex) corresponding to the optimal value is called the optimal solution.

1.5.2 The simplex method

A linear programming problem involving two variables can be solved using the

graphical method. However, the problem involving more than two variables or involving

a large number of constraints is better solved by the solution method that can be imple-

mented and solved using a computer. One such method is called the simplex method. It

provides a systematic way of examining the vertices around the feasible region with a rep-

etition starting from the initial vertex and systematically moves to the adjacent vertices

which result in a better objective function value. The simplex method starts from the

initial vertex in the feasible region. Usually, the simplex method starts at the origin point

if it belongs to the feasible region. Otherwise, the simplex method needs other processes

to find a new initial feasible vertex. Most of those rely on adding artificial variables to

the linear programming model. The popular method for searching a starting vertex of

the simplex method is called the two-phase simplex method.

1.5.3 The two-phase simplex method

This method was also introduced by Dantzig in 1963 [12] after he found that the

simplex method could not start with the infeasible vertex. So this method is created for

finding the new feasible starting vertex to the simplex method. The details of this method

will be covered in the section of the two-phase simplex method of the next chapter. The

general concept of this method is to split the process into two phases. The first phase

aims to search for the initial feasible vertex by adding artificial variables into the model.

These artificial variables allow the simplex method to start at the origin point. All

artificial variables will leave out in the last simplex iteration of the phase I. At the end of

the phase I, the method will find the feasible vertex of the original linear programming

model. The second phase is the tradition simplex method that finds the optimal solution

as mentioned in the previous subsection. In this thesis, the preceding-jump simplex
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method investigates the phase I to find the feasible starting jump point when the origin

point does not belong to the feasible region. Next section, the basic concept of the jump

method will be explained.

1.6 The jump method

In the preceding-jump simplex method, the major key concept is to find the suit-

able initial feasible vertex before the jump. The goal of the jump is to avoid unnecessary

vertices that the simplex method will pass through. This implies that the method will

reduce the number of iterations and the total running time for solving the linear program-

ming model. The jump point always resides in the feasible region if the starting jump

point belongs to the feasible region and the jump direction points into the feasible region.

The first jump, the method takes the gradient of the objective function to be the first

direction (the first vector) of the jump because it gives the largest increasing objective

function value comparing to other directions in term of unit vectors. Suppose that the

linear programming model has the bounded feasible region F in Rn. Then F contains

all of the possible solutions. The jump method will take the direction to shift the point

in the feasible region to another point. Assume that F is the feasible region as shown

in Figure 1.2 and the direction is [1.5, 1]T . The jump process will calculate the shortest

distance from the starting point such as the origin point (0, 0) to a point on every hy-

perplane along this direction. These hyperplanes are represented by the boundary on F

that will block the jump before breaking out of the feasible region. So the jump point will

belong to the hyperplane that it satisfies the shortest distance between the origin point

and the point on these hyperplanes in Figure 1.2. The shortest distance is obtained from

the minimum of the right-side values divided by the multiplying of the direction and the

gradient vector of every constraint i.e. αi =
bi

Ai·c where i is the order of constraints in

the linear programming model. In Figure 1.2, the minimum distance satisfies the plane
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2x1 + x2 = 10 and it is the third constraint. Then α3 is equal to

α3 =
102

1

 ·
1.5

1


= 2.5.

Thus, the jump point is x1
1 = α3c = 2.5(1.5, 1) = (3.75, 2.5) because it corresponds to

the minimum distance of those constraints and it also belongs to the feasible region.

Figure 1.2: The initial jump point

Notice that the point along the direction of c can be shifted to αimin
· c, where imin

is the minimum index of constraints when it hits the edge of the hyperplane having the

minimum distance between x0 and xi
1, i = 1, 2, ...,m.

1.6.1 Objective of the thesis

The purpose of this thesis is to present a new approach to find a basic feasible

solution close to the optimal solution by jumps. Firstly, this thesis shows how to apply

jumps in the scenario that the origin point is the initial vertex. Then it adapted to
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apply to the general linear programming problems such the scenario of the origin point

is not a feasible starting point of jumps. Performance evaluation of this new improved

simplex method will be extended on the synthetic linear programming problems. Finally,

the major objective of this method is to reduce the number of iterations and the total

running time of the simplex method. The computational experiments will be presented

by the synthetic LP problems from 100, 200, 300, 400 500 to 2500 variables. Moreover,

the preceding-jump simplex method will be extended to solve the linear programming

problem in the general form. It is also implemented with the synthetic linear programming

problems from 100 to 1000 variables.

1.6.2 Scope of the thesis

Chapter 1: Introduction, this chapter serves as an introduction to linear program-

ming which relates to the optimization method, an introduction to the solution methods

for linear programming.

Chapter 2: Background and Literature Review provides the essential definitions

and theories of linear programming that are used to produce the main results in chapter

3. It also explains the steps of the solution method such as the simplex method and the

two-phase simplex method. The related work will be reviewed at the end of this chapter.

Chapter 3: Main results discuss the research methodology of this thesis which is

split into two major topics. The first topic will introduce the preceding-jump simplex

method with the origin vertex as the initial basic feasible solution. It also focuses on the

implementation of the preceding-jump simplex method. The second topic explains the

process of applying the preceding-jump simplex method in a general form of the linear

programming problem.

Chapter 4: Computational results, the randomly generated linear programming

problems were constructed and presented the results in this chapter. The results showed

the compared number of iterations and running time of the traditional simplex method

and the new method.
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Chapter 5: Conclusion will be summarized the findings, states the managerial im-

plications and highlights the limitations of this new method.



CHAPTER II

BACKGROUND KNOWLEDGE AND

LITERATURE REVIEW

The main concept of this chapter involves definitions and theories which are essential

to the preceding-jump simplex method. The first two sections start with the notations

and basic algebra. Next section, the jump idea is proposed using the concept of geometric

definitions of the linear programming (LP). In the fourth section to the sixth section,

the important details of the LP, that are the system of linear equations, the polyhedron

theory, and the basic feasible solution, are given for the simplex method. The next two

sections, the important details of the simplex method and the two-phase simplex method

will be presented. Finally, the literature reviews involving this thesis are shown in the

last section.

2.1 Notations

n = the number of decision variables.

m = the number of constraints.

c = the gradient vector of the objective function.

I = the set of all indices of constraints i.e. {1, 2, ...,m+ n}.

Ai = the ith row of the matrix A.

bi = the value of the right-hand side of the ith row, i = 1, 2, ...,m+ n.

B = the index set of the basic variables.

N = the index set of the non-basic variables.

V = the set of all indices visited constraints.

AB = the m×m invertible matrix, called the basic matrix.

AV = the system of linear equations from the index set V.

bV = the vector of the right-hand side forming from V .
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xB = the basic variables.

xN = the non-basic variables.

x0 = the feasible starting point of the jump processes.

xk = the feasible jump point corresponding to the kth iteration.

dk = the jump direction in the kth iteration.

αk = the minimum distance between xk and the hyperplanes in I \ V.

2.2 Basic algebra

The mathematical concept in this thesis depends on basic algebra, especially the

concept of the linear system. It covers the detail of the vector, matrix, and rank of the

matrix, including an angle between vectors.

2.2.1 Vector

An n-vector is a column of n numbers where the transpose of it, is called the row

vector. For example, vT = [1, 0, 0] is the row vector of size n = 3, and uT = [1, 0] is

the row vector of size 2. Usually, an n-vector is the column vector having the dimension

n×1. The vector contains only zeroes in all components is called the null vector or the

zero vector represented by 0. The vector consisting of 1 at the ith row and the zeroes of

the remaining rows is called the standard unit vector which is represented by ei.


0

0

0





0

...

1

...

0

0


Zero vector The standard unit vector ei
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2.2.2 Matrix and rank of a matrix

A matrix (m,n) is a collection of row vectors or column vectors which contains m

rows and n columns. It is customary to enclose the elements of a matrix in parentheses,

brackets, or braces. An identity matrix is a square matrix which has only 1 on the

diagonal. The identity matrix is denoted as In.

In =




1 0 . . . 0

0 1 . . . 0

...
... . . . ...

0 0 . . . 1

The column rank of the matrix is the dimension of its column space that is the number of

linearly independent columns of the matrix. Likewise, the row rank of the matrix is the

number of linearly independent rows of the matrix. The row rank is always equal to the

column rank, thus one normally uses the term rank of the matrix to identify the number

of linearly independent rows or columns of the matrix.

2.2.3 Inner product

Any two n-vectors u and v can be multiplied together. The result of this multipli-

cation is a real number which is called an inner or dot product of the two vectors. It is

defined as follows.

u · v = u1v1 + u2v2 + … + unvn =

n∑
i=1

uivi (2.1)

2.2.4 Euclidean norm

The measuring vector size or the length of the vector is done by specifying a norm.

Generally, the vector size in Euclidean space is determined from the square root of the

inner product of the vectors. The norm of the vector is the function that assigns the
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positive length in the real number to the vector in the vector space excepting the zero

vector. The length of the vector u is calculated from

∥u∥ =
√

u21 + u22 + · · ·+ u2n.

2.2.5 Angle between vectors

Let u = (u1, u2, ..., un) and v = (v1, v2, ..., vn) be any two vectors in Rn. The inner

product or the dot product of the two vectors is u ·v = ∥u∥∥v∥ cos θ where θ is the angle

between the two vectors. So θ is calculated from the following formula.

θ = arccos( u · v
∥u∥∥v∥) (2.2)

The equality above guarantees that the unique value of θ ∈ [0, π] that satisfies u · v =

∥u∥|v∥ cos θ. From the relation of two vectors in (2.2), θ will be occured in three cases.

1. If u · v = 0, then both vectors are orthogonal to each other.

2. If u · v > 0, then both vectors make an acute angle.

3. If u · v < 0, then both vectors make an obtuse angle.

In the jump-to-vertex phase of chapter III, there is a step of choosing a jump direction

before searching the jump point. In this step, the preceding-jump simplex method has

to calculate an angle between the given direction (a vector) and the gradient vector of

the objective function. The angle of both vectors will be used to check for the improving

direction before doing the jump process.

2.3 Geometric definitions

The following definitions [1] relate to the LP problem which the jump idea relies

on. There are three geometric definitions that support the searching of the jump point.
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Definition 2.3.1. A ray is a collection of points of the form {x0 + λd : λ > 0}, where

d is the nonzero vector. Here, x0 is called the vertex of the ray, and d is the direction of

the ray.

Definition 2.3.2. Given an unbounded convex set X, a non zero vector d is called the

direction of X if for each x0 ∈ X, the ray {x : x0 + λd,d ̸= 0,λ ≥ 0} is contained within

X. Note that d1 and d2 are distinct if and only if there is no k that d1 ̸= kd2.

Definition 2.3.3. An extreme direction is a direction that it cannot be expressed as the

positive combination of two distinct directions. Any other direction can be expressed as

a positive combination of extreme directions.

2.4 The system of linear equations

Mathematical problems are presented in the form of linear equations. The linear

equations can be expressed in the matrix form such as

Ax = b (2.3)

where A is the matrix of the coefficient variables of the constraints. The solution of this

equation might occur in 3 cases: the solution is unique or the system has no solution or

the system has infinitely many solutions.

In the first case, A needs to be the full row rank and the square matrix. Thus,

A−1, the inverse matrix of A exists and the unique solution is x = A−1b. Note that,

the inverse of A is only A−1 when A−1 × A = A × A−1 = I. The next case, if some

inconsistencies arise between equations in Ax = b, the system cannot be solved. This

implies that this system has no solution. The last case, if the number of variables is greater

than the number of equations and there is no inconsistency system then the system has

more than one solution. However, this system is still able to solve using the right or left

inverse of A.
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2.4.1 Generalized inverse

The general linear system may not be square or it may be a square matrix which

is not full rank matrix. This is a reason for the linear system that cannot be solved with

the regular inverse of A. If A has more rows than columns (m > n) which implies more

equations than variables, and the system is sometimes referred to an overdetermined sys-

tem. In the opposite argument A has more variables than equations (m < n). However,

the solution of Ax = b can be solved using the left or right inverse of the matrix. The

left or the right inverse is the types of the generalized inverse of A.

Given matrix A ∈ Rn×m and matrix Ag ∈ Rm×n,Ag is the generalized inverse of

A if it satisfies the condition AAgA = A. Thus the solution of the linear system with

A non-square full rank can be found using the notion of the left or the right inverse of

the matrix. Let consider the linear system Ax = b where A is non-square full rank so

the solution may be occured if x = Agb. Thus the general inverse of A will be separated

into two types.

Left inverse : If A has linearly independent columns i.e. rank A = n. Then the matrix

ATA is the invertible n by n symmetric matrix, so (ATA)−1ATA = I. This implies that

the left inverse of A is (ATA)−1AT . Thus Ag = (ATA)−1AT and x = (ATA)−1ATb.

Right inverse :If A has linearly independent rows i.e. rank A = m. Then the matrix

AAT is the invertible m by m symmetric matrix. This implies that the right inverse of

A is AT (AAT )−1. Thus Ag = AT (AAT )−1 and x = AT (AAT )−1b.

2.5 The polyhedron theory

Basic importance theories of the LP problem [1] based on some properties of the

polyhedron which are the particular significance in proving theorems of LP.

Definition 2.5.1. A point x of a convex set M is an extreme point or the vertex of M then

it is not possible to find two points x1,x2 in M such that x = λx1+(1−λ)x2, 0 < λ < 1.

It means that the vertex does not lie on the line segment joining two other points in the
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set.

Definition 2.5.2. The set of all convex combinations of a finite number of the extreme

point xi, i ∈ {1, 2, ..., k}, is the convex polyhedron spanned by these points. Note the set

of vertices of the convex polyhedron is the subset of its spanning points.

Definition 2.5.3. A hyperplane H in Rn is a set of the form {x|pTx = k} where p

is the nonzero vector in Rn and k is the scalar. Note p is called the normal or the

gradient vector of the hyperplane. A closed half-space is a collection of points of the form

{x|pTx ≤ k}, where p is the nonzero vector in Rn and k is the scalar i.e the hyperplane

divides Rn into two regions, called half-spaces. The intersection of the finite number of

closed half-spaces is called the polytope. The hyperplanes producing the half-spaces are

called the generating hyperplanes of the polytope.

A constraint is declared to be “binding” or a constraint with the “slack” value of

zero is said to be tight or binding if it satisfies with equality. Constraints which are not

tight are called loose or not binding. Let x ∈ X and suppose that the constraint j in the

set of all constraints {1, 2, ...,m+ n} is binding, or tight, or active, at x then Ajx = bj .

Moreover, the solution in P = {x : Ax ≤ b} is called degenerate if it has more than n

linearly independent active constraints.

