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(
ln 1

|ξ|

)µ
+ o

(
|ξ|β

(
ln 1

|ξ|

)µ)
เมื่อ ξ → 0 สำหรับ

0 < β ≤ 2, µ ∈ R, และ A > 0 ในการศึกษานี้ไดพิสูจน การมีผลเฉลยเฉพาะที่ การมีผลเฉลย
เพียงหนึ่งเดียว และไดหลักการเปรียบเทียบของผลเฉลย นอกจากนี้เราไดแสดงวาเลขชี้กำลังวิกฤต
Fujita ของสมการ คือ β

n
เมื่อ µ < 0 สวนในกรณี µ > 1 เราคนพบวาเลขชี้กำลังวิกฤต คือ β

n

และผลเฉลยสามารถอยูในชวงการมีผลเฉลยวงกวาง เมื่อคาเริ่มตนมีคานอย

ภาควิชา . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .คณิตศาสตรและวิทยาการคอมพิวเตอร ลายมือชื่อนิสิต. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

สาขาวิชา . . . . . . . . . . . . . . . . . . . . .คณิตศาสตร. . . . . . . . . . ลายมือชื่อ อ.ที่ปรึกษาหลัก . . . . . . . . . . . . . . . . . .

ปการศึกษา . . . . . . . . . . . . . . . .2561. . . . . . . . . . . . . . . ลายมือชื่อ อ.ที่ปรึกษารวม . . . . . . . . . . . . . . . . . .



v

# # 6072126023 : MAJOR MATHEMATICS

KEYWORDS : NONLINEAR NONLOCAL EQUATIONS/ BLOW-UP SOLU-

TIONS/ GLOBAL SOLUTIONS/ CRITICAL EXPONENT

AUTTAWICH MANUI : CRITICAL EXPONENT FOR NONLINEAR

NONLOCAL EQUATIONS

ADVISOR : ASST. PROF. SUJIN KHOMRUTAI, Ph.D.,

CO-ADVISOR : ASSOC. PROF. NATAPHAN KITISIN, Ph.D., 33 pp.

In this thesis, we study the nonlinear nonlocal equation ∂tu = J ∗ u − u +

u1+p where p > 0 and J is nonnegative, bounded, and radially symmetric with

unit integral. The Fourier tranform of J satisfies Ĵ(ξ) = 1 − A|ξ|β
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CHAPTER I

INTRODUCTION

In 1966, Fujita [8] considered positive solutions of the nonlinear heat equation

∂tu = ∆u+ u1+p in (0,∞)× Rn,

with a non-negative, nontrivial initial data. It was shown that the solutions blow

up in finite time if 0 < p < 2
n
, whereas the equation admits a global solution if

p > 2
n

provided that the initial condition is sufficiently small. Later on, the case

p = 2
n

was shown to belong to the finite time blow-up case (see [15]). Consequently,

the number p = 2
n

has been called the Fujita critical exponent for the nonlinear

heat equation.

The Fujita phenomenon has become interested ever since. The investigation of

such critical exponent has permeated other nonlinear equations.

In 1997, Bates, Fife, Ren, and Wang [4] considered the nonlinear nonlocal

equation

∂tu = J ∗ u− u− f(u) in (0,∞)× R,

where the kernel J is nonnegative and radially symmetric with unit integral, and

f ∈ C2(R) has only one zero in (−1, 1) and no zero outside [−1, 1] satisfying

f(±1) = 0 < f ′(±1). They established the existence and the uniqueness of weak

solutions. Moreover, they proved the regularities of weak solutions, and compared

the asymptotic behavior to stationary-wave solutions, see [3] for more details on

higher dimension. This leads to the study of the nonlocal equations of the form

∂tu = J ∗ u− u, (1.1)
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where the kernel J is a nonnegative, radially symmetric, continuous function with

unit integral. The nonlocal equations have been applied to various disciplines, e.g.,

biology, image processing, mathematical finances, etc., see [2] for more details.

In 2006, Chasseigne, Chaves, and Rossi [5] studied the nonlocal equation of

the form (1.1) when the kernel J is a nonnegative, radially symmetric, continuous

function with unit integral. They considered (1.1) on a bounded smooth domain,

and showed that the Dirichlet or Neumann type boundary value problem has a

unique solution, and such solution is also global. Furthermore, they studied (1.1)

on the whole space with the Fourier transform of the kernel J satifying

Ĵ(ξ) = 1− A|ξ|β + o(|ξ|β) as ξ → 0, (1.2)

for 0 < β ≤ 2 and A > 0. As a result, they found that the solutions is global,

and have the same behavior as the solutions of ∂tu = −A(−∆)
β
2 u. Moreover, they

also investigated the the case that the Fourier transform of the kernel J has the

asymptotic expansion with logarithmic perturbation

Ĵ(ξ) = 1− A|ξ|2
(

ln 1

|ξ|

)
+ o

(
|ξ|2

(
ln 1

|ξ|

))
as ξ → 0, (1.3)

where A > 0. They showed that the solutions have the same behavior as the

solutions of the heat equation ∂tu = A
2
∆u with a certain time scaling.