2.6 The basic feasible solution

The notion of the basic feasible solution plays an especially important role in the

theory of linear programming. If point x in convex set X ⊆ Rn is called the basic feasible

solution of X if x cannot be represented as the strict convex combination of two distinct

points in X. In other words, if x = λx1 + (1 − λ)x2 with λ ∈ (0, 1) and x1,x2 ∈ X,

then x = x1 = x2. The solution set in the LP problem is equivalent to the intersection

of every constraint in that problem. Thus the general basic feasible solution of X ⊆ Rn

will be created by solving the linear system as below.

Ax = b (2.4)

x ≥ 0
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where A is the m×n matrix and b is the m-vector. Suppose that the rank (A) = m and

b belongs to the range that is spanned by the column space of A. A solution of (2.4) is

called the feasible solution. From chapter I, the set of the feasible solution or the feasible

region is denoted by F . In some cases of the LP problems, it is possible that there is no

feasible solution. In general, if the set F is not empty, it must be the closed convex set

(polytope) bounded from below so it has at least one vertex.

From equation (2.4) with m equations and n variables, assume that m < n and

the equation are linearly independent. Generally, constraints appear as inequalities in

mathematical models. By subtracting or adding variables to the model becomes the linear

system Ax = b. If all of n −m variables are given the zero values, then the remaining

system of m equations in m variables has the unique solution. This solution along with

the assumed zeros is the solution of equation (2.4). It is called the basic solution. The m

variables remaining in the system after n −m variables have been put equal to zero are

called the basic feasible solution. The rest of the variables are called non-basic.



A11 A12 · · · A1n

A21 A22 · · · A2n

...
... . . . ...

Am1 Am2 · · · Amn





x1

x2
...

xn


=



b1

b2
...

bm


or

A·1x1 + A·2x2 + A·3x3 + ...+ A·nxn = b

where A·j , j = 1, 2, .., n is the jth column of A. This implies that A·j is in Rm with the

full rank A so after rearranging the columns of A the column vectors A·1,A·2, ...,A·m

are linearly independent. Therefore, the set of A·1,A·2, ...,A·m forms a basis. Moreover

the solution of the equation above will be the n-vector [x1, x2, ..., xm, 0, 0, ..., 0]T that

corresponds to Ax = b. The m linearly independent column vectors A·j , j ∈ {1, 2, ..., n}



20

will become the m × m invertible matrix AB and the remaining column vectors of A

denotes as m×(n−m) matrix AN . Then the matrix A will be expressed as A = [AB AN ].

The solution x to Ax = b, where xB = A−1
B b and xN = 0 is called the basic solution of

the system. If xB ≥ 0, then x = [xB xN] is called the basic feasible solution of the system.

Here AB is called the basic matrix (or simply the basis) and AN is called the non-basic

matrix. The components of xB are called basic variables (or dependent variables) and the

components of xN are called non-basic variables (or independent variables). Moreover,

if all components of xB > 0, then x is called the nondegenerate basic feasible solution,

but if at least one component of xB is zero, then x is called the degenerate basic feasible

solution. The example 1 shows the problem with two variables.

Maximize 2x1 + x2

subject to x1 + x2 ≤ 4

−x1 + x2 ≤ 4

x1 − x2 ≤ 3

x1, x2 ≥ 0

The LP problem contains three constraints with the feasible origin vertex. In the

standard form, the problem needs the slack variables in order to transform these con-

straints to be the equations. This implies that the variables will be separated into two

types as non-basic variables of xN and basic variables of xB. The vertex C can be com-

puted by defining the matrix AB with basic variables x1, x2 and x4. Now, this particular

basis matrix AB is defined as follows:

AB =


1 1 0

−1 1 1

1 −1 0
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Then

xB = A−1
B b =


0.5 1 0.5

0.5 0 −0.5

0 1 1



4

4

3

 =


3.5

0.5

7



Hence x1 = 3.5, x2 = 0.5 and x4 = 7 is the basic feasible solution which it shows

as the vertex C in Figure 2.1.

Figure 2.1: Basic feasible solution of the example 1

2.7 The simplex algorithm

From the LP model 1.1, the model contains the m× n matrix A, the n× 1 vector

x ≥ 0 , the m× 1 vector b ≥ 0, and the n× 1 vector c.

The model can be converted into the standard form as belows.
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Maximize cTx

subject to Ax + Is = b (2.5)

x, s ≥ 0

where x = [x1, x2, ..., xn]
T is the vector of the original variables of the LP model and

s = [s1, s2, ..., sm]T is the vector of the slack variables. Moreover, the variables xj ≥

0, j = 1, 2, ..., n and si ≥ 0, i = 1, 2, ...,m. The vector c = [c1, c2, ..., cn]
T is the vector

of the original coefficient variables of the objective function. The matrix I is the m×m

identity matrix and b = [b1, b2, ..., bm]T is the right-hand-side vector of the constants

with bi ≥ 0, i = 1, 2, ...,m. Suppose that the m× (n+m) matrix Ā is denoted by [A | I]

which can be used to create the first simplex tableau. The slack variables are the basic

variables of the first simplex tableau. Since the column vectors of the matrix I are linearly

independent and they also span the column vectors of the model. Hence, the matrix I

is represented by ĀB which is the first basic matrix of the first simplex tableau and A

is the first non-basic matrix representing by ĀN . The simplex method finds the optimal

solution according to the following steps.

Step 1: The first step is to examine the negative reduced cost value of the non-basic vari-

ables.

zTN = cTBĀ−1
B ĀN − cTN .

If all the negative reduced costs are negative value then return the current basic

feasible solution is optimal.

Step 2: If not, pick out the variable xk that corresponds to the largest (or most positive)

value from zTN . The variable xk is called the entering variable.

Step 3: Let the entering cloumn vector be yk = Ā−1
B ĀNk

. If yk ≤ 0 then return the LP

problem has the unbounded solution. Let the right-hand-side vector be r = Ā−1
B b.

Step 4: Calculate the ratio test of the basic variables from the ratio ri
yik

where yik > 0 and
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i ∈ B. The index of the basic variable corresponding to the minimum ratio will be

denoted by l. The basic variable xl which corresponds to the minimum ratio test,

is called the leaving variable.

Step 5: The leaving variable xl will be swapped with the entering variable xk. Then B and

N will be updated. Go to step 1.

2.7.1 Pseudo code of the simplex algorithm

Algorithm 1 The simplex algorithm
1: procedure Simplex(c,b,A)

2: Input: the LP problem c,b,A

3: Output: the optimal solution or unbounded solution

4: while True do

5: zT
N ← cT

BĀ−1
B ĀN − cT

N

6: If zT
N ≤ 0 then STOP return the current BFS is optimal

7: k ← argmax{zT
N}

8: yk ← Ā−1
B ĀNk

9: If yk ≤ 0 then STOP return unbounded solution

10: r← Ā−1
B b

11: l← argmin{ ri
yik
|yik > 0, i ∈ B}

12: B ← (B \ {l}) ∪ {k}

13: N ← (N \ {k}) ∪ {l}

14: end

2.8 The two-phase simplex algorithm

The LP model (1.1) with the slack variables transforms itself to the standard form

before performing the simplex method. The simplex method can immediately start be-

cause the method has the basic feasible solution at the origin point. For the general LP
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model, the simplex method cannot always start at the origin point due to its infeasibility.

To remedy this issue, artificial variables are used to transform the original LP problem

to the one with the basic feasible solution. Hence, the artificial variables will be added

into the standard form for constructing the first basic feasible solution. After that, the

simplex method can solve this model and the artificial variables will be driven out of the

basic variables. This implies that the current basic feasible solution will be the basic

feasible solution of the original LP problem. This thesis will present the artificial variable

method for solving the general LP model called the two-phase simplex method.

Consider the following model

Maximize
n∑

j=1

cjxij

subject to
n∑

j=1

aijxij ≥ bi, i = 1, 2, ..,m (2.6)

xij ≥ 0, j = 1, 2, ..., n

Sometimes, the first basic feasible solution of this model is hard to derive since the origin

point might not belong to the feasible region. Before performing the simplex method, it

has to find the first basic feasible solution. In 1963, Danzig invented a new method, called

the two-phase simplex method [12], which the first phase will give a basic feasible solution

to the simplex method. It begins with assigning the surplus variables and the artificial

variables to the constraints (“ ≥ ” or “ = ”) and the objective function is changed to

minimize the sum of these artificial variables. They allow the origin point with artificial

variables assign to b. This implies that the simplex method can start to solve the LP

model at the origin point. However, the artificial variables will be driven out of basic in

the final iteration of the first phase. From (2.6), the model will be transformed into (2.7)
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by adding the slacks variables, the surpluses variables, and the artificial variables.

Minimize
m∑
k=1

xai

subject to
n∑

j=1

aijxj − xn+i + xai
= bi, i = 1, 2, ..,m, (2.7)

xj , xai
≥ 0, j = 1, 2, ..., n+m, i = 1, 2, ...,m

where xai
is an artificial variable in the LP model and m is the number of artificial

variables. The phase I begins with setting the coefficients of non-artificial variables in the

objective function to zero i.e. cj = 0 for j = 1, 2, ..., n +m. But the coefficient variable

of the artificial variables will be assigned to 1. At the end of the phase I, the artificial

variables will become the non-basic variables. Consider the following LP problem.

Maximize 2x1 + x2

subject to x1 + x2 ≤ 4

−x1 + x2 ≤ 4

x1 − x2 ≤ 3

x1 + x2 ≥ 1

x1, x2 ≥ 0

Phase I : It can be transformed into the standard form by introducing 3 slack

variables, 1 surplus variables and 1 artificial variable i.e. x3, x4, x5, x6 and xa.

Minimize xa

subject to x1 + x2 + x3 = 4

− x1 + x2 + x4 = 4

x1 − x2 + x5 = 3

x1 + x2 − x6 + xa = 1

x1 , x2 , x3 , x4 , x5 , x6 , xa ≥ 0

There is no obvious basic feasible solution in the original LP model. So the phase I of
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the two-phase method will be used to determine the basic feasible solution of the original

model. The objective function of the following LP model is changed by expressing the

artificial variable xa in term of the non-artificial variables i.e. xa = 1 − x1 − x2 + x6.

After that, the simplex method will search for the optimal solution. Until xa becomes

the non-basic variable, then xa will be dropped out of the model. The optimal solution

of the phase I is the basic feasible solution of the original model. Note that, if xa in the

last simplex tableau is still greater than 0, then this model will be infeasible.

Minimize 1 − x1 − x2 + x6

subject to x1 + x2 + x3 = 4

− x1 + x2 + x4 = 4

x1 − x2 + x5 = 3

x1 + x2 − x6 + xa = 1

x1 , x2 , x3 , x4 , x5 , x6 , xa ≥ 0

Iter. 0 x1 x2 x3 x4 x5 x6 xa rsh

z 1 1 0 0 0 -1 0 1

x3 1 1 1 0 0 0 0 4

x4 -1 1 0 1 0 0 0 4

x5 1 -1 0 0 1 0 0 3

xa 1 1 0 0 0 -1 1 1

zj − cj -2 -1 0 0 0 0 0 0
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Iter. 1 x1 x2 x3 x4 x5 x6 xa rsh

z 0 0 0 0 0 0 -1 0

x3 0 0 1 0 0 1 -1 3

x4 0 2 0 1 0 -1 1 5

x5 0 -2 0 0 1 1 -1 2

x1 1 1 0 0 0 -1 1 1

zj − cj 0 1 0 0 0 -2 2 2

Phase II : Now, the last simplex tableau of the phase I gives the basic feasible

solution of the original LP model i.e. (x1, x2, x3, x4, x5) = (1, 0, 3, 5, 2, 0). Hence the next

phase of the two-phase simplex method will search for the optimal solution.

x1 x2 x3 x4 x5 x6 rsh

Iter.0 z 0 1 0 0 0 -2 2

x3 0 0 1 0 0 1 3

x4 0 2 0 1 0 -1 5

x5 0 -2 0 0 1 1 2

x1 1 1 0 0 0 -1 1

Iter. 1 z -1 0 0 0 0 -1 1

x3 0 0 1 0 0 1 3

x4 -2 0 0 1 0 1 3

x5 2 0 0 0 1 -1 4

x1 1 1 0 0 0 -1 1

The optimal solution of the example above is (x1, x2, x3, x4, x5, x6) = (1, 0, 3, 3, 4, 0)

and the optimal value is 1. The last subsection of this chapter will show the pseudo code

of the two-phase simplex method.
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2.8.1 Pseudo code of the two-phase simplex algorithm

Algorithm 2 The two-phase simplex algorithm
1: Input: an LP problem c,b,A.

2: Output: the optimal solution, unbounded solution, infeasible solution

3: #Phase I

4: cl ← 1 if i is the index of the artificial variable otherwise 0

5: while True do

6: zT
N ← cT

BA−1
B AN − cT

N

7: If zT
N ≤ 0 then BREAK

8: k ← argmax{zT
N}

9: yk ← A−1
B ANk

10: If yk ≤ 0 then

11: If the artificial variables> 0 then STOP return infeasible solution

12: else then STOP return unbounded solution

13: r← A−1
B b

14: l← argmin{ ri
yik
|yik > 0, i ∈ B}

15: B ← (B \ {l}) ∪ {k}

16: N ← (N \ {k}) ∪ {l}

17: If the index of artificial variables is in B then

18: If the artificial variables == 0 then

19: l← the ith row of the artificial variable to be the leaving variable.

20: pivot the artificial indices out of B

21: remove the artificial variables from the simplex tableau

22: If the artificial variables > 0 then STOP

23: return infeasible solution
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Algorithm 2 The two-phase simplex algorithm (continued)
24: #Phase II
25: while True do
26: zT

N ← cT
BA−1

B AN − cT
N

27: If zT
N ≤ 0 then STOP return the current BFS is the optimal solution

28: k ← argmax{zT
N}

29: yk ← A−1
B ANk

30: If yk ≤ 0 then STOP return unbounded solution
31: r← A−1

B b
32: l← argmin{ ri

yik
|yik > 0, i ∈ B}

33: B ← (B \ {l}) ∪ {k}
34: N ← (N \ {k}) ∪ {l}
35: end

2.9 Literature review

There are many researchers trying to improve some aspects of the simplex method

such as the desirable choices of the pivot rule, the favorable starting basic feasible solution.

In 2009, W-C. Yeh, H.W. Corley [3] introduced a pivot rule for reducing the number

of iterations of the simplex method by the cosine technique. They used the gradient

vector of constraints and the objective function to measure sizes of the angle in order

to select the appropriate entering variable. In 2014, M. Tipawanna, K. Sinapiromsaran

[14] proposed the max-out-in pivot rule which was guided by the maximum improvement

before dealing with the objective improvement. They selected the leaving variable from

the maximum of the rsh value to maximize the objective function value before selecting

the entering variable. In 2016, an improvement of the initial vertex using the objective

gradient direction was proposed by N. Yawila et. al. [16] which gave rise to the concept

of the jump. They constructed artificial linearly independent hyperplanes containing

the initial origin vertex forming the smaller feasible region for the simplex method to

move to the next adjacent vertex. The simplex method would move along these artificial

hyperplanes then it shifted to the adjacent vertex from the original LP model before

dropping all artificial hyperplanes. In their result, this jump avoided quite a number of

visiting vertices of the original LP models. But the algorithm added the n-1 artificial

constraints into the LP problem which increased the number of constraints. This came

the simplex method to pivot until all artificial constraints were driven out of the basis.



CHAPTER III

PRECEDING-JUMP SIMPLEX METHOD

The main idea of the preceding-jump simplex method for solving a linear program-

ming (LP) problem is to avoid visiting unnecessary vertices by a jump. The jump is used

for searching a new starting basic feasible solution or a new starting feasible vertex for

the simplex method. This process is called the preceding-jump process. All jump points

in this process will guarantee to be feasible. Therefore the starting point of jumps must

belong to the feasible region and the direction of each jump must point into the feasible

region. The process is divided into two phases which are the initial jump phase and the

jump-to-vertex phase. In the initial jump phase, the method takes the gradient vector of

the objective function to be the first feasible direction of the first jump. Then the initial

jump point will be identified on a hyperplane of the constraints in the LP model using

this direction. Since the initial jump point is normally not a vertex, the jump-to-vertex

phase will be deployed for finding a vertex or a basic feasible solution near the initial

jump point. The vertex becomes the starting vertex or the starting basic feasible solution

of the simplex method.

In this thesis, the concept of the preceding-jump simplex method will be explained

in two situations: the LP problem with the feasible origin point and the LP problem with

the infeasible origin point. For the first situation, the preceding-jump simplex method

can start at the origin point without any artificial technique while in the second situation

it cannot start at the origin point. Therefore, phase I of the two-phase simplex method

is applied before starting the preceding-jump simplex method.

3.1 The linear programming problem with the feasible origin point

In this situation, the origin point is feasible, so the preceding-jump simplex method

will start at this point. In the initial jump phase of the preceding-jump process, the

direction of the first jump is the gradient vector of the objective function. Because the
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point along this direction will maximize the objective function value comparing to the

other directions in term of the unit vector. Hence, the initial jump point will be identified

on the hyperplane of the LP problem for the bounded feasible region. After that, the

point will be shifted to other feasible jump points until it becomes the point of the n

linearly intersecting hyperplanes using the jump-to-vertex phase. Finally, the method

will start to find the optimal solution using the simplex method at the feasible vertex.

The details of both phases will be described in the following subsections.

3.1.1 The initial jump phase

Assume that the feasible region is the nonempty set containing the origin point,

x0 = 0 ∈ Rn, as the initial vertex. The LP problem contains the constraints Aixi ≤

bi, bi ≥ 0 for i = 1, 2, ...,m and xj ≥ 0 for j = 1, 2, ..., n. So the number of all constraints

is equal to m+ n. The point x0 expresses as the starting point of the initial jump phase.

The jump process of this phase will begin with calculating the distance of the jump from

starting point to another point on the hyperplanes along the direction. Since the starting

point binds some hyperplanes then the distance of the jump will always equal to 0. This

would not allow x0 to move along any direction. So the method needs to drop those

hyperplanes or all hyperplanes binding at x0, before doing the jump process. The index

set of the first binding hyperplanes denoted by FB. Since x0 binds to the hyperplanes

initially of the form xj = 0 for j = 1, 2, ..., n. Hence the set of the binding constraints,

FB, contains the indices of {m+1,m+2, ...,m+n} which coresponds to the constraints

of xj ≥ 0 for j = 1, 2, .., n. Moreover, if there is ith constraint in {1, 2, ...,m} such that

Aix = 0 then ith index will also be added into FB. Let the gradient vector of the objective

function, c, be the first direction d0. In the jump process, the point x0 will jump along d0

to xi
1 on the hyperplanes which the point binds to ith hyperplane as shown in Figure 3.1. It

corresponds to Aixi
1 = bi where xi

1 = x0+αi
0d0 for i ∈ {1, 2, ...,m+n}. Before performing

the jump process, the preceding-jump simplex method needs to drop ith constraints in

FB. Because the concept of the jump is to find the point on the hyperplanes along d0

which the point corresponds to the minimum distance between the starting point x0 and

the point on the hyperplane i.e. xi
1, i ∈ {1, 2, ...,m+n}. Each point xi

1 on ith hyperplane
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must be Ai(x0 + αi
0d0) = bi for i ∈ {1, 2, ...,m + n} \ FB. Since x0 is equal to 0, this

implies that αi
0 =

bi
Ai·d0

. To maintain the feasiblity of the jump point as shown in Figure

3.1, the jump point must be the minimum of the positive αi
0 which is defined by x1 = α0d0

where α0 = min
i∈{1,2,...,m+n}\FB

{αi
0} = min

i∈{1,2,...,m+n}\FB

{
bi

Ai · d0
> 0

∣∣∣∣Ai · d0 > 0

}
and Ai

is the gradient vector of ith constraint. Then x1 is called the initial jump point which

belongs to ith constraint. This process can be summarized in five steps

1. Let FB be the set of all binding hyperplanes at x0.

2. Denote the first direction by d0 = c.

3. Compute α0 = min
i∈{1,2,...,m+n}\FB

{
bi

Ai · d0
> 0

∣∣∣∣Ai · d0 > 0

}
.

4. Let r0 = argmin
i∈{1,2,...,m+n}\FB

{
bi

Ai · d0
> 0

∣∣∣∣Ai · d0 > 0

}
.

5. Compute x1 = x0 + α0d0 binding rth0 constraint.

Figure 3.1: The initial jump phase

The starting point of the initial jump phase is x0 = (0, 0) and the jump direction

is d0 = c = [1, 1.5]T . At this point, the hyperplanes xj = 0, j = 1, 2 is binded by x0 then
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the set of the first binding constraints is FB = {3, 4}. From step 3 of the initial jump

phase, α0 is calculated by

α0 = min
i∈{1,2,3,4}\FB

{ bi
Aid0

> 0} =


51

2

 ·
 1

1.5


,

1−1
1

 ·
 1

1.5




= min{5

4
, 2} = 5

4
.

Then the initial jump point is x1 = x0 + α0c = (0, 0) + 1.25(1, 1.5) = (1.25, 1.88) which

is represented by x1
1 in Figure 3.1. The new binding hyperplane is the second hyperplane

so r0 = 2. Notice that the initial jump point is not the vertex of the feasible region so

the simplex method cannot start at this point. Thus it is mandatory to move to a vertex

using the jump-to-vertex phase that shown in the subsection 3.1.2.

For an unbounded LP, the initial jump point may not exist. This implies that the

method encounters the unbounded LP problem. In addition, if the first direction points

away from the feasible region then there is no feasible initial jump point. Therefore, this

direction cannot be used. The new direction that points into the feasible region will be

derived.

3.1.1.1 The kinds of the initial jump

The initial jump point exists on the hyperplane from Figure 3.1 then this type of

the initial jump is called the bounded initial jump. Sometimes the initial jump point

may not exist because there is no hyperplane or edge for blocking the direction. This type

of the initial jump is called the unbounded initial jump. If the jump point breaks out

of the feasible region as shown in Figure 3.4, this type of the initial jump is called the

infeasible jump. When the initial jump point does not belong to the feasible region

then the last jump point or the vertex will not be feasible. This implies that the simplex

method cannot start at that vertex. Thus, the initial jump phase needs to use a new

feasible direction which will be shown in the next subsection.
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Exmaple 3.1

Maximize x1 + 2x2

subject to − x1 + x2 ≤ 2.5 (1)

x1 + 2x2 ≤ 10 (2)

x1 − x2 ≤ 0 (3)

x1 ≥ 0 (4)

x2 ≥ 0 (5)

1. The bounded initial jump

The above problem contains five constraints covering the origin point (0, 0) as shown

in Figure 3.2. The initial jump point is x1 = (2, 4) with d0 = (1, 2), α0 = 2. The initial

jump point binds with the second hyperplane, this jump is called the initial bounded

jump.

Figure 3.2: The initial jump point on the bounded feasible region

2. The unbounded initial jump

Suppose that the first two constraints are removed from the original problem and

added the new constraint (6), −2x1 + 1x2 ≤ 3 into the LP problem which is shown in

Figure 3.3. The initial jump point x1 does not exist because there is no edge for supporting
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the minimum distance of the jump process along d0. This implies that the α0 increases

indefinitely i.e.

α0 = min{ b6
A6 · d0

} = min{ 3−2
1

 ·
1
2


} =∞.

This type of the initial jump is called the unbounded initial jump.

Figure 3.3: Jump into the unbounded feasible region

3. The infeasible jump

The important step of the initial jump phase is to create the initial jump point.

Sometimes the direction d0 points away from the feasible region then increasing only a

small positive value along the direction will violate some constraints. Suppose that the

objective function is to maximize 1.5x1 + x2. Then the new direction takes the point out

of the feasible region as shown in Figure 3.4.
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Figure 3.4: The jump point in the infeasible region

Point x1 violates the third constraint of the LP problem. Violating constraint of

the initial jump point will cause the vertex of the last jump to be infeasible. In Figure

3.5, the new jump point x2 is found after it did the jump-to-vertex phase. Nevertheless,

it does not belong to the feasible region then the simplex method cannot solve this LP

problem using this point.

Figure 3.5: The basic infeasible solution
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Therefore the preceding-jump simplex method needs to avoid using the given di-

rection d0 that points away from the feasible region. The method has to maintain this

problem by jumping with the new direction d′

0 which points into the feasible region. The

new direction will be constructed by the search-direction process which will be shown in

the next subsection.

3.1.1.2 The search-direction process

The basic idea of the search-direction process is to extract the feasible direction

relies on creating the feasible point between two vertices of the polyhedron. Suppose that

the feasible solution set of the LP problem is F = {x ∈ Rn|Ax ≤ b,x ≥ 0,b ≥ 0} and

F is nonempty. Let x1 and x2 be the vertices of the polyhedron. Since all vertices of the

polyhedral correspond to F then Ax1 ≤ b,x1 ≥ 0 and Ax2 ≤ b,x2 ≥ 0. Let x be the

point between x1 and x2 i.e. x = λx1 + (1 − λ)x2 for λ ∈ [0, 1]. Since both of x1 and

x2 are nonnegative value then x is also nonnegative value. Considering for λ ∈ [0, 1] and

x = λx1 + (1− λ)x2 such that

Ax = A(λx1 + (1− λ)x2) = λAx1 + (1− λ)Ax2 ≤ λb + (1− λ)b = b

So point x belongs to F , this implies that it always has the feasible point between two

vertices of the polyhedron. Thus the searching-direction process will find two vertices to

create a new feasible point x. After that the new direction will be created by d′

0 = x−x0.

This direction will take the initial jump point x1 into the feasible region.

Both vertices x1 and x2 are found by performing the simplex tableau. The first step

of this process, the method will construct the first simplex tableau. The method will select

the entering variable which corresponds to the maximum positve reduced cost. Performing

simplex method until it founds the new vertex i.e. x1. After that the method will repeat

the simplex tableau to the first tableau using the entering vaiable which corresponds to

the minimum positive reduced cost. Then the method will pivot until it found another

vertex i.e. x2. Now, the method has two vertices and it already creates the new direction

d′

0 by x1+x2

2 − x0.
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The idea of choosing the entering variables of the first simplex tableau is to find

a feasible improving vector d′

0 that can avoid visiting unnecessary vertices. In other

word, the initial jump point may move far away from these vertices using d′

0. Hence the

direction should lie between x1 and x2. The summary of the searching direction process

is described below.

1. Create the first simplex tableau.

2. Choose the first entering variable from the maximum positive reduced cost of the

non-basic variables.

3. Perform the simplex algorithm until it found the new vertex and denote it by x1.

4. Choose the scond entering variable of the first simplex tableau from the mimimum

positive reduced cost of the nonbasic variables.

5. Perform the simplex algorithm until it found the new vertex and denote it by x2.

6. Transform both x1 and x2 into the normal dimension (n original variables).

7. The new direction is d′

0 =
x1+x2

2 − x0.

Figure 3.6 shows the new direction that it is created using the search-direction process.

It begins by choosing the first entering variable as x1 because the reduced cost of x1 gives

the maximum positve value. The second entering is x2 which the reduced cost gives the

minimum positive value. For the first entering variables, the simplex method will perform

until it reached the new basic feasible solution, (x1, x2, x3, x4, x5) = (3.33, 3.33, 2.5, 0, 0)

or the new vertex x1 = (3.33, 3.33).
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x1 x2 x3 x4 x5 rhs

Iter. 0 z 3/2 1 0 0 0 0

x3 -1 1 1 0 0 5/2

x4 1 2 0 1 0 10

x5 1 -1 0 0 1 0

Iter. 1 z 0 5/2 0 0 -3/2 0

x3 0 0 1 0 1 5/2

x4 0 3 0 0 -1 10

x1 1 -1 0 0 1 0

Iter. 2 z 0 0 0 0 -2/3 -25/3

x3 0 0 1 0 1 5/2

x2 0 1 0 0 -1/3 10/3

x1 1 0 0 0 2/3 10/3

Table 3.1: The simplex tableau of the search-direction process with x1 as the entering
variable.

Considering the first simplex tableau, the method has to resolve the simplex method

from the first tableau by choosing x2 as the entering variable. This time, the simplex

tableau uses only one iteration to find the new basic feasible solution. Then it reaches

out the basic feasible solution such a (x1, x2, x3, x4, x5) = (0, 2.5, 0, 5, 2.5) or the vertex

x1 = (0, 2.5) in Figure 3.6.
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x1 x2 x3 x4 x5 rhs

Iter. 0 z 3/2 1 0 0 0 0

x3 -1 1 1 0 0 5/2

x4 1 2 0 1 0 10

x5 1 -1 0 0 1 0

Iter. 1 z 5/2 0 -1 0 0 -5/2

x2 -1 1 1 0 0 5/2

x4 3 0 -2 1 0 5

x5 0 0 1 0 1 5/2

Table 3.2: The simplex tableau of the search-direction process with x2 as the entering
variable.

The new direction for the jump process is d′

0 =
x1+x2

2 − x0 = (1.665, 2.915).