In 2009, Llanos and Rossi [16] studied the nonlinear nonlocal equation

∂tu =

∫
Ω

J(x− y)(u(t, y)− u(t, x))dy + u1+p in (0, T )× Ω,

where the kernel J ∈ C(Rn) is nonnegative and radially symmetric with unit

integral, and Ω is a bounded, connected, smooth domain. The local existence was

establihed by using the contraction mapping theorem. They also showed that the

solutions blow up when p > 0. On the other hand, the solutions are global when

p ≤ 0.
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In 2010, García-Melián and Quirós [9] considered both (1.1) and the nonlinear

nonlocal equation ∂tu = J ∗ u− u+ u1+p in (0,∞)× Rn,

u(0, x) = u0(x),

(1.4)

where the kernel J ∈ C(Rn) is nonneagative, compactly supported, radially sym-

metric and radially decreasing with unit integral. Note that (1.4) is used to model

the dispersal of a species by taking into some account of long-range effects, see

[4] for more details. First, they used the idea in [16] to prove the local existence

and the uniqueness of solution to (1.1) and (1.4). The comparison principle for

positive solutions to (1.4) is also established by using the Gronwall’s inequality.

Furthermore, they showed that p = 2
n

is the Fujita critical exponent to (1.4).

In 2017, Alfaro [1] considered positive solutions to (1.4) where p > 0 with a non-

negative, nontrivial initial data. He also assumed that the kernel J is nonnegative,

bounded, and radially symmetric with unit integral, and the Fourier transform of

the kernel J satisfies the condition (1.2). Consequently, Alfaro showed that the

Fujita critical exponent for (1.4) is β
n
.

In 2018, Khomrutai [13] studied the asymptotic behavior for (1.1) with a initial

condition. He proved that there is a constant C depending on dimension n and

the kernel J such that for large enough t,

||u(t, ·)||Lq ≤ C(||u0||L1 + ||û0||L1)t−
n
β
(1− 1

q
) (1.5)

where 1 ≤ q <∞, or q is ∞, and the kernel J is nonnegative and radially symmetric

with unit integral satisfying (1.2). Moreover, he also considered the asymptotic

behavior for (1.1) in the case that the Fourier tranform of the kernel J satisfies

Ĵ(ξ) = 1− A|ξ|β
(

ln 1

|ξ|

)µ

+ o

(
|ξ|β

(
ln 1

|ξ|

)µ)
as ξ → 0, (1.6)

for 0 < β ≤ 2, µ ∈ R, and A > 0. He obtained the same result as (1.5).
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In this work, we consider positive solutions to (1.4) with a nonnegative, nontriv-

ial initial data where the kernel J is nonnegative, bounded, and radially symmetric

with unit integral. However, in our case, we assume that the Fourier tranform of

the kernel J satisfies (1.6). First, we consider positive mild solutions of (1.4) with

a nonnegative, nontrivial, smooth initial data. Provided that the kernel J is non-

negative bounded and radially symmetric with unit integral, we establish the local

existence and the uniqueness of mild solutions by using the idea from [16]. We also

investigate some qualitative behaviors, e.g., blow-up or global existence, of the so-

lutions. In Chapter II, we review some background knowledges and some estimates

which will be used thoughtout this thesis. In Chapter III, we use the idea from

[16] and [9] to establish the local existence, the uniqueness and the comparison

principle of positive mild solutions of (1.4). In Chapter IV, we apply the idea in

[1] to prove some estimates, and show that the solutions blow up when p > β
n
.

When p = β
n
, we show that the solutions blow up if µ < 0, and the solutions can

be global if µ > 1, and the initial condition is sufficientlly small. Consequently,

we prove that the solution can be global or blow-up depending upon the initial

conditions when p > β
n
.



CHAPTER II

PRELIMINARIES

In this chapter, we introduce basic definitions of some background knowledges

needed in this thesis. We review the theorm of integration on Lebesgue measure,

the properties of the Fourier transform, facts regarding the behavior of solutions,

some basics of topology about the contraction mappings, and some useful inequal-

ities.

Let (Rn,L, µ) be a Lebesgue mesure space. We write
∫
Rn

f(x) dx for
∫
Rn

f dµ.

Definition 2.1 ([7]). A statment is true almost everywhere, if a statement is

true for all x ∈ Rn except for x in some null set, a set measures zero.

Definition 2.2 ([7]). Let E ⊂ Rn. The characteristic function χE of E is

defined by

χE(x) =

1, if x ∈ E,

0, if x /∈ E.

Definition 2.3 ([7]). Let f : Rn → R. The positive part of f+ of f is defined

by

f+(x) = max(f(x), 0).

Theorem 2.4 ([7], The Monotone convergence theorem). Let fn be a sequence of

nonnegative integrable function such that fn ≤ fn+1 for all n ∈ N. Then,

∫
Rn

lim
n→∞

fn(x) dx = lim
n→∞

∫
Rn

fn(x) dx.

Theorem 2.5 ([7], The Dominated convergence theorem). Let fn be a sequence of

integrable function such that there exist a nonnegative, integrable function g with
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|fn| ≤ g almost everywhere for all n ∈ N. Then,

∫
Rn

lim
n→∞

fn(x) dx = lim
n→∞

∫
Rn

fn(x) dx.

Theorem 2.6 ([7]). Let T be a bijection linear transformation from Rn to Rn. If

f ≥ 0 or f ∈ L1(Rn), then

∫
Rn

f(x) dx = | detT |
∫
Rn

foT (x) dx.

For x = (x1, x2, x3, ..., xn) and y = (y1, y2, y3, ..., yn) in Rn, we use the notation

x · y =
n∑

k=1

xkyk.

Definition 2.7 ([1]). Let f ∈ L1(Rn). The Fourier tranform f̂ and inverse

Fourier transform f̌ , respectively, of f are the functions defined by

f̂(ξ) =

∫
Rn

f(x)e−ix·ξ dx and f̌(ξ) =

∫
Rn

f(x)eix·ξ dx.