Figure 3.6: The new direction d′
0 from the search-direction process

From the initial jump phase, it tries to create the initial jump point along the
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direction d0. If the direction points into the bounded feasible region and the starting point

belongs to the feasible region then the initial jump point will exist on the hyperplane of

the LP problem. Some LP problems, the direction not always points into the feasible

region then the new direction d′

0 is used instead of d0. After that, the initial jump point

is embedded on some hyperplanes and it is also a feasible point. This hyperplane is called

the visited hyperplane V . The method will keep the index of the binding hyperplane at

the initial jump point into the set V . In the next phase, the initial jump point will be

shifted to the vertex by jumps. Each jump will maintain the method will keep the index

of the hyperplane which is visited by each jump point into V . The number of elements

of V relates to the number of the intersection of hyperplanes. If the number of visited

constraints V equals to the number of variables of the problem, (n), then it forms the

basic feasible solution or the vertex. If the number of elements of V does not equal to the

number of the variables n, the jump point needs to keep jumping until it binds n linearly

constraints i.e. the vertex. This process will be performed in the jump-to-vertex phase,

which is shown in the next subsection.

3.1.2 The jump-to-vertex phase

The goal of this phase is to find a vertex around the intial jump point by jumps.

In this phase, the initial jump point x1 will be shifted to another feasible point x2 using

the new direction d1 which parallels to the hyperplanes in the set of visited hyperplane,

V . The direction d1 needs to parallel to the hyperplanes in V to guarantee all points will

belong to all constraints in V to be the binding hyperplanes as the previous point. Thus

the direction d1 is created by subtracting the point x′

1 and x1, where x′

1 is derived by

solving Aix
′

1 = bi and Ai is the submatrix A containing ith row of A and i ∈ V . After

that the x1 will move along d1 to bind the remaining constraints in {1, 2,…,m+ n} \ V .

The new point x2 will be blocked by constraint r1 for some r1 ∈ {1, 2,…,m+ n} \ V i.e.

Ar1x2 = br1 . In addition, the new jump point x2 must stays within the feasible region.

Since the jump point is x2 = x1 + α1d1 then Ar1(x1 + α1d1) = br1 . This implies that

α1 =
br1 −Ar1 · x1

Ar1 · d1
. Then the new feasible jump point corresponds to x2 = x1 + α1d1

where α1 =
br1 −Ar1 · x1

Ar1 · d1
= min

i∈{1,2,...,m+n}\V

{
bi −Ai · xk

Ai · dk
≥ 0

∣∣∣∣Ai · dk > 0

}
and
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r1 = argmin
i∈{1,2,...,m+n}\V

{
bi −Ai · xk

Ai · dk
≥ 0

∣∣∣∣Ai · dk > 0

}
.

This process is repeated in 6 steps for finding a vertex.

1. Consider kth jump with xk as the current feasible jump point and V is the set of

all visited constraints.

2. Solve the linear subsystem from all visited hyperplanes to get x′
k. Note that Aix′

k =

bi for i ∈ V , and then the point is defined as x′
k = Ag

V bV where Ag
V is the right

inverse of AV .

3. The direction dk is defined by dk = x′
k − xk if c · dk > 0 and dk = xk − x′

k if

c · dk < 0. Note that if xk = x′

k then dk will be generated using the artificial

hyperplane process which will be shown in the next subsection.

4. Compute αk = min
i∈{1,2,...,m+n}\V

{
bi −Ai · xk

Ai · dk
≥ 0

∣∣∣∣Ai · dk > 0
}

from the set of the

nonbinding constraints, I \ V .

5. Find xk+1 = xk+αkdk and add rk = argmin
i∈{1,2,...,m+n}\V

{
bi −Ai · xk

Ai · dk
≥ 0

∣∣∣∣Ai · dk > 0

}
in V .

6. Repeat steps 1 - 5 until the number of elements of the set V is equal to the number

of variables, n, of the LP problem. Then xk will be the feasible vertex and it is the

starting vertex for the simplex method.

Consider this process with the following LP problem.

Exmaple 3.2

Maximize x1 + 2x2 + 2x3

subject to x1 + x2 + x3 ≤ 1 (1)

x1 ≥ 0 (2)

x2 ≥ 0 (3)

x3 ≥ 0 (4)
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Figure 3.7: The jump-to-vertex phase

From Figure 3.7, the three dimensional LP problem has the constraint x1+x2+x3 ≤

1 covering the origin point. Obviously, the initial jump point x1 of this problem is not

a vertex. Thus, the initial jump point has to be shifted to a vertex before applying the

simplex method. The jump-to-vertex phase needs to generate the new direction d1. The

first step of creating the direction is to find another point on the hyperplane in V = {1}

which is computed by solving A1x′

1 = b1 and let d1 = x′

1 − x1 and it will be tested with

the vector gradient of the objective function, c. If d1 · c > 0 then it is the improving

direction of the LP problem. Otherwise, reset d1 = x1 − x′

1. Now, x2 binds on the

constraints x1 + x2 + x3 ≤ 1 and x1 ≥ 0 then the visited hyperplane is V = {1, 2}.

However, x2 is still not the vertex of the LP problem. So the method will repeat this

process until it reaches the vertex, x3. After that the simplex method will be started at

this point x3.

The above example shows the process to create the direction of the jumps in the

jump-to-vertex phase. Sometimes, the point x′

k and xk are the same point. This implies
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that the direction dk cannot be generated for the jump. Then it can be fixed by solving

with a new linear system having an artificial hyperplane.

3.1.2.1 The artificial hyperplane

The step of generating a direction before doing the jump point is to subtract x′

k

by xk. However, it is possible that both points will be the same point. This implies

that the direction dk will not exist. The method needs to find the new x′

k from the

intersection point between the artificial hyperplane and the hyperplane in V as shown in

Figure 3.8. Then d′

k can be constructed by subtracting both points as shown in the jump-

to-vertex phase to guarantee the increase of the objective value. Considering the artificial

hyperplane, the plane is created from the objective function adding the positive value β

i.e. cTx = z+β where z = cTxk. After that, the intersection point of the hyperplanes in

V and the artificial hyperplane will be solved for finding the new x′

k. Since the point x′

k

is on the improving artificial hyperplane and the hyperplanes in V so the point x′

k cannot

be equal to xk. The process performs 6 steps as follows.

1. Compute z = cTxk.

2. Add some positive β to z to guarantee increase of the objective function value.

3. The artificial constraint is cTx = z + β which is denoted by l.

4. Put the artificial constraint, l, into the set of visited constraints, V, and the new

point is solved using the right inverse as shown in the jump-to-vertex phase, i.e.

x′

k = Ag
ibi for i ∈ V .

5. Remove the artificial hyperplane, l, from V.

6. The direction dk is defined by dk = x′

k − xk.

Considering the following Figure 3.8, the hyperplane x1+x2+x3 = 1 is intesecting

to the artificial hyperplane. Assume that the objective function is 2x1 + x2 + x3. Since

the initial jump point is x1 = (0.5, 0.25, 0.25) thus the current objective function value
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is 1.5. At the second steps of the above process, the objective value at x1 will be added

by the positive value, β. Suppose that the given β is 0.1 then the artificial hyperplane is

2x1 + x2 + x3 = 1.5 + 0.1 = 1.6 and the index of the hyperplane is denoted by l = 5.

Next step, the method has to add lth constraint into the set V. After that the method

has to solve Aix
′

1 = bi for i in V = {1, 5}. The solution of this linear subsystem is

x′

1 = (0.6, 0.2, 0.2). Next, the artificial hyperplane l will be removed from V. Hence the

new improve direction is d′

1 = x′

1 − x1 = [0.1,−0.05,−0.05]T and V = {1}. After that

the method will begin the jump-to-vertex phase at x1 using the direction d′

1.

Figure 3.8: Creating direction in the artificial hyperplane process

All steps of the preceding-jump simplex method for the case of the origin point

belonging to the feasible region of the LP problem will be demonstrated in the example

3.3. The method starts with doing the initial jump phase. After that, the jump-to-vertex

phase will be deployed until it founds the feasible vertex.
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Example 3.3

Maximize x1 + 1.5x2

subject to − x1 + x2 ≤ 1 (1)

x1 + 2x2 ≤ 5 (2)

x1 ≥ 0 (3)

x2 ≥ 0 (4)

Figure 3.9: The feasible region of example 3.3

For the initial jump phase of example 3.3, the LP problem has to find the maximum

solution that corresponds to all constraints. Figure 3.9, the origin point belongs to the

feasible region of the four contraints. The initial jump phase will begin at this point with

the direction d0 = c = [1, 1.5]T . In the initial jump phase, the initial jump point will

be determined by calculating the minimum step of the d0 from the origin point to the

hyperplanes, i.e. α0. Those hyperplanes are −x1 + x2 = 1, x1 + 2x2 = 5, x1 = 0, x2 = 0

respectively and the set of the first binding hyperplanes, FB, is {3, 4}. α0 is calculated
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as

α0 = min
i∈{1,2,3,4}\FB

{ bi
Aic
} =


51

2

 ·
 1

1.5


,

1−1
1

 ·
 1

1.5




= min{5

4
, 2} = 5

4
.

Now, the initial jump point is defined as x1 = α0c = (1.25, 1.875) and the point is

bounded by the second constraint, V = {2}. After that, the initial jump point moves to

the vertex near it using the jump-to-vertex phase.

Figure 3.10: The initial jump phase of example 3.3

Figure 3.10, the initial jump point is not the vertex of the LP problem, so the

method cannot start the simplex method at this point x1. It needs to perform the jump-

to-vertex phase to find the feasible vertex for the simplex method. The process will be

similar to the previous phase but it will use the new direction which gives the improved

objective function value. Before getting that direction, the method will generate another

point on the visited hyperplane V = {2}. Now, the visited hyperplane is x1 + 2x2 = 5

and then the method solves A2x
′

1 = b2 or x
′

1 + 2x
′

2 = 5. In this situation, the matrix
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A2 is the full rank matrix but it is not the square matrix. To solve this problem, the

right inverse of A2 will be used instead of the regular inverse of A2. The right inverse

can be directly computed by Ag
2 = AT

2 (A2AT
2 )

−1, then the solution of A2x
′

1 = b2 is

x′

2 = AT
2 (A2AT

2 )
−1b2 or

x′

1 = AT
2 (A2AT

2 )
−1b2 =

1
2

(
[1, 2]

1
2

)−1

(5) =

1
2

 (15)5 =

1
2

 .

The new point on the hyperplane is x′

1 = (1, 2). The direction d1 is created by sub-

tracting x′

1 and x1 together that is d1 = x′

1−x1 = (1, 2)−(1.25, 1.875) = [−0.25, 0.125]T .

Now, the starting point of the jump-to-vertex phase is x1 and the direction of the jump

process is d1. It is ready to jump to the next hyperplanes. Before starting the jump

process, the method will test d1 whether this direction gives a better objective function

value or not. Testing the direction by performing d1 · c. If d1 · c > 0 so this direction

will improve the objective value otherwise the direction will become −d1. Considering

d1 · c = −0.0625 < 0 then the new direction is d′

1 = −d1 = [0.25,−0.125]T .

Figure 3.11: The jump-to-vertex phase of example 3.3

In the jump process, the method needs to compute the minimum step of d1 := d′

1 from

x1 to the remaining constraints, α1, using the following formula.

αk = min
i∈{1,2,...,m+n}\V

{
bi −Ai · xk

Ai · dk
≥ 0

∣∣∣∣Ai · dk > 0

}
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Then α1 is minimum of bi −Ai · x1

Aid1
≥ 0 where Aid1 > 0, i ∈ {1, 2, 3, 4} and i /∈ V = {1}.

The remaining hyperplanes are the 2, 3, 4 hyperplanes, then the α1 is 15.

α1 = min



1−

−1
1

 ·
 1.25

1.875


−1

1

 ·
 0.25

−0.125


,

0−

1
0

 ·
 1.25

1.875


1
0

 ·
 0.25

−0.125


,

0−

0
1

 ·
 1.25

1.875


0
1

 ·
 0.25

−0.125




= {−1,−5, 15} = 15

Now the new jump point is x2 = x1 + α1d1 = (1.25, 1.875) + 15(0.25,−0.125) =

(1.25, 1.875) + (3.75,−1.875) = (5, 0) belonging to the constraint of x2 ≥ 0 i.e. the

fourth constraints in Figure 3.10. Now, the set of visited constraints is V = {1, 4} and

the number of elements in V is equal to the number of variables, n. Therefore the jump

point x2 is also the vertex of the LP problem. The last step, the preceding-jump simplex

method will start the simplex method at x2 to search for the optimal vertex or the optimal

solution. The result of this problem gives the optimal solution at D = (5, 0) with the

objective value is 5.

The preceding-jump simplex method is an assistance method of the simplex method.

This subsection purposed the complete machanic steps of the new method in case of the

origin vertex is feasible. This is the primary condition for the preceding-jump simplex

method to almost guarantee that all jump points are still feasible. However, the feasibility

of the jump points also depends on the initial direction whether it takes the jump point

to the feasible region or not. If the origin vertex or the starting point of the jump

process belongs to the feasible region but the direction points away from the feasible

region then the jump point will not exist. Then the method will fix this issue by using

the search-direction process. In the next section, the preceding-jump simplex method will

be extended to solve the LP problem in case of the infeasible origin point. The method

will use the same technique to find a new feasible starting point for the preceding-jump

simplex method.
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3.2 The linear programming problem with the infeasible origin point out

The feasible starting point and the feasible direction of the jump process is the

important steps of maintaining the feasibility of each jump point. If the starting point

does not belong to the feasible region then the given vertex of the preceding-jump process

will be infeasible. Thereofore, the starting point of the jump process must belong to

feasible region before performing the jump process. From previous section 3.1, the feasible

starting point immediatly found at the origin point then the method can start the jump

process at this point. However, the general LP problems may not contain the feasible

origin point. This implies that the method does not know where is the feasible starting

point. For this situation, the preceding-jump simplex method needs to find the feasible

starting point using phase I of the two-phase simplex method. The steps of this method

will be described in the example 3.4, the LP problem of the example does not hold the

origin point in the feasible region.

Suppose that the maximization problem contains four constraints and all variables

are positive. If the first direction is d0 = c = [1, 1.5]T and the method did the initial

jump phase with the infeasible starting point x0 = (0, 0) then the jump point x1 does

not belong to the feasible region as shown in Figure 3.12. This implies that the vertex,

after the preceding-jump process is done, might not belong to the feasible region then the

simplex method will not be able to start. The following problem will show the infeasible

jump point in Figure 3.12.

Example 3.4

Maximize x1 + 1.5x2

subject to x1 + 2x2 ≤ 10 (1)

−x1 + x2 ≤ 4 (2)

x1 ≥ 2 (3)

x2 ≥ 2 (4)
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Figure 3.12: Jump into the infeasible region

The preceding-jump simplex method can start if the starting point is feasible. So

the method needs the supporting method for finding the feasible starting point such the

phase I of the two-phase simplex method.