Lemma 2.8 ([1]). If f , f̌ ∈ L1(Rn), then (2π)nf =
ˇ̂
f .

Lemma 2.9 ([1], Plancherel formula). Let f , g ∈ L2(Rn). Then,

∫
Rn

f(x)g(x) dx =
1

(2π)n

∫
Rn

f̂(ξ)ĝ(ξ) dξ.

Lemma 2.10 ([10]). If f ∈ L1(Rn), then f̂ and f̌ are bounded and continuous.

Moreover,

lim
|ξ|→∞

f̂(ξ) = 0 and lim
|x|→∞

f̌(x) = 0.

Definition 2.11 ([10]). A function f on Rn is radially symmetric, if f(x) = f(y)

when |x| = |y|.

Note: By [10], the Fourier transform of a radially symmetric function f is a real-

valued function when n ≥ 2. For the case n = 1, a radially symmetric function f
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is even. Therefore, ∫
R

sin(x)f(x) dx = 0.

Thus, for a radially symmetric function f ,

f̂(ξ) =

∫
R

cos(−x · ξ)f(x) dx ∈ R.

Lemma 2.12. Let f be a nonnegative, radially symmetric function on Rn with

unit integral. Then, for ξ ∈ Rn, |f̂(ξ)| ≤ 1, and the equality holds when ξ = 0.

Proof. Since (1− cos(−x · ξ))f(x) is a nonnegative, continuous function in x vari-

able, and there is value that more than 0 when ξ ̸= 0,

1− f̂(ξ) =

∫
Rn

(1− cos(−x · ξ))f(x) dx > 0.

For the case ξ = 0, we get f̂(0) =
∫
Rn f(x) dx = 1.

We define || · ||q := || · ||Lq(Rn) for q ∈ R with 1 ≤ q <∞ and || · ||∞ := || · ||L∞(Rn).

Definition 2.13 ([1]). We assume that u is a solution to (1.4) almost everywhere

with

u ∈ C1((0, T ), L∞(Rn) ∩ L1(Rn)) ∩ C0([0, T ), L∞(Rn) ∩ L1(Rn)),

for some T > 0.

1. u is blow-up in finite time, if the maximal of T is finite (Tmax <∞), i.e.,

for each t < Tmax, ||u(t, ·)||∞ <∞ and lim
t→T−

max

||u(t, ·)||∞ = ∞.

2. u is global, if the maximal of T is infinity, i.e., ||u(t, ·)||∞ <∞ for all t.

Definition 2.14 ([12]). Let (X, d) be a metric space. A mapping T : X → X is

a contraction, if there exists a constant C with 0 ≤ C < 1 such that

d(T (x), T (y)) ≤ Cd(x, y) for all x, y ∈ X.
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Theorem 2.15 ([12], The contraction mapping theorem). If T : X → X is a

contraction on a complete metric space (X, d), then it has excactly one fixed point

in X.

Definition 2.16 ([7]). For any f, g ∈ L1(Rn), the convolution of f and g is

defined by

(f ∗ g)(x) =
∫
Rn

f(y)g(x− y) dy.

Remark 2.17. By [7], the convolution operator has commutative and associative

properties.

Lemma 2.18 ([1]). If f , g ∈ L1(Rn), then f̂ ∗ g = f̂ ĝ.

Definition 2.19 ([14]). The Green operator G(t) associated with (1.1) is defined

by

G(t)f = e−t

∞∑
k=0

tk

k!
J∗(k) ∗ f,

where J0 is the identity, and J∗(k) = J ∗ J∗(k−1) for k ≥ 1.

Definition 2.20 ([14]). A function u is called a mild solution of (1.4) provided

u ∈ C([0, T ], L∞(Rn) ∩ C(Rn)), and satisfies

u(t, x) = G(t)u0(x) +
∫ t

0

G(t− τ){u(τ, x)p+1} dτ in (0,∞)× Rn. (2.1)

A function u is called a mild subsolution of (1.4) provided u ∈ C([0, T ], L∞(Rn)∩

C(Rn)), and satisfies

u(t, x) ≤ G(t)u0(x) +
∫ t

0

G(t− τ){u(τ, x)p+1} dτ in (0,∞)× Rn.

A function u is called a mild supersolution of (1.4) provided u ∈ C([0, T ], L∞(Rn)∩

C(Rn)), and satisfies

u(t, x) ≥ G(t)u0(x) +
∫ t

0

G(t− τ){u(τ, x)p+1} dτ in (0,∞)× Rn.
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Theorem 2.21 ([18], Weight AM-GM). Let p1, p2, ..., pn be nonnegative rational

numbers such that
∑n

i=1 pi = 1. Then, for a1, a2, ..., an ≥ 0,

ap11 a
p2
1 ...a

pn
n ≤ p1a1 + p2a2 + ...pnan.

Theorem 2.22 ([7], The Hölder’s inequality). Let p and q be real numners such

that 1 < p, q <∞ and 1
p
+ 1

q
= 1. If f and g are measurable functions, then

||fg||1 ≤ ||f ||p||g||q.

Theorem 2.23 ([7], The Young’s convolution inequality). Let f ∈ Lp(Rn) and

g ∈ Lq(Rn) where p, q are real numbers satisfying 1 ≤ p, q < ∞. Then, the

following statements hold.

1. If 1
p
+ 1

q
= 1, then ∥f ∗ g∥∞ ≤ ∥f∥p ∥g∥q.

2. If there exists r ∈ R such that 1
p
+ 1

q
= 1 + 1

r
, then ∥f ∗ g∥r ≤ ∥f∥p ∥g∥q.

Moreover, if f ∈ L1(Rn) and g ∈ L∞(Rn), then ∥f ∗ g∥∞ ≤ ∥f∥1 ∥g∥∞ .

Theorem 2.24 ([17], The Miscellaneous inequality). Let I denote an interval of

the form [a, b], and continuous functions f, A,B : I → R. If B is nonnegative, and

f satisfies the following condition

f(t) ≤ A(t) +

∫ t

a

B(s)f(s)ds in I,

then

f(t) ≤ A(t) +

∫ t

a

A(s)B(s)e
∫ t
s B(r)drds in I.

Lemma 2.25 ([13]). There is a constant C > 0 depending on the dimension n

and the kernel J such that the solution to (1.1) under the assumption (1.6) with

the initial condition v0 satisfies, for large t,

||v(t, ·)||∞ ≤ C(||v0||1 + ||v̂0||1)(t(ln t)µ)−
n
β .
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Let us present the assumptions on J as presented in Chapter I and its proper-

ties.

Hypothesis 2.26. Let J : Rn → R be a nonnegative, bounded, radially symmetric

function with unit integral, and the Fourier transform of J satisfies

Ĵ(ξ) = 1− A|ξ|β
(

ln 1

|ξ|

)µ

+ o

(
|ξ|β

(
ln 1

|ξ|

)µ)
as ξ → 0,

for 0 < β ≤ 2, µ ∈ R, and A > 0.

Note: The kernel J satifies the following :

1. lim
|ξ|→∞

Ĵ(ξ) = 0;

2. |Ĵ(ξ)| ≤ 1 and the equality holds when ξ = 0;

3. The Hypothesis (2.26) implies that

lim
|ξ|→0

Ĵ(ξ)− 1 + A|ξ|β
(

ln 1
|ξ|

)µ
|ξ|β

(
ln 1

|ξ|

)µ = 0.



CHAPTER III

LOCAL EXISTENCE, COMPARISON PRINCIPLE AND

UNIQUENESS

In this chapter, we cosider the mild solutions u(t, x) of the form (2.1). We will

estimate the Green operator, and prove the local existence of positive mild solu-

tions by using Theorem 2.15. This idea is inspired by [16] to apply to (1.4). The

comparison principle is shown by considering mild supersolution and mild subso-

lution applying Theorem 2.24 to prove it. The uniqueness of mild solutions is the

consequence of the comparison principle and the local existence.

Lemma 3.1. For f ∈ L∞(Rn) and t > 0, then

||G(t)f ||∞ ≤ ||f ||∞.

Proof. Since ||J ||L1 = 1, by Theorem 2.23, we have for each k ∈ N that

||J∗(k+1) ∗ f ||∞ ≤ ||J ||1||J∗(k) ∗ f ||∞ = ||J∗(k) ∗ f ||∞.

Continuing the process, we have ||J∗(k+1) ∗ f ||∞ ≤ ||f ||∞, so that

||G(t)f ||∞ ≤

∥∥∥∥∥e−t

∞∑
k=0

tk

k!
J∗(k) ∗ f

∥∥∥∥∥
∞

≤ e−t

∞∑
k=0

tk

k!
||J∗(k) ∗ f ||∞ = ||f ||∞.

Lemma 3.2. Let T be a positive constant. Let Ω = C([0, T ];L∞(Rn) ∩ C(Rn)).

For each φ ∈ Ω, we denote

||φ||L∞([0,T ];L∞(Rn)) = sup
t∈[0,T ]

||φ(t, ·)||∞.
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Let ε be a positive constant. Let

Ωε =
{
φ ∈ Ω : φ ≥ 0, ||φ||L∞([0,T ];L∞(Rn)) < ε

}
.

Then, Ωε is a complete metric space with norm || · ||L∞([0,T ];L∞(Rn)).

Proof. Since || · ||∞ is a norm and definition of supremum, we have the following

results:

For any α ∈ R and φ1, φ2 ∈ Ωε,

1. sup
t∈[0,T ]

||φ1 + φ2||∞ ≤ sup
t∈[0,T ]

(||φ1||∞ + ||φ2||∞) ≤ sup
t∈[0,T ]

||φ1||∞ + sup
t∈[0,T ]

||φ2||∞,

2. sup
t∈[0,T ]

||αφ1||∞ ≤ sup
t∈[0,T ]

|α|||φ1||∞,

3. sup
t∈[0,T ]

||φ1||∞ ≥ 0.

Let φ ∈ Ωε be such that ||φ||L∞([0,T ];L∞(Rn)) = 0. Then, for each t ∈ [0, T ],

||φ(t, ·)||∞ = 0, i.e., φ(t, ·) = 0 almost everywhere. Since φ(t, ·) is continuous for

all t ∈ [0, T ], we have φ = 0. Thus, || · ||L∞([0,T ];L∞(Rn)) is a norm on Ωε.

Let (fn) be a Cauchy sequence in Ωε, i.e.,

∀ϵ > 0,∃N ∈ N with ∀m,n ≥ N, ||fm − fn||L∞([0,T ];L∞(Rn)) < ϵ.