3.2.1 The general preceding-jump simplex method

The general LP problem may not be solvable using the preceding-jump simplex

method unless some feasible point is detected. This issue can be fixed by applying the

first phase of two phases simplex method. Phase I of the two-phase simplex method deals

with the computation of an initial feasible basis, which is then passed over to phase two

of the simplex method described in Chapter II. From the example above, the phase I is

calculated from the following problem.
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Phase I
Minimize xa1

+ xa2

subject to x1 + 2x2 + x3 = 10

−x1 + x2 + x4 = 4

x1 − x5 + xa1
= 2

x2 − x6 + xa2
= 2

x1, x2 ≥ 0

After the method has been completed in phase I, the given vertex from the phase I

is the vertex A = (2, 2) as shown in Figure 3.13. The feasible point x0 = A will become

the starting point of the preceding-jump simplex method in the next phase. Note that

x0 belongs to the constraint x1 ≥ 2 and x2 ≥ 2 then the current binding hyperplanes

are the hyperplanes of x1 = 2 and x2 = 2 i.e. the fifth and the sixth constraint. Thus

the set FB = {5, 6} will be denoted as the first binding hyperplanes. Before doing the

initial jump phase, the method needs to remove the constraints in FB out of the set

I = {1, 2, ...,m+ n} in the jump process.

Phase II (the preceding-jump simplex method)

From this example, phase 1 returns x0 = (2, 2) then the jump process uses this

point to start the initial jump phase of phase II. The jump point will be completed at

x1 = x0+α0d0 where α0 = min
i∈{1,2,...,m+n}\FB

{bi−Aix0

Aid0
|Aid0 > 0,d0 = c and x0 = (2, 2)}.

Similarly to the initial jump phase of the section 3.1, α0 is equal to 1 with the jump point

x1 = (4, 3) = (2, 2) + 1(2, 1) which it binds the first constraint of the LP problem. Thus

r0 = 1 with respect to α0 will be added to V .
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Figure 3.13: The initial jump phase of example 3.4

This implies that the index of the first constraint becomes an element in the set

V . Now the jump point is not the vertex then the jump-to-vertex phase is applying.

Searching the vertex in this phase is similar to the jump-to-vertex phase of the section

3.1. In this step, the new point x′

1 on the hyperplanes in V = {1} will be created and

it is x′

1 = (2, 4). So the new direction is d1 = x′

1 − x1 = (2, 4) − (4, 3) = (−2, 1) and

d1 · c = −0.5 < 0. This implies that this direction will give a decreasing objective value if

it jumps along this direction. Thus the method will convert d1 by d′

1 := −d1. The last

step of this phase is to calculate the minimum step length of the direction d1 from x1 to

the remaining constraints, i.e. α1.

α1 = min
i∈{1,2,3,4}\V



4−

−1
1

 ·
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3


−1

1

 ·
 2

−1


,

2−

1
0

 ·
4
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1
0

 ·
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,

2−

0
1

 ·
4
3


0
1

 ·
 2
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= {−1.667,−1, 1} = 1
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The next jump point is x2 = x1 + α1d1 = x1 + α1d
′

1 = (4, 3) + 1(2,−1) = (6, 2) where

V = {1, 4}. Hence this point is the point of the feasible region and the number of elements

in V is equal to the variables of the LP problem. This implies that the method already has

the vertex for the simplex method. Moreover, the vertex x2 is also the optimal solution.

Figure 3.14: The jump-to-vertex phase of example 3.4

The following subsections will explain all steps of the precding-jump simplex method

in the LP problem without the feasible origin point. It also contains both phases as ap-

peared in the section 3.1. But in this situation, the method has to find the feasible starting

point before starting the jump process. The details of both phases will be described in

the next subsection.

3.2.1.1 The initial jump phase

Assume that the feasible region is a nonempty set containing x0 ∈ Rn as the initial

starting point from phase I. Denote d0 as the first direction and it is equal to c. The initial

jump point is x1 = x0+α0d0 where α0 = min
i∈{1,2,...,m+n}\FB

{
bi −Aix0

Ai · d0
> 0

∣∣∣∣Ai · d0 > 0

}
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and Ai is the gradient vector of each constraint.

1. Denote FB is the set of the first binding constraint.

2. Convert the vertex or the basic feasible solution from phase I of the two-phase

simplex method into its original dimension (remove the artificial variable and slack

variable from phase I) then the point has only n components.

3. Denote the vertex by x0 which is called the starting point of the preceding-jump

simplex method.

4. Define the first jumping direction c as d0.

5. Calculate α0 = min
i∈{1,2,...,m+n}\FB

{
bi −Aix0

Ai · d0
> 0

∣∣∣∣Ai · d0 > 0

}
.

6. The initial jump point is x1 = x0+α0d0 and the method has to check the feasibility

of the point by substituting the point into every constraint.

7. If the jump point violates some constraints (the jump point breaking out of the

feasible region) then the d0 will be changed to d′

0 which it is created from the

search-direction process.

8. The initial jump phase will be repeated step 5 and 6 until it absolutely obtains the

initial feasible jump point.

9. Keep the last visited constraint r0 into V where

r0 = argmin
i∈{1,2,...,m+n}\FB

{
bi −Aix0

Ai · d0
> 0

∣∣∣∣Ai · d0 > 0

}
.

The example 3.4 is shown an overview of the preceding-jump simplex method in the

phase II with the feasible jump point. In the general LP problem, the jump point may

not be feasible if the first direction, d0, points away from the feasible region. Then this

problem will be fixed by creating the new feasible direction d′

0 using the search-direction

process. Assume that example 3.4 has another infeasible direction d0 = [−1, 1]T .
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Maximize − x1 + x2

subject to x1 + 2x2 ≤ 10 (1)

−x1 + x2 ≤ 4 (2)

x1 ≥ 2 (3)

x2 ≥ 2 (4)

Phase I : the infeasible jump which shows in the following figure.

Figure 3.15: Jump into the infeasible region

Considering the initial jump point along the gradient vector of the objective function

c = d0. Then the new point from the initial jump phase is the point with the minimum

distance between the initial vertex A and every hyperplane along that direction. The

first hyperplane blocks points along the current direction. Thus the new jump point is

x1 = (1.5, 2.5). Notice that, the point binds hyperplane 2 but it is not feasible. Then the
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method does not have enough the feasible basic variables to do the simplex method. It

fixes this issue in the search-direction process.

3.2.2 The search-direction process

Since the direction c or d0 points away of the feasible region then every jump point

will become the infeasible point. Fixing the issue, the preceding-jump simplex method has

to use another direction, d′

0. The direction is created by the sumation of the directions

that point into the feasible region. In addition, this direction needs to make an acute

angle to the gradient objective function i.e. the direction c. Hence the direction d′

0

defines as the average vector of intersection between the artificial hyperplane and the

visited hyperplanes. This direction is going to be created in 7 steps.

1. Define AC is the set of the acute angle of each gradient vector of constraints and

c i.e. the angle of c and Ai for i = 1, 2, ...,m+ n.

2. After phase I completes, the method will select the acute angle from step 1 which

the index of the hyperplanes in FB and put them into the AC.

3. If AC is an empty set then start the simplex method for finding the vertices x1

and x2 as shown in the search-direction process in the previous scenario then d0 =

x1+x2

2 −x0. Otherwise, it has to create an artificial hyperplane by cTx = cTx0+β

where x0 is the given feasible vertex from phase I of the two-phase simplex method

and β is a positive instance.

4. The intersection point of the artificial hyperplane and the hyperplanes in AC will

be solved using the right inverse of Aj and c, i.e. x′

0j
= Ag

jbj , j ∈ AC. Note that

if there are constraints in AC which is represented by ‘‘ = ” then x′

0j
will be solved

only these constraints.

5. Generate the direction from d0j
= x′

0j
− x0 for all j in AC.

6. Do the initial jump phase with these directions d0j
then checking those jump points

whether it violates some constraints. If the jump point did not violate the con-



58

straints, it will be combined into the new direction i.e d′

0 =

L∑
j=1

d0j
where j ∈ AC.

If all jump points using d0j
violate some constraints then d′

0 will be create from

the search-direction process from the previous phase.

7. Do the initial jump phase with the direction d′

0.

Figure 3.16 shows the new direction d′

0 that it was created using the search-direction

process. It keeps the active constraints of the first binding hyperplanes FB into the set

of acute angle constraints AC using θi = arccos( Aic
∥Ai∥∥c∥), i ∈ FB. So the starting point

is the vertex A = (2, 2) and the active constraints are x1 ≥ 2, x2 ≥ 2. Note the angle

of their gradients is computed by θ = {arccos A3c
∥A3∥∥c∥ , arccos A4c

∥A4∥∥c∥} = {59.03, 30.96}.

Both make the acute angle to c then AC = {3, 4}. The next step, the method has to create

an artificial hyperplane using cTx = cTx0 + β which assume β is equal to 1. Considering

the value of the objective function at the vertex A, cTx0 = −(2) + 1(2) = 0 then the

artificial hyperplane is −x1 + x2 = 0 + 1 = 1. The next step of the search-direction

process is to solve the equations Ai, i in AC and −x1 + x2 = 1. Then the intercept point

of both hyperplanes are {(1, 2), (2, 3)} respectively. This implies that the new directions

are d′

03
= x′

03
−x0 = (1, 2)−(2, 2) = [−1, 0]T and d′

04
= x′

04
−x0 = (2, 3)−(2, 2) = [0, 1]T .

The method will perform the initial jump with these directions and checking the feasiblity

of those jump points which are {(1, 2), (2, 3)} but (1,2) violates 4th constraint. Then the

direction d′

0 is [0, 1]T which is shown in Figure 3.16. After that the preceding-jump will

take d′

0 to create the initial jump point in the initial jump phase.
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Figure 3.16: New direction from the search-direction process

From the figure above, the initial jump point is the point B = (2, 3). Moreover the

point B is also the vertex. Then another phase such a jump to vertex phase does not

need to do anything at the jump point. Now it is ready to do the simplex method at this

vertex for searching the optimal solution. In the general of the LP problem, the initial

jump point might not be a vertex yet. So the method has to do such a jump-to-vertex

phase as well.

3.2.2.1 Pseudo code of the general preceding-jump simplex algorithm

Before starting the preceding-jump simplex algorithm, the method has to find the

feasible starting point from phase I of the two-phase simplex method. Then, both the

initial jump phase and the jump-to-vertex phase will be combined together for findding a

vertex. After that the simplex method will begin at the vertex. All steps of the algorithm

will be shown in the following algorithm 3.
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Algorithm 3 The general preceding-jump simplex algorithm
1: procedure PJS(c,b,A)
2: Input: an LP problem c,b,A
3: Output: the optimal solution x = {x1, ..., xn}
4: #Phase 1
5: while True do
6: zT

N ← cT
BA−1

B AN − cT
N

7: If zT
N ≤ 0 then STOP return (xB,xN)

8: k ← argmax{zT
N}

9: yk ← A−1
B ANk

10: If yk ≤ 0 then STOP return infeasible solution
11: r← A−1

B b
12: l← argmin{ ri

yik
|yik > 0, i ∈ B}

13: B ← (B \ {l}) ∪ {k}
14: N ← (N \ {k}) ∪ {l}
15: If xak ∈ xB and xak = 0 for some k = {1, 2, .., l} then
16: xB ← pivot the artificial out of xB

17: else xak ∈ xB and xak > 0 for some k = {1, 2, .., l} then
18: return infeasible solution
19: x0 ← (xB,xN)
20: #Initial jump phase
21: FB ← Keep the indices of bindding hyperplanes at x0

22: x0 ← Remove slack and surplus variables from x0

23: d0 ← c the gradient objective function
24: r0 ← argmin{ bi−Ai·x0

Ai·d0
> 0|Ai · d0 > 0, i ∈ {1, 2, ...,m+ n} \ FB}

25: α0 ←
br0−Ar0 ·x0

Ar0 ·d0

26: x1 ← x0 + α0d0

27: V ← V ∪ {r0}
28: If x1 violates some constraints then
29: #The search-direction process
30: AC ← {i ∈ FB|arccos( Ai·c

∥Ai∥∥c∥) > 0}
31: If AC is an empty set then
32: x1 ← the vertex from the simplex algorithm using the entering
33: variable from the maximum positive reduce cost
34: x2 ← the vertex from the simplex algorithm using the entering
35: variable from the minimum positive reduce cost
36: d0 ← x1+x2

2
− x0

37: else
38: ψ ← cTx0 + β where β ∈ R+
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Algorithm 3 The preceding-jump simplex algorithm (continued)
39: Ac ← the artificial hyperplane cTx = ψ
40: for i in AC
41: G← {i} ∪ {c}
42: x′

i ← Ag
GbG

43: G← G \ {i}
44: d′

i ← x′
i − x0

45: If d′
i does not violate any constraint then

46: d0 ←
∑

j d′
i

47: else do the step 32 to36
48: x1 ← repeat steps 21 to 27
49: #Jump-to-vertex phase
50: while |V | < n do
51: x′

k ← Ag
V bV where k is kth jump point

52: If xk = x′

k then
53: #The artificial hyperplane process
54: ψ ← cTx0 + β where β ∈ R+

55: Ac ← the artificial hyperplane cTx = ψ
56: V ← V ∪ {c}
57: x′

k ← Ag
V bV

58: V ← V \ {c}
59: d′

0 ← x′

k − xk

60: else
61: dk ← x′

k − xk

62: If c · dk < 0 then
63: dk ← −dk

64: xk+1 ← xk + αkdk

65: rk ← argmin
i∈{1,2,..,m+n}\V

{
bi−Ai·xk

Ai·dk
≥ 0 |Ai · dk > 0

}
in V

66: V ← V ∪ {rk}
67: end
68: xN ← the slack variables in V
69: xB ← xi /∈ xN where i ∈ {1, 2, ...,m+ n}
70: #The simplex algorithm
71: while True do
72: zT

N ← cT
BA−1

B AN − cT
N

73: If zT
N ≤ 0 then STOP return the current BFS is the optimal solution

74: k ← argmax{zT
N}

75: yk ← A−1
B ANk

76: If yk ≤ 0 then STOP return infeasible solution
77: r← A−1

B b
78: l← argmin{ ri

yik
|yik > 0, i ∈ B}

79: B ← (B \ {l}) ∪ {k}
80: N ← (N \ {k}) ∪ {l}
81: end



CHAPTER IV

EXPERIMENTS AND RESULTS

Performance of the preceding-jump simplex method (PJS) is evaluated by applying

to the randomly generated LP problems in two scenarios. The first scenario deals with

the LP model having the feasible origin point. In other words, this model can be directly

solved by the simplex method (SPX). In the second scenario, the assumption is that the

feasible region does not contain the origin point. PJS together with the phase I of the

two-phase simplex method had been used. The details of the randomly generated LP

problems will be presented in the next section and the performance will be reported.