Fixed t ∈ [0, T ], we have (fn(t, ·)) is a Cauchy sequence in L∞(Rn). Since L∞(Rn)

is a complete metric space, a limit of (fn(t, ·)) converges to a function gt in L∞(Rn).

We define the function f by

f(t, x) = gt(x) on [0, T ]× Rn.

Note that, for any t ∈ [0, T ], f(t, ·) ∈ L∞(Rn).

Fixed t ∈ [0, T ], we claim that f(t, ·) ∈ C(Rn). Let x0 ∈ Rn and ϵ > 0.

By construction of f(t, ·), there exists N ∈ N with ∀n ≥ N ,

||fn(t, ·)− f(t, ·)||∞ <
ϵ

3
.
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Since fN(t, ·) ∈ C(Rn), there exists δ > 0 with ∀x, |x− x0| < δ,

|fN(t, x)− fN(t, x0)| <
ϵ

3
.

Thus,

|f(t, x)− f(t, x0)|

≤ |f(t, x)− fN(t, x)|+ |fN(t, x)− fN(t, x0)|+ |fN(t, x0)− f(t, x0)|,

< ϵ.

Next, we are going to show that f ∈ Ω. Let t0 ∈ [0, T ] and ϵ > 0.

By construction of f(t0, ·) and definition of Cauchy sequence of (fn), there exists

N ∈ N with ∀m,n ≥ N ,

||fn(t0, ·)− f(t0, ·)||∞ <
ϵ

4
and ||fm − fn||L∞([0,T ];L∞(Rn)) <

ϵ

4
.

Since fN ∈ Ω, there exists δ > 0 with ∀t, |t− t0| < δ,

||fN(t, ·)− fN(t0, ·)||∞ <
ϵ

4
.

Let t be such that |t− t0| < δ. By construction of f(t, ·), there exists M ∈ N with

∀n ≥M,

||fn(t, ·)− f(t, ·)||∞ <
ϵ

4
.

Then,

||f(t, ·)− f(t0, ·)||∞ ≤ ||f(t0, ·)− fN(t0, ·)||∞ + ||fN(t, ·)− fN(t0, ·)||∞

+ ||fN(t, ·)− fM+N(t, ·)||∞ + ||fM+N(t, ·)− f(t, ·)||∞,

< ϵ.
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Lastly, we will show that f ∈ Ωε. Fixed t ∈ [0, T ], we have

lim
n→∞

||fn(t, ·)− f(t, ·)||∞ = 0.

By triangle inequality and since fn ∈ Ωε,

||f(t, ·)||∞ < ||fn(t, ·)− f(t, ·)||∞ + ||fn(t, ·)||∞ < ϵ+ ||fn(t, ·)− f(t, ·)||∞.

Letting n→ ∞, then we are done.

Lemma 3.3. Let a, b and p be nonnegative real numbers. Then,

|ap+1 − bp+1| ≤ (p+ 1)|a− b|(max(a, b))p.

Proof. WLOG, let a ≥ b. We define a function f by

f(p) = ap+1 − bp+1 − (p+ 1)(a− b)ap on [0,∞).

Consider f when p ∈ Q+
0 , i.e., p = m

n
where m,n ∈ N. Let x = n

√
a and y = n

√
b.

Then, the inequality will be

n(xm+n − ym+n) ≤ (m+ n)(xn − yn)xm.

It is equivalent to

mxm+n + nym+n ≥ (m+ n)xmyn,

which is implied from Theorem 2.21. Thus, f ≤ 0 on Q+
0 . Since f is continuous

and Q is dense in R, we have f ≤ 0. Hence, we are done.

Theorem 3.4. Assume that u0 ∈ L∞(Rn) ∩ C(Rn) is nonnegative. Then, there

exists T > 0 such that (1.4) admits a unique mild solution.
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Proof. Let ε and T be positive constants. By Lemma 3.2, we have Ωε is a complete

metric space with norm || · ||L∞([0,T ];L∞(Rn)). Define the mapping M as follows

M(v)(t, x) = G(t)u0(x) +
∫ t

0

G(t− τ){v(τ, x)p+1} dτ on Ωε.

To use contraction mapping theorem, it is enough to show that M is a contraction

mapping on Ωε. Since J is nonnegative, for nonnegative function f ,

G(t)f = e−t

∞∑
k=0

tk

k!
J∗(k) ∗ f ≥ 0.

Thus, M(v)(t, x) is nonnegative. Then, by Lemma 3.1, for each v ∈ Ωε,

||M(v)(t, ·)||∞ ≤ ||G(t)u0||∞ +

∫ t

0

∥∥G(t− τ){v(τ, ·)p+1}
∥∥
∞ dτ,

≤ ||u0||∞ +

∫ t

0

∥∥v(τ, ·)p+1
∥∥
∞ dτ.

If we take

ε > 2||u0||∞ and 0 < T <
1

2(p+ 1)εp
, (3.1)

then

||M(v)||L∞([0,T ];L∞(Rn)) ≤ ||u0||∞ + Tεp+1 < ε.