4.1 Randomly generated problems with the feasible origin point

The synthetic LP problems in this thesis consist of randomly generated Ax ≤ b

constraints, x ≥ 0 and b ≥ 0. The number of variables and constraints are set to be the

same n varying from n = 100 to n = 2500. Each of the results in the table 4.1 shows

the average of iterations and the average of running time from 10 randomly LP problems.

The randomly generated LP coefficients are created according to the following criteria,

ci, aij ∈ [−9, 9] and xj ∈ [0, 9]. Then the vector b is computed from b = Ax · sign(Ax)

where the function sign returns the negative or positive of Ax. In order to guarantee the

positivity of b, let b = Ax · sign(Ax). Then the rhs vector b is added by the positive

vector [5, . . . , 5]T to confirm Ax ≤ b. Table 4.1 shows the experimental results of both

methods by their iterations, time (sec.) and improvement (%). Each column of the table

is separated into two subcolumns which contain the average number of iterations and the

average total running time of both methods. In addition to the running-time column, the

results are shown by the jumping time of the jump process and the total running time

of PJS. The last two columns of the table show the improvement of PJS for saving the

number of simplex iterations and running time. Improvement of iterations and time are
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computed as follows,

Improvement of the number of iterations = (
SPX iterations− PJS iterations

SPX iterations )× 100

and

Improvement of time = (
SPX time− PJS time

SPX time )× 100.

Hence, the positive value indicates the improvement over SPX and the negative value

indicates the deterioration over SPX.

Iterations Time (sec.) Improvement (%)

(m,n) PJS SPX
PJS SPX

Iterations Time
Jump Total Total

100 114.700 290.900 0.052 0.142 0.200 60.571 28.778

200 403.700 1109.400 0.178 0.813 1.429 63.611 43.149

300 801.800 2399.900 1.771 3.615 5.078 66.590 28.821

400 1247.300 4384.700 4.398 8.095 12.147 71.553 33.364

500 2297.500 6911.200 9.512 18.141 24.888 66.757 27.110

600 2702.300 10070.100 16.674 29.385 45.456 73.165 35.356

700 3846.500 13766.000 28.601 50.475 76.190 72.058 33.751

800 5348.600 19258.800 51.570 88.151 129.567 72.228 31.965

900 6736.400 24028.600 77.805 132.438 192.230 71.965 31.105

1000 8152.200 29724.400 111.712 189.818 279.815 72.574 32.163

1200 11035.700 44402.800 207.542 351.501 565.440 75.146 37.836

1400 14257.300 60331.400 331.380 561.641 962.533 76.368 41.650

1600 18233.300 79008.700 562.844 922.446 1545.439 76.922 40.312

1800 24886.800 106142.200 781.395 1404.140 2621.985 76.553 46.447

2000 30190.300 132224.300 1115.499 2007.276 3875.009 77.167 48.199

2500 43452.700 203917.700 2273.835 4089.269 8481.765 78.691 51.788

Table 4.1: The results of randomly generated problems with the origin point in the
feasible region

The results of both methods are confirmed by the open software PULP to check the
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optimal objective value from PJS and SPX which are the same for all cases. In the im-

provement column, it clearly shows the number of iterations that is reduced significantly.

PJS can also save the total running time of solving the LP problems better than SPX.

Figure 4.1: The average number of iterations of PJS and SPX

In Figure 4.1, the graph shows the average iterations of PJS comparing with the

original simplex method, SPX. In this scenario, the method saved the number of iterations

more than half of SPX for the LP problems having more than 2500 variables. Figure 4.2

shows the result of the average total running time that is spent by PJS and it can save

about 30% of running time of SPX. In addition, if the problem has more variables, n,

than 2500 variables, it can reduce more than 70% of the number of iterations.
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Figure 4.2: The time average of PJS and SPX

4.2 Randomly generated problems with the infeasible origin point

The synthetic LP problems in this scenario consist of Ax ⊕ b constraints x ≥ 0

and b⊕ 0 where ⊕ is one of ≤,=,≥. The number of variables and constaints are set to

the same value n varying from n = 100 to n = 1000. Each of the results in Table 4.2

expresses as the average of iterations and the average total running time from 10 ran-

domly LP problems. The randomly generated LP coefficients are created according to the

following criteria, ci, aij ∈ [−9, 9] and xj ∈ [0, 9]. The vector b is computed by b = Ax.

Then the components of vector b are separated into two cases that is bi ≥ 0 for some

i ∈ {1, 2, ...,m} and bj < 0 for some j ∈ {1, 2, ...,m}. For ith component of bi ≥ 0, the

Aix = bi is converted to Aix ≤ bi by adding 5 to bi. If bj < 0 for some j ∈ {1, 2, ...,m},

the coefficients of Aj and bj are converted by −1 ∗Ajx and −1 ∗ bj , respectively. These

constraints are denoted by Ajx ≥ bj for some j ∈ {1, 2, ...,m}. Hence the vector b ≥ 0

and the problem contain the inequality. Table 4.2 shows the experimental results of both

methods in three main columns such that the iteration, time (sec.) and the improvement

(%). Each column of the table is separate into two subcolumns which contains the average

number of iterations and the average total running of both methods. In addition to the

running-time column, the results are shown by the jumping time of the jump process and
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the total running time of PJS. The last two columns of the table show the improvement

of PJS for saving the number of simplex iterations and the total running time.

Iterations Time (sec.) Improvement (%)

(m,n) PJS two phase SPX
PJS two phase SPX

Iterations Time
Jump Total Total

100 367.800 1008.200 0.052 0.347 0.640 63.519 45.768

200 1026.300 4446.600 0.255 1.822 5.809 76.919 68.631

300 2141.600 10806.100 0.717 5.974 23.704 80.182 74.798

400 1879.600 20009.300 1.575 9.219 64.151 90.606 85.629

500 756.500 31549.500 3.285 9.708 141.146 97.602 93.122

600 196.900 48011.333 5.867 12.092 332.921 99.590 96.368

700 1038.400 66632.333 10.306 33.809 1003.971 98.442 96.632

800 80.500 85628.000 17.382 33.068 2578.906 99.906 98.718

900 176.100 111799.000 25.339 47.995 4769.367 99.842 98.994

1000 63.667 138894.000 41.221 63.911 6732.708 99.954 99.051

Table 4.2: The results of randomly generated problems with the infeasible origin point

The table above shows the average number of iterations and the total running time.

In addition, the last column shows the improvement of the average iterations and the

average total running time. The improvement is computed by

Improvement of time =

(
two phase SPX time− PJS time

two phase SPX time

)
× 100,

and

Improvement of iterations =
(

two phase SPX iterations− PJS iterations
two phase SPX iterations

)
× 100.

Data from Table 4.2 is plotted as Figure 4.3 and Figure 4.4.



67

Figure 4.3: The average number of iterations of PJS and two phase SPX

Figure 4.4: The time average of PJS and two phase SPX in general LP problems
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Figure 4.5: The average running time of two phase SPX

Figure 4.5 shows the average of the two-phase simplex running time from 100 to

1000 variables then the graph were compared with the total PJS running time in the next

figure. In Figure 4.6, the running time of PJS method is shown into two parts: the time

of the jumps and the time of performing the simplex iterations.

Figure 4.6: The average running time of PJS
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It is clear that PJS method is able to save the running time more than the two-

phase simplex method. Especially in the problems with 1000 variables, PJS can save the

total running time more than 100 times of the two-phase simplex method.

Figure 4.7: The improvement of PJS method

Figure 4.7 shows the improvements of PJS method in terms of the saving time

percentage and the saving iteration percentage. For 100 variables, PJS method saved

the average total running time about 60% and reduced the number of iterations about

48.95%. The graph continuously increases until 600 variables and then the graph is

absolutely improved to 99% of the saving time and iterations.



CHAPTER V

CONCLUSIONS AND FUTURE WORK

The preceding-jump process is used to reduce the number of iterations of the simplex

method and the total running time of solving LP problems. This process is separated into

two phases. In the initial jump phase, the feasible starting point is shifted to the initial

jump point. The jump point will be continuously shifted to the vertex using the jump-

to-vertex phase. After that, the simplex method will start at the vertex searching for the

optimal solution.

5.1 Conclusions

As a result of the preceding-jump simplex method (PJS) and the traditional simplex

method (SPX), PJS outperforms the simplex method (SPX) and the two-phase simplex

method (two-phase SPX). The computational experiments are separated into two scenar-

ios, the first one uses PJS without any artificial technique. PJS can save about 30% on

average total running time of SPX. Moreover, if the LP problems have the number of

variables more than 2500 then the average total running time of solving the LP problems

are reduced more than 50%. For SPX iterations, the average of iterations of SPX can

be reduced more than 70% if the LP problems have the number of variables more than

2500 variables. The second scenario, PJS is extended to solve the general LP problems

by applying the phase I of two-phase SPX. Both methods are also measured by the num-

ber of iterations and the total running time that PJS absolutely saves the iterations and

the total running time more than 90%. Hence, PJS is significantly faster than SPX and

two-phase SPX, especially the LP problems size bigger than 2,500 variables.
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5.2 Future work

This thesis is the first to implement PJS on the randomly generated problems with

equal number of variables and constrains. Further work is needed to test when the number

of constraints is more than the number of variables. Moreover, it will be more practical

to test this method on the LP prolems from nelib.

In the general LP problem, PJS still requires to perform phase I of the two-phase

simplex method to determine the first feasible point before it starts the method. It may

speed up computation time if phase I is not used. Then the next goal is to develop the

preceding-jump simplex method to solve that problem without using phase I. Moreover,

PJS may not need the simplex method to solve the LP problem. A user should be able

to use other methods after finding the last jump point.



REFERENCES

[1] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali. Linear Programming and Network

Flows. Wiley-Interscience, New York, NY, USA, 2004.

[2] D G Chetwynd. Applications of linear programming to engineering metrology. Pro-

ceedings of the Institution of Mechanical Engineers, Part B: Management and engi-

neering manufacture, 199(2):93–100, 1985.

[3] H.W. Corley, J. Rosenberger, W.-C. Yeh, and T.K. Sung. The cosine simplex al-

gorithm. The International Journal of Advanced Manufacturing Technology, 27(9):

1047–1050, 02 2006.

[4] G. B. Dantzig. Linear Programming and Extensions. Princeton University Press,

Princeton, NJ, 1963.

[5] G. B. Dantzig. Reminiscences About the Origins of Linear Programming, pages

78–86. Springer Berlin Heidelberg, Berlin, Heidelberg, 1983.

[6] Ajibode Ilesanmi, FAGOYINBO I.S., AKINBO R.Y., and OLANIRAN Y.O.A. Max-

imization of profit in manufacturing industries using linear programming techniques:

Geepee nigeria limited. 09 2011.

[7] Raluca Ion and Adrian Turek Rahoveanu. Linear programming in agriculture: Case

study in region of development south-mountenia. International Journal of Sustain-

able Economies Management, 1, 01 2012.

[8] Fahad Javed and Naveed Arshad. On the use of linear programming in optimizing

energy costs. pages 305–310, 11 2008.

[9] Muztoba Khan. Transportation cost optimization using linear programming. 12

2014.

[10] D. Mahto. Linear Programming (Graphical Method). 03 2015.



73

[11] F. A. Potra and S. J. Wright. Interior-point methods. Journal of Computational and

Applied Mathematics, 124(1–2):281––302, 2000.

[12] M. Sakarovitch. The Two Phases of the Simplex Method: Theoretical Results Proved

by Application of the Simplex Method, pages 95–108. Springer New York, New York,

NY, 1983.

[13] T. Terlaky and E. Klafszky. Some generalizations of the criss-cross method for

quadratic programming. Optimization, 24, 09 1999.

[14] M. Tipawanna and K. Sinapiromsaran. Max-out-in pivot rule with dantzig’s safe-

guarding rule for the simplex method. Journal of Physics: Conference Series, 490,

02 2014.

[15] Anatoly Vershik. L.V. kantorovich and linear programming. 08 2007.

[16] N. Yawila, B. Intiyot, and K. Sinapiromsaran. Simplex method with objective jump.

International Conference on Applied Statistics, 2016.



APPENDIX



75



76

(m
,n

)
N

o.
pr

ob
le

m
s

P
JS

tw
o

ph
as

e
SP

X

T
im

e(
se

c.
)

It
er

at
io

ns
In

iti
al

T
im

e
(s

ec
.)

It
er

at
io

ns

P
ha

se
1

Ju
m

p
To

ta
l

ph
as

e
I

SP
X

di
re

ct
io

n
P

ha
se

I
To

ta
l

P
ha

se
I

ph
as

e
II

10
0

1
0.

06
3

0.
07

0
0.

39
1

15
5.

00
0

39
9.

00
0

d
′ 0

0.
05

9
0.

69
3

15
5.

00
0

11
11

.0
00

2
0.

05
7

0.
05

4
0.

29
8

14
4.

00
0

25
7.

00
0

d
′ 0

0.
05

5
0.

65
4

14
4.

00
0

10
30

.0
00

3
0.

06
2

0.
05

4
0.

34
2

16
4.

00
0

29
5.

00
0

d
′ 0

0.
07

0
0.

81
6

16
4.

00
0

11
20

.0
00

4
0.

05
2

0.
05

5
0.

29
9

13
5.

00
0

34
4.

00
0

d
′ 0

0.
05

2
0.

65
1

13
5.

00
0

99
0.

00
0

5
0.

05
7

0.
05

0
0.

39
0

14
1.

00
0

45
7.

00
0

d
′ 0

0.
05

0
0.

57
1

14
1.

00
0

91
4.

00
0

6
0.

05
5

0.
04

7
0.

39
0

15
2.

00
0

46
4.

00
0

d
′ 0

0.
05

5
0.

60
8

15
2.

00
0

98
1.

00
0

7
0.

05
0

0.
04

7
0.

29
4

14
1.

00
0

26
9.

00
0

d
′ 0

0.
05

1
0.

61
2

14
1.

00
0

98
9.

00
0

8
0.

05
6

0.
04

7
0.

34
4

15
3.

00
0

37
9.

00
0

d
′ 0

0.
05

4
0.

60
9

15
3.

00
0

98
6.

00
0

9
0.

04
8

0.
05

1
0.

35
0

12
9.

00
0

38
8.

00
0

d
′ 0

0.
04

7
0.

61
6

12
9.

00
0

10
18

.0
00

10
0.

05
2

0.
04

7
0.

37
2

14
3.

00
0

42
6.

00
0

d
′ 0

0.
05

1
0.

57
3

14
3.

00
0

94
3.

00
0

av
er

ag
e

0.
05

5
0.

05
2

0.
34

7
14

5.
70

0
36

7.
80

0
0.

05
5

0.
64

0
14

5.
70

0
10

08
.2

00

S.
D

.
0.

00
5

0.
00

7
0.

03
9

10
.3

39
74

.5
43

0.
00

6
0.

07
2

10
.3

39
65

.5
71

20
0

1
0.

34
8

0.
28

9
2.

02
0

35
5.

00
0

95
8.

00
0

d
′ 0

0.
34

6
6.

54
2

35
5.

00
0

44
17

.0
00

2
0.

28
9

0.
25

3
1.

95
5

35
0.

00
0

10
89

.0
00

d
′ 0

0.
30

2
5.

75
3

35
0.

00
0

43
56

.0
00

3
0.

31
0

0.
25

4
1.

99
1

35
3.

00
0

11
09

.0
00

d
′ 0

0.
31

0
5.

68
2

35
3.

00
0

42
98

.0
00

4
0.

27
4

0.
25

2
1.

76
8

33
6.

00
0

10
29

.0
00

d
′ 0

0.
26

8
5.

44
5

33
6.

00
0

43
78

.0
00

5
0.

29
0

0.
23

2
1.

81
8

35
2.

00
0

10
72

.0
00

d
′ 0

0.
27

8
5.

97
6

35
2.

00
0

44
40

.0
00

6
0.

33
3

0.
30

0
2.

22
2

34
7.

00
0

11
31

.0
00

d
′ 0

0.
34

0
6.

17
2

34
7.

00
0

44
83

.0
00

7
0.

29
5

0.
23

0
1.

56
4

36
8.

00
0

84
9.

00
0

d
′ 0

0.
29

5
5.

86
4

36
8.

00
0

47
32

.0
00

8
0.

27
7

0.
24

8
1.

84
8

35
1.

00
0

10
94

.0
00

d
′ 0

0.
27

9
5.

74
2

35
1.

00
0

46
16

.0
00

9
0.

29
2

0.
24

1
1.

76
9

36
4.

00
0

10
31

.0
00

d
′ 0

0.
29

0
5.

28
6

36
4.

00
0

42
45

.0
00

10
0.

27
4

0.
24

5
1.

26
8

34
9.

00
0

90
1.

00
0

d
′ 0

0.
28

4
5.

62
5

34
9.

00
0

45
01

.0
00

av
er

ag
e

0.
29

8
0.

25
5

1.
82

2
35

2.
50

0
10

26
.3

00
0.

29
9

5.
80

9
35

2.
50

0
44

46
.6

00

S.
D

.
0.

02
5

0.
02

3
0.

26
4

8.
83

5
94

.4
19

0.
02

6
0.

36
0

8.
83

5
14

5.
67

6



77

(m
,n

)
N

o.
pr

ob
le

m
s

P
JS

tw
o

ph
as

e
SP

X

T
im

e(
se

c.
)

It
er

at
io

ns
In

iti
al

T
im

e
(s

ec
.)

It
er

at
io

ns

P
ha

se
1

Ju
m

p
To

ta
l

ph
as

e
I

SP
X

di
re

ct
io

n
P

ha
se

I
To

ta
l

P
ha

se
I

ph
as

e
II

30
0

1
0.

84
3

0.
75

9
7.

15
7

60
5.

00
0

26
07

.0
00

d
′ 0

0.
83

1
24

.6
39

60
5.

00
0

11
07

0.
00

0

2
0.

90
9

0.
72

9
6.

97
8

68
5.

00
0

24
93

.0
00

d
′ 0

0.
94

6
24

.6
38

68
5.

00
0

10
48

2.
00

0

3
0.

79
0

0.
73

5
5.

31
7

58
6.

00
0

17
89

.0
00

d
′ 0

0.
79

3
24

.9
62

58
6.

00
0

11
26

8.
00

0

4
0.

77
9

0.
68

4
6.

41
5

59
6.

00
0

24
83

.0
00

d
′ 0

0.
76

8
23

.0
82

59
6.

00
0

10
66

0.
00

0

5
0.

94
5

0.
86

6
6.

37
7

68
8.

00
0

19
15

.0
00

d
′ 0

1.
07

7
24

.0
13

68
8.

00
0

11
16

6.
00

0

6
0.

78
1

0.
65

6
1.

73
1

60
3.

00
0

12
4.

00
0

d
0

0.
77

7
22

.3
86

60
3.

00
0

10
72

4.
00

0

7
0.

80
5

0.
68

5
6.

46
2

62
9.

00
0

25
03

.0
00

d
′ 0

0.
80

1
23

.7
72

62
9.

00
0

10
83

3.
00

0

8
0.

75
8

0.
69

4
5.

66
4

59
0.

00
0

21
03

.0
00

d
′ 0

0.
74

2
21

.6
15

59
0.

00
0

10
35

7.
00

0

9
0.

74
5

0.
68

3
6.

87
5

58
7.

00
0

27
25

.0
00

d
′ 0

0.
75

1
23

.7
49

58
7.

00
0

10
58

2.
00

0

10
0.

73
5

0.
67

7
6.

76
0

57
8.

00
0

26
74

.0
00

d
′ 0

0.
81

1
24

.1
78

57
8.

00
0

10
91

9.
00

0

av
er

ag
e

0.
80

9
0.

71
7

5.
97

4
61

4.
70

0
21

41
.6

00
0.

83
0

23
.7

04
61

4.
70

0
10

80
6.

10
0

S.
D

.
0.

07
0

0.
06

1
1.

59
7

40
.3

43
77

8.
81

1
0.

10
4

1.
06

2
40

.3
43

30
0.

19
1

40
0

1
1.

69
2

1.
71

7
14

.0
11

87
7.

00
0

32
30

.0
0 0

d
′ 0

1.
70

9
65

.3
41

87
7.

00
0

19
85

4.
00

0

2
1.

57
0

1.
57

9
3.

64
6

81
6.

00
0

13
9.

00
0

d
0

1.
54

2
66

.3
53

81
6.

00
0

19
71

6.
00

0

3
1.

73
7

1.
58

5
4.

16
5

90
2.

00
0

24
6.

00
0

d
0

1.
73

7
66

.8
77

90
2.

00
0

20
55

6.
00

0

4
1.

62
9

1.
59

2
14

.4
19

88
4.

00
0

36
03

.0
00

d
′ 0

1.
61

2
60

.8
43

88
4.

00
0

19
18

8.
00

0

5
1.

64
2

1.
52

4
3.

60
8

88
4.

00
0

12
7.

00
0

d
0

1.
64

2
63

.4
33

88
4.

00
0

19
85

7.
00

0

6
1.

61
0

1.
56

1
15

.4
28

87
1.

00
0

39
90

.0
00

d
′ 0

1.
61

3
62

.4
63

87
1.

00
0

19
86

5.
00

0

7
1.

72
6

1.
56

7
14

.6
36

94
2.

00
0

36
55

.0
00

d
′ 0

1.
72

4
65

.7
75

94
2.

00
0

20
38

6.
00

0

8
1.

58
9

1.
54

8
3.

47
0

86
3.

00
0

91
.0

00
d
0

1.
58

7
64

.5
68

86
3.

00
0

20
51

4.
00

0

9
1.

68
6

1.
57

5
15

.2
73

92
4.

00
0

36
10

.0
0 0

d
′ 0

1.
68

0
64

.2
40

92
4.

00
0

20
35

1.
00

0

10
1.

64
2

1.
50

8
3.

53
5

90
1.

00
0

10
5.

00
0

d
0

1.
65

2
61

.6
19

90
1.

00
0

19
80

6.
00

0

av
er

ag
e

1.
65

2
1.

57
5

9.
21

9
88

6.
40

0
18

79
.6

0 0
1.

65
0

64
.1

51
88

6.
40

0
20

00
9.

30
0

S.
D

.
0.

05
7

0.
05

6
5.

85
0

34
.6

45
18

41
.2

57
0.

06
3

2.
03

4
34

.6
45

43
2.

34
4



78

(m
,n

)
N

o.
pr

ob
le

m
s

P
JS

tw
o

ph
as

e
SP

X

T
im

e(
se

c.
)

It
er

at
io

ns
In

iti
al

T
im

e
(s

ec
.)

It
er

at
io

ns

P
ha

se
1

Ju
m

p
To

ta
l

ph
as

e
I

SP
X

di
re

ct
io

n
P

ha
se

I
To

ta
l

P
ha

se
I

ph
as

e
II

50
0

1
3.

31
4

3.
20

8
7.

13
9

12
95

.0
00

13
1.

00
0

d
0

3.
31

4
14

6.
58

3
12

95
.0

00
32

59
3.

00
0

2
3.

19
5

3.
19

6
7.

11
9

12
53

.0
00

15
8.

00
0

d
0

3.
16

3
14

2.
74

1
12

53
.0

00
31

29
1.

00
0

3
3.

32
6

3.
26

2
31

.4
19

13
18

.0
00

58
42

.0
00

d
′ 0

3.
31

1
14

4.
37

8
13

18
.0

00
32

17
9.

00
0

4
3.

03
4

3.
19

0
7.

17
0

12
13

.0
00

21
1.

00
0

d
0

2.
98

0
14

3.
14

0
12

13
.0

00
32

34
1.

00
0

5
3.

32
5

3.
18

0
7.

39
1

11
88

.0
00

19
8.

00
0

d
0

2.
95

7
13

4.
95

0
11

88
.0

00
30

74
3.

00
0

6
3.

09
8

3.
93

7
8.

50
9

12
63

.0
00

27
0.

00
0

d
0

3.
72

0
14

2.
36

1
12

63
.0

00
31

59
5.

00
0

7
2.

97
3

3.
34

9
7.

24
9

12
13

.0
00

17
4.

00
0

d
0

3.
53

7
13

5.
77

3
12

13
.0

00
30

61
6.

00
0

8
3.

00
4

3.
17

6
6.

82
0

12
07

.0
00

13
6.

00
0

d
0

3.
00

6
14

5.
34

7
12

07
.0

00
32

71
5.

00
0

9
3.

06
4

3.
19

1
7.

53
3

12
42

.0
00

29
0.

00
0

d
0

3.
05

2
13

3.
52

4
12

42
.0

00
30

12
1.

00
0

10
2.

85
1

3.
16

2
6.

73
3

11
47

.0
00

15
5.

00
0

d
0

2.
82

6
14

2.
66

6
11

47
.0

00
31

30
1.

00
0

av
er

ag
e

3.
11

8
3.

28
5

9.
70

8
12

33
.9

00
75

6.
50

0
3.

18
6

14
1.

14
6

12
33

.9
00

31
54

9.
50

0

S.
D

.
0.

16
5

0.
23

5
7.

64
4

50
.9

24
17

87
.6

64
0.

28
2

4.
63

4
50

.9
24

89
2.

13
5

60
0

1
4.

72
7

5.
75

1
12

.1
52

14
68

.0
00

21
0.

00
0

d
0

4.
68

5
35

6.
49

0
14

68
.0

00
47

66
2.

00
0

2
5.

30
4

5.
73

1
12

.4
50

15
22

.0
00

18
8.

00
0

d
0

4.
86

3
35

4.
40

4
15

22
.0

00
48

44
8.

00
0

3
4.

79
6

5.
85

4
13

.3
05

15
09

.0
00

33
6.

00
0

d
0

4.
76

6
37

0.
01

4
15

09
.0

00
47

92
4.

00
0

4
5.

66
1

5.
80

6
13

.0
26

16
42

.0
00

22
6.

00
0

d
0

4.
87

9
33

4.
66

5
16

42
.0

00
49

33
3.

00
0

5
4.

45
5

5.
72

6
11

.1
84

15
29

.0
00

13
5.

00
0

d
0

4.
47

2
31

0.
19

9
15

29
.0

00
45

93
5.

00
0

6
4.

24
5

5.
67

5
10

.8
00

14
59

.0
00

12
8.

00
0

d
0

4.
33

1
31

7.
82

3
14

59
.0

00
48

66
1.

00
0

7
4.

89
1

5.
86

5
11

.9
92

16
83

.0
00

17
3.

00
0

d
0

5.
20

1
30

8.
13

8
16

83
.0

00
46

62
6.

00
0

8
4.

31
9

6.
36

5
12

.9
46

14
88

.0
00

30
1.

00
0

d
0

5.
09

0
32

8.
19

2
14

88
.0

00
47

05
6.

00
0

9
4.

84
6

6.
06

7
11

.4
95

16
80

.0
00

74
.0

00
d
0

4.
88

6
31

6.
53

5
16

80
.0

00
45

90
0.

00
0

10
4.

41
2

5.
82

5
11

.5
66

15
28

.0
00

19
8.

00
0

d
0

4.
41

2
33

2.
75

0
15

28
.0

00
49

32
9.

00
0

av
er

ag
e

4.
76

6
5.

86
7

12
.0

92
15

50
.8

00
19

6.
90

0
4.

75
9

33
2.

92
1

15
50

.8
00

47
68

7.
40

0

S.
D

.
0.

44
8

0.
20

6
0.

83
9

85
.1

70
78

.5
56

0.
28

6
21

.2
01

85
.1

70
12

81
.3

55



79

(m
,n

)
N

o.
pr

ob
le

m
s

P
JS

tw
o

ph
as

e
SP

X

T
im

e(
se

c.
)

It
er

at
io

ns
In

iti
al

T
im

e
(s

ec
.)

It
er

at
io

ns

P
ha

se
1

Ju
m

p
To

ta
l

ph
as

e
I

SP
X

di
re

ct
io

n
P

ha
se

I
To

ta
l

P
ha

se
I

ph
as

e
II

70
0

1
8.

32
7

9.
77

7
23

.3
64

20
14

.0
00

34
1.

00
0

d
0

7.
95

7
99

9.
22

1
20

14
.0

00
63

19
1.

00
0

2
7.

98
1

11
.5

74
20

.7
43

18
73

.0
00

69
.0

00
d
0

7.
39

1
10

40
.5

41
18

73
.0

00
66

86
3.

00
0

3
7.

38
9

11
.5

28
22

.5
81

18
00

.0
00

23
8.

00
0

d
0

7.
09

1
11

20
.4

98
18

00
.0

00
64

74
8.

00
0

4
7.

77
8

9.
86

9
19

.7
26

19
99

.0
00

12
8.

00
0

d
0

7.
84

4
10

29
.7

34
19

99
.0

00
65

75
3.

00
0

5
7.

76
8

10
.3

97
20

.5
63

19
12

.0
00

13
5.

00
0

d
0

8.
32

6
10

32
.9

25
19

12
.0

00
66

21
9.