Consequently, M(v) ∈ Ωε. For v1, v2 ∈ Ωε, we have by Lemma 3.1 and 3.3 that

||M(v1)(t, ·)−M(v2)(t, ·)||∞

≤
∫ t

0

∥∥G(t− τ){v1(τ, ·)p+1 − v2(τ, ·)p+1}
∥∥
∞ dτ,

≤
∫ t

0

∥∥v1(τ, ·)p+1 − v2(τ, ·)p+1
∥∥
∞ dτ,

≤
∫ t

0

∥∥∥∥(p+ 1)(v1(τ, ·)− v2(τ, ·))(max
x∈Rn

{v1(τ, ·), v2(τ, ·)})p
∥∥∥∥
∞

dτ,

≤ (p+ 1)εp
∫ t

0

∥v1(τ, ·)− v2(τ, ·)∥∞ dτ

≤ (p+ 1)εpT ∥v1 − v2∥L∞([0,T ];L∞(Rn)) .
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By the condition (3.1), we have

||M(v1)−M(v2)||L∞([0,T ];L∞(Rn)) ≤
1

2
∥v1 − v2∥L∞([0,T ];L∞(Rn)) .

Then, M is a contraction mapping on Ωε. Therefore, by applying Theorem 2.15,

we get the result that there exists a unique fixed point of M on Ωε, i.e., there exist

u ∈ Ωε such that

u(t, x) = M(u)(t, x) = G(t)u0(x) +
∫ t

0

G(t− τ){u(τ, x)p+1}dτ.

Hence, u ∈ Ωε ⊂ Ω is a mild solution of (1.4) as desired.

Theorem 3.5. Let u, v ∈ C([0, T ];L∞(Rn)∩C(Rn)) be positive mild supersolution

and subsolution of (1.4), respectively, with

0 ≤ v0(x) ≤ u0(x) on Rn.

Then, 0 ≤ v ≤ u on [0, T ]× Rn.

Proof. Since u is a mild supersolution of (1.4), we have

u(t, x) ≥ G(t)u0(x) +
∫ t

0

G(t− τ){u(τ, x)p+1} dτ.

For a mild subsolution v, we have

v(t, x) ≤ G(t)v0(x) +
∫ t

0

G(t− τ){v(τ, x)p+1} dτ.

Since u0 ≥ v0 and J is nonnegative,

G(t)(v0 − u0) = e−t

∞∑
k=0

tk

k!
J∗(k) ∗ (v0 − u0) ≤ 0.
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Thus, we have

v(t, x)− u(t, x) ≤ G(t)(v0(x)− u0(x)) +

∫ t

0

G(t− τ){v(τ, x)p+1 − u(τ, x)p+1} dτ,

≤
∫ t

0

G(t− τ){v(τ, x)p+1 − u(τ, x)p+1} dτ,

=

∫ t

0

G(t− τ){(v(τ, x)− u(τ, x))H(τ, x)} dτ,

where

H(t, x) = (p+ 1)

∫ 1

0

(νv(t, x) + (1− ν)u(t, x))p dν on [0, T ]× Rn.

Since u and v are positve, H is nonnegative. Then,

(v − u)+(t, x) ≤
∫ t

0

G(t− τ){(v − u)+(τ, x)H(τ, x)} dτ.

By Lemma 3.1, we have

∥(v − u)+(t, ·)∥∞ ≤
∫ t

0

∥(v − u)+(τ, ·)∥∞ ∥H(τ, x)∥∞ dτ.

By Theorem 2.24, by letting f(t) = ∥(v − u)+(t, ·)∥∞, B(t) = ∥H(t, x)∥∞ and

A ≡ 0, we get f ≡ 0, that is u ≥ v.

This idea also can apply to the solution when u ∈ C([0, T ), L1(Rn) ∩ L∞(Rn))

Corollary 3.6. Assume that u0 ∈ L∞(Rn) ∩ C(Rn) is nonnegative. Then, there

exists a unique positive mild solution of (1.4).

Proof. By Theorem 3.4, we have the existence of mild solutions of (1.4). Let v and

u be mild solutions with initial condition u0. Then

v ∈ C([0, T1];L
∞(Rn) ∩ C(Rn)) and u ∈ C([0, T2];L

∞(Rn) ∩ C(Rn)),

for some T1, T2 ≥ 0. Let T ′ = min(T1, T2). By Theorem 3.5, for t ∈ [0, T ′], u = v

on [0, T ′].



CHAPTER IV

CRITICAL EXPONENT

In this chapter, we discuss the behavior of solutions to (1.4) in the case µ ̸= 0. For

the case µ = 0, the kernel J is a dispersal kernel, and the result was discussed by

Alfaro in [1]. We will divide the investigation into 3 cases:

1. When 0 < p < β
n
, we show that the solutions blow up in finite time;

2. When p = β
n
, we show that the solutions blow up in finite time for µ < 0 and

solutions can be global provided the initial condition is sufficiently small for

µ ≥ 1;

3. When p > β
n
, we show that the solutions can be global or blow-up provided

the initial condition is sufficiently small or sufficiently large, respectively.

4.1 Systematic blow up: 0 < p < β
n

In this section, we prove that the positive solution to (1.4) is blow-up in finite time

by contradiction. Thus we assume that the solution is global. We define for any

t > 0, the quantity

f(t) =

∫
Rn

et(Ĵ(ξ)−1)û0(ξ) dξ.

This idea is originated by Kaplan [11]. We are going to estimate f(t) from above

and below as t→ ∞.

4.1.1 Estimate from below and above

We assume in this subsection that the initial condition u0 satisfies

1. u0 is nonnegative, nontrivial, radially symmetric, continuous and bounded.
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2. u0 and û0 are integrable function.

For the esitimate from below, we divide the proof into 2 cases: µ ∈ R+ and µ ∈ R−.

Theorem 4.1. There is a positive constant G depending on the dimension n and

the kernel J such that for large t, we have the following results.

(i). If µ ∈ R−, then

f(t) ≥ ||u0||1G
t
n
β

. (4.1)

(ii). If µ ∈ R+, then

f(t) ≥ ||u0||1G
(t(ln t)µ)

n
β

. (4.2)

Proof of Theorem 4.1 (i). By the Hypothesis (2.26), there exists ξ0 > 0 such that

for any |ξ| < ξ0,

Ĵ(ξ)− 1 ≥ −2A|ξ|β
(

ln 1

|ξ|

)µ

≥ −2A|ξ|β. (4.3)

Since u0 is nontrivial and non-negative, û0(0) =
∫
Rn u0(x) dx > 0. Therefore there

exists ξ1 > 0 such that if |ξ| < ξ1, then û0(ξ) ≥ 0. Thus, we set

ξ′ = min(ξ0, ξ1).

By Lemma 2.10, there exists N ∈ N such that for any |ξ| > N , Ĵ(ξ) < 1
2
. By

Lemma 2.12, we know that Ĵ achieves a maximum on [ξ′, N ] with the value less

than 1. Thus, there exists δ > 0 such that for any |ξ| ≥ ξ′,

Ĵ(ξ)− 1 ≤ −δ. (4.4)

Next, we are going to approximate the value of t
n
β f(t) by dividing into 2 parts,

t
n
β f(t) = g1(t) + g2(t),

where g1(t) = t
n
β
∫
|ξ|≤ξ′

et(Ĵ(ξ)−1)û0(ξ) dξ and g2(t) = t
n
β
∫
|ξ|≥ξ′

et(Ĵ(ξ)−1)û0(ξ) dξ.
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By (4.4), we have

|g2(t)| ≤ t
n
β e−δt||û0(ξ)||1 (4.5)

and the RHS of (4.5) converges to 0 as t→ ∞. On the other hand, from (4.3),

g1(t) ≥ t
n
β

∫
|ξ|≤ξ′

e−2At|ξ|β û0(ξ) dξ = t
n
β

∫
Rn

e−2At|ξ|β û0(ξ)χ(0,ξ′)(ξ) dξ.

By Theorem 2.6 with the map : ξ 7−→ t−
1
β z, we have

g1(t) ≥ t
n
β

∫
Rn

e−2At|t−
1
β z|β û0(t

− 1
β z)χ(0,ξ′)(t

− 1
β z)t−

n
β dz,

=

∫
Rn

e−2A|z|β û0(t
− 1

β z)χ(0,ξ′)(t
− 1

β z) dz. (4.6)

By Lemma 2.10 and u0 ∈ L1(Rn), û0 is bounded. Thus,

e−2A|z|β û0(t
− 1

β z) ≤Me−2A|z|β ,

for some constant M . By [7], we know that e−2A|z|β is an integrable function. Thus,

we can apply Theorem 2.5 to (4.6) to get the integral converges, as t→ ∞, to

∫
Rn

e−2A|z|β û0(0) dz.

Since û0(0) = ||u0||1, we can conclude that

f(t) ≥ ||u0||1G
t
n
β

,

where G = 1
2

∫
Rn e

−2A|z|β dz.

Proof of Theorem 4.1 (ii). By the Hypothesis (2.26), there exists ξ0 > 0 such that

for any |ξ| < ξ0,

Ĵ(ξ)− 1 ≥ −2A|ξ|β
(

ln 1

|ξ|

)µ

. (4.7)

Since u0 is nontrivial and non-negative, û0(0) =
∫
Rn u0(x) dx > 0. Therefore there
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exists ξ1 > 0 such that if |ξ| < ξ1, then

û0(ξ) ≥
û0(0)

2
> 0. (4.8)

Then, we set

ξ′ = min(ξ0, ξ1, 1).

By using the same idea as in the proof of Theorem 4.1(i), it is enough to show

that there exists a positive constant G depending only on the dimension n and the

kernel J such that

g(t) ≥ ||u0||1G,

where g(t) = (t(ln t)µ)
n
β

∫
|ξ|≤ξ′

et(Ĵ(ξ)−1)û0(ξ) dξ. From (4.7) and (4.8), we have

g(t) ≥ (t(ln t)µ)
n
β

∫
|ξ|≤ξ′

e−2At|ξ|β(ln 1
|ξ|)

µ

û0(ξ) dξ,

= (t(ln t)µ)
n
β

∫
Rn

e−2At|ξ|β(ln 1
|ξ|)

µ
(
û0(0)

2

)
χ(0,ξ′)(ξ) dξ.

By Theorem 2.6 with the map : ξ 7−→ (t(ln t)µ)−
1
β z, we have

g(t) ≥
(
û0(0)

2

)∫
Rn

e
−2A

|z|β
(ln t)µ

(
ln (t(ln t)µ)

1
β

|z|

)µ

χ(0,ξ′)((t(ln t)µ)−
1
β z) dz.

There exists t0 such that for t ≥ t0,

0 <
ln
(

ln t
)µ

β
− µ

β
< ln[t

1
β (ln t)

µ
β (ξ′)].

Then, for t ≥ t0,

g(t) ≥
(
û0(0)

2

)∫
Rn

e
−2A

|z|β
(ln t)µ

(
ln (t(ln t)µ)

1
β

|z|

)µ

χ
(0,(ln t)

µ
β e

−µ
β )
(z) dz. (4.9)
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Consider h(t) = 1
β
+ µ ln ln t

β ln t
− ln |z|

ln t
. Then,

h′(t) =
1

(ln t)2

(
µ+ β ln |z| − µ ln ln t

βt

)
,

so h is decreasing function on (t0,∞). We can apply Theorem 2.4 in (4.9) to get

that, as t→ ∞, the integral converges to

∫
Rn

e−2A
β
|z|β û0(0) dz = ||u0||1G.