00
0

6
8.

47
7

9.
65

5
20

.6
76

18
67

.0
00

16
8.

00
0

d
0

7.
40

5
10

11
.3

62
18

67
.0

00
65

39
6.

00
0

7
9.

15
8

11
.0

26
22

.7
42

19
83

.0
00

13
8.

00
0

d
0

8.
12

5
97

7.
70

2
19

83
.0

00
63

98
3.

00
0

8
6.

83
0

9.
50

7
20

.2
94

19
02

.0
00

22
8.

00
0

d
0

6.
98

9
95

2.
83

0
19

02
.0

00
65

25
2.

00
0

9
6.

79
0

10
.0

90
19

.3
45

18
66

.0
00

16
5.

00
0

d
0

7.
27

4
93

2.
43

8
18

66
.0

00
64

16
9.

00
0

10
6.

78
0

9.
63

2
14

8.
06

0
18

62
.0

00
87

74
.0

00
d
′ 0

6.
73

2
94

2.
45

4
18

62
.0

00
63

81
4.

00
0

av
er

ag
e

7.
72

8
10

.3
06

33
.8

09
19

07
.8

00
10

38
.4

00
7.

51
3

10
03

.9
71

19
07

.8
00

64
93

8.
80

0

S.
D

.
0.

79
8

0.
79

3
40

.1
66

69
.6

37
27

19
.0

50
0.

52
6

56
.4

72
69

.6
37

11
63

.0
44

80
0

1
11

.6
64

17
.2

71
29

.0
39

23
03

.0
00

0.
00

0
d
0

11
.4

47
28

21
.3

91
23

03
.0

00
86

89
9.

00
0

2
12

.1
89

16
.7

52
29

.0
38

24
26

.0
00

0.
00

0
d
0

11
.4

86
27

13
.1

68
24

26
.0

00
84

81
4.

00
0

3
10

.8
48

16
.2

83
27

.2
32

22
65

.0
00

0.
00

0
d
0

10
.8

32
27

57
.3

33
22

65
.0

00
85

17
1.

00
0

4
15

.9
45

19
.3

94
40

.5
61

23
48

.0
00

17
3.

00
0

d
0

15
.5

81
24

31
.5

43
23

48
.0

00
88

88
2.

00
0

5
14

.8
69

17
.0

93
34

.1
83

24
50

.0
00

84
.0

00
d
0

14
.7

31
20

97
.5

80
24

50
.0

00
85

28
8.

00
0

6
11

.6
35

16
.4

01
28

.1
37

22
49

.0
00

0.
00

0
d
0

10
.5

35
26

65
.9

78
22

49
.0

00
83

37
9.

00
0

7
10

.9
88

15
.8

85
30

.8
91

23
34

.0
00

13
7.

00
0

d
0

12
.0

90
26

23
.9

07
23

34
.0

00
88

39
3.

00
0

8
15

.5
52

20
.3

63
39

.2
82

22
48

.0
00

11
9.

00
0

d
0

15
.4

36
23

32
.8

34
22

48
.0

00
83

64
4.

00
0

9
14

.9
49

18
.0

16
37

.1
87

23
89

.0
00

15
1.

00
0

d
0

15
.7

40
26

86
.8

79
23

89
.0

00
87

05
2.

00
0

10
13

.8
75

16
.3

61
35

.1
32

26
35

.0
00

14
1.

00
0

d
0

14
.1

45
26

58
.4

49
26

35
.0

00
86

03
7.

00
0

av
er

ag
e

13
.2

51
17

.3
82

33
.0

68
23

64
.7

00
80

.5
00

13
.2

02
25

78
.9

06
23

64
.7

00
85

95
5.

90
0

S.
D

.
1.

98
9

1.
46

4
4.

86
3

11
8.

63
1

72
.8

73
2.

11
6

22
3.

65
6

11
8.

63
1

18
54

.4
35



80

(m
,n

)
N

o.
pr

ob
le

m
s

P
JS

tw
o

ph
as

e
SP

X

T
im

e(
se

c.
)

It
er

at
io

ns
In

iti
al

T
im

e
(s

ec
.)

It
er

at
io

ns

P
ha

se
1

Ju
m

p
To

ta
l

ph
as

e
I

SP
X

di
re

ct
io

n
P

ha
se

I
To

ta
l

P
ha

se
I

ph
as

e
II

90
0

1
15

.5
73

27
.9

57
48

.0
25

27
91

.0
00

10
3.

00
0

d
0

15
.7

34
48

45
.7

05
27

91
.0

00
11

48
03

.0
00

2
15

.3
79

27
.7

40
57

.8
01

27
53

.0
00

35
1.

00
0

d
0

16
.0

55
49

00
.3

13
27

53
.0

00
11

61
98

.0
00

3
14

.6
47

25
.2

88
45

.4
50

26
56

.0
00

11
9.

00
0

d
0

15
.9

35
46

34
.8

40
26

56
.0

00
10

96
03

.0
00

4
14

.0
60

25
.6

84
53

.2
09

25
66

.0
00

32
6.

00
0

d
0

14
.0

65
47

19
.6

11
25

66
.0

00
10

95
28

.0
00

5
14

.5
67

23
.9

98
52

.9
50

26
61

.0
00

33
2.

00
0

d
0

15
.7

15
49

08
.5

06
26

61
.0

00
11

48
38

.0
00

6
14

.9
61

23
.7

95
45

.5
73

27
20

.0
00

15
8.

00
0

d
0

15
.3

46
46

49
.0

21
27

20
.0

00
10

91
36

.0
00

7
15

.3
85

23
.9

08
47

.3
22

27
88

.0
00

16
3.

00
0

d
0

16
.2

72
47

72
.7

00
27

88
.0

00
11

11
68

.0
00

8
15

.8
53

27
.6

76
52

.1
80

28
82

.0
00

20
9.

00
0

d
0

15
.9

39
47

44
.8

60
28

82
.0

00
11

12
74

.0
00

9
15

.2
31

23
.8

79
39

.2
35

27
57

.0
00

0.
00

0
d
0

16
.6

94
46

84
.1

47
27

57
.0

00
10

88
61

.0
00

10
14

.6
20

23
.4

61
38

.2
03

27
29

.0
00

0.
00

0
d
0

14
.1

28
48

33
.9

66
27

29
.0

00
11

25
81

.0
00

av
er

ag
e

15
.0

28
25

.3
39

47
.9

95
27

30
.3

00
17

6.
10

0
15

.5
88

47
69

.3
67

27
30

.3
00

11
17

99
.0

00

S.
D

.
0.

55
1

1.
82

8
6.

24
3

87
.3

56
12

8.
91

6
0.

86
3

99
.6

87
87

.3
56

26
79

.1
23

10
00

1
17

.9
93

43
.6

31
61

.8
14

29
02

.0
00

0.
00

0
d
0

18
.1

59
66

20
.5

45
29

02
.0

00
13

59
49

.0
00

2
19

.9
73

39
.9

00
69

.2
38

30
53

.0
00

19
1.

00
0

d
0

19
.9

64
68

08
.8

21
30

53
.0

00
14

04
65

.0
00

3
20

.3
63

40
.1

30
60

.6
81

32
92

.0
00

0.
00

0
d
0

21
.7

92
67

68
.7

58
32

92
.0

00
14

02
68

.0
00

4
19

.5
62

38
.9

68
65

.5
08

28
82

.0
00

13
6.

00
0

d
0

17
.8

81
72

56
.0

58
28

82
.0

00
14

00
22

.0
00

5
22

.8
47

39
.6

31
62

.6
58

31
65

.0
00

0.
00

0
d
0

20
.9

19
71

25
.8

23
31

65
.0

00
13

56
36

.0
00

6
24

.3
67

41
.4

79
71

.5
80

33
79

.0
00

10
6.

00
0

d
0

22
.8

42
73

70
.4

65
33

79
.0

00
13

55
27

.0
00

7
19

.2
62

38
.9

86
58

.4
18

29
30

.0
00

0.
00

0
d
0

18
.0

21
69

40
.0

86
29

30
13

86
87

8
22

.5
39

37
.0

49
59

.7
60

32
18

.0
00

0.
00

0
d
0

20
.4

87
71

41
.8

03
32

18
14

01
61

9
20

.1
87

41
.9

56
62

.3
34

31
21

.0
00

0.
00

0
d
0

21
.0

76
72

53
.5

90
31

21
14

03
16

10
22

.3
69

39
.8

26
78

.8
41

32
24

.0
00

32
6.

00
0

d
0

21
.7

25
67

22
.6

00
32

24
13

78
59

av
er

ag
e

20
.9

46
40

.1
56

65
.0

83
31

16
.6

00
75

.9
00

20
.2

87
70

00
.8

55
31

16
.6

00
13

84
89

.0
00

S.
D

.
1.

97
8

1.
82

4
6.

37
0

17
1.

18
9

11
2.

98
0

1.
74

7
26

1.
95

8
17

1.
18

9
20

91
.0

86



81

(m
,n

)
N

o.
pr

ob
le

m
s

P
JS

tw
o

ph
as

e
SP

X

T
im

e(
se

c.
)

It
er

at
io

ns
In

iti
al

T
im

e
(s

ec
.)

It
er

at
io

ns

P
ha

se
1

Ju
m

p
To

ta
l

ph
as

e
I

SP
X

di
re

ct
io

n
P

ha
se

I
To

ta
l

P
ha

se
I

ph
as

e
II

90
0

1
15

.5
73

27
.9

57
48

.0
25

27
91

.0
00

10
3.

00
0

d
0

15
.7

34
48

45
.7

05
27

91
.0

00
11

48
03

.0
00

2
15

.3
79

27
.7

40
57

.8
01

27
53

.0
00

35
1.

00
0

d
0

16
.0

55
49

00
.3

13
27

53
.0

00
11

61
98

.0
00

3
14

.6
47

25
.2

88
45

.4
50

26
56

.0
00

11
9.

00
0

d
0

15
.9

35
46

34
.8

40
26

56
.0

00
10

96
03

.0
00

4
14

.0
60

25
.6

84
53

.2
09

25
66

.0
00

32
6.

00
0

d
0

14
.0

65
47

19
.6

11
25

66
.0

00
10

95
28

.0
00

5
14

.5
67

23
.9

98
52

.9
50

26
61

.0
00

33
2.

00
0

d
0

15
.7

15
49

08
.5

06
26

61
.0

00
11

48
38

.0
00

6
14

.9
61

23
.7

95
45

.5
73

27
20

.0
00

15
8.

00
0

d
0

15
.3

46
46

49
.0

21
27

20
.0

00
10

91
36

.0
00

7
15

.3
85

23
.9

08
47

.3
22

27
88

.0
00

16
3.

00
0

d
0

16
.2

72
47

72
.7

00
27

88
.0

00
11

11
68

.0
00

8
15

.8
53

27
.6

76
52

.1
80

28
82

.0
00

20
9.

00
0

d
0

15
.9

39
47

44
.8

60
28

82
.0

00
11

12
74

.0
00

9
15

.2
31

23
.8

79
39

.2
35

27
57

.0
00

0.
00

0
d
0

16
.6

94
46

84
.1

47
27

57
.0

00
10

88
61

.0
00

10
14

.6
20

23
.4

61
38

.2
03

27
29

.0
00

0.
00

0
d
0

14
.1

28
48

33
.9

66
27

29
.0

00
11

25
81

.0
00

av
er

ag
e

15
.0

28
25

.3
39

47
.9

95
27

30
.3

00
17

6.
10

0
15

.5
88

47
69

.3
67

27
30

.3
00

11
17

99
.0

00

S.
D

.
0.

55
1

1.
82

8
6.

24
3

87
.3

56
12

8.
91

6
0.

86
3

99
.6

87
87

.3
56

26
79

.1
23

10
00

1
17

.9
93

43
.6

31
61

.8
14

29
02

.0
00

0.
00

0
d
0

18
.1

59
66

20
.5

45
29

02
.0

00
13

59
49

.0
00

2
19

.9
73

39
.9

00
69

.2
38

30
53

.0
00

19
1.

00
0

d
0

19
.9

64
68

08
.8

21
30

53
.0

00
14

04
65

.0
00

3
20

.3
63

40
.1

30
60

.6
81

32
92

.0
00

0.
00

0
d
0

21
.7

92
67

68
.7

58
32

92
.0

00
14

02
68

.0
00

4
19

.5
62

38
.9

68
65

.5
08

28
82

.0
00

13
6.

00
0

d
0

17
.8

81
72

56
.0

58
28

82
.0

00
14

00
22

.0
00

5
22

.8
47

39
.6

31
62

.6
58

31
65

.0
00

0.
00

0
d
0

20
.9

19
71

25
.8

23
31

65
.0

00
13

56
36

.0
00

6
24

.3
67

41
.4

79
71

.5
80

33
79

.0
00

10
6.

00
0

d
0

22
.8

42
73

70
.4

65
33

79
.0

00
13

55
27

.0
00

7
19

.2
62

38
.9

86
58

.4
18

29
30

.0
00

0.
00

0
d
0

18
.0

21
69

40
.0

86
29

30
13

86
87

8
22

.5
39

37
.0

49
59

.7
60

32
18

.0
00

0.
00

0
d
0

20
.4

87
71

41
.8

03
32

18
14

01
61

9
20

.1
87

41
.9

56
62

.3
34

31
21

.0
00

0.
00

0
d
0

21
.0

76
72

53
.5

90
31

21
14

03
16

10
22

.3
69

39
.8

26
78

.8
41

32
24

.0
00

32
6.

00
0

d
0

21
.7

25
67

22
.6

00
32

24
13

78
59

av
er

ag
e

20
.9

46
40

.1
56

65
.0

83
31

16
.6

00
75

.9
00

20
.2

87
70

00
.8

55
31

16
.6

00
13

84
89

.0
00

S.
D

.
1.

97
8

1.
82

4
6.

37
0

17
1.

18
9

11
2.

98
0

1.
74

7
26

1.
95

8
17

1.
18

9
20

91
.0

86



82

BIOGRAPHY

Name Mr Natdanai Kafakthong

Date of Birth 19 July 1994

Place of Birth Tak, Thailand

Education B.S. (Mathematics),

Naresuan University, 2016


	COVER (THAI)
	COVER (ENGLISH)
	ACCEPTED
	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	CONTENTS
	CHAPTER I INTRODUCTION
	CHAPTER II BACKGROUND KNOWLEDGE ANDLITERATURE REVIEW
	CHAPTER III PRECEDING-JUMP SIMPLEX METHOD
	CHAPTER IV EXPERIMENTS AND RESULTS
	CHAPTER V CONCLUSIONS AND FUTURE WORK
	REFERENCES
	APPENDIX
	VITA