Hence we are done.

For the esatimate from above, we use the result in [1]. This estimate requires the

condition of the kernel J that J is nonnegative, bounded, and radially symmetric

with unit integral.

Theorem 4.2 ([1]). If u is a global solution to (1.4) with the kernel J satisfying

that J is a nonnegative, radially symmetric function with unit integral, then, for

any t > 0,

f(t) ≤ (2π)n

((
p+ 1

p

) 1
p 1

t
1
p

+ e−tu0(0)

)
. (4.10)

4.1.2 Systematic blow up

In this subsection, we show that, when p < β
n
, the positive solution to (1.4) is blow-

up in finite time by using estimate from below and above of f(t). We assume the

initial condition u0 satisfies u0 ∈ L∞(Rn) ∩ L1(Rn) is nonnegative and nontrivial.

For the comparison principle of solution, we use the result in [9].

Theorem 4.3 ([9]). Let u, v ∈ C1((0, T ), L∞(Rn)∩L1(Rn))∩C0([0, T ), L∞(Rn)∩

L1(Rn)) be nonnegative functions satisfitying

ut ≥ J ∗ u− u+ u1+p and vt ≤ J ∗ v − v + v1+p in (0, T )× Rn

for some T > 0, with v0 ≤ u0 in Rn. Then, v ≤ u in [0, T )× Rn.
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Lemma 4.4. For any α > 0 and µ ∈ R,

lim
|ξ|→0

|ξ|α
(

ln 1

|ξ|

)µ

= 0.

Theorem 4.5. Assume that u0 ∈ L1(Rn) ∩ L∞(Rn) is nonnegative and nontrivial

satisfying the condition that there exist x0 ∈ Rn, ε > 0, and r > 0 such that u0 ≥ ε

in B(x0, r). The solutions to (1.4) are blow-up in finite time when p < β
n
.

Proof. Suppose that there exists a global solution u to (1.4). Since there exist

x0 ∈ Rn, ε > 0, and r > 0 such that u0 ≥ ε in B(x0, r), there exists a nonnegative,

nontrivial, radially symmetric, continuous function v with compact support that

is smaller than u0. By Theorem 4.3, the solution to (1.4) with v as the initial

condition is global. Thus, we can assume, without loss of generality, that the

initial condition is nonnegative, nontrivial, radially symmetric, and continuous

with compact support. The result in Section 4.1.1 are available.

• µ ∈ R+, 0 < p < β
n
: By (4.2) and (4.10), for a large t, we have

||u0||1G
(t(ln t)µ)

n
β

≤ (2π)n

((
p+ 1

p

) 1
p 1

t
1
p

+ e−tu0(0)

)
.

Letting t→ ∞ ,we have ||u0||1 ≤ 0. This is a contradiction since ||u0||1 > 0.

• µ ∈ R−, 0 < p < β
n
: By (4.1) and (4.10), letting t → ∞, which gives a

contradiction like the first case.

Hence the solutions are blow-up.

4.2 Blow up vs extiction: p = β
n and µ ∈ R∖ (0, 1]

In this subsection, we show that, when p = β
n

and µ < 0, the positive solution to

(1.4) is blow-up in finite time by using estimate from below and above of f(t). We

assume the initial condition u0 satisfies u0 ∈ L∞(Rn)∩L1(Rn) is nonnegative and

nontrivial. For the comparison principle of solution, we use the result in [9].
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Theorem 4.6. Let p = β
n
. Assume that u0 ∈ L1(Rn)∩L∞(Rn) is nonnegative and

nontrivial satisfying the condition that there exist x0 ∈ Rn, ε > 0, and r > 0 such

that u0 ≥ ε in B(x0, r).

i. If µ < 0, then the solutions to (1.4) is blow-up in finite time.

ii. If µ > 1, the solution to (1.4) is global if ||u||1 + ||û0||1 < δ for some δ > 0.

Proof of Theorem 4.6 (i). Suppose that there exists a global solution u to (1.4).

Since there exist x0 ∈ Rn, ε > 0, and r > 0 such that u0 ≥ ε in B(x0, r), there

exists a nonnegative, nontrivial, radially symmetric, continuous function v with

compact support that is smaller than u0. By Theorem 4.3, the solution to (1.4)

with v as the initial condition is global. Thus, we can assume, without loss of

generality, that the initial condition is nonnegative, nontrivial, radially symmetric,

and continuous with compact support. The result in Section 4.1.1 are available.

By (4.1) and (4.10) and letting t→ ∞ as above, we have ||u0||1 < C where C is a

constant that depends on the dimension n and the kernel J . Thus, by regarding

u(t, ·) as an initial value and apply the preceeding argrument, we derive that

m(t) := ||u(t, ·)||L1 ≤ C

for any t ≥ 0. By Theorem ??, we have

dm(t)

dt =

∫
Rn

∂tu dx =

∫
Rn

(J ∗ u− u) dx+
∫
Rn

u1+p(t, x) dx =

∫
Rn

u1+p(t, x) dx.

Then, m(t)−m(0) =
∫ t

0

∫
Rn u

1+p(t, x) dx dt. Thus,

∫ ∞

0

∫
Rn

u1+p(t, x) dx dt ≤ C. (4.11)

Let ρ ∈ C∞
c (R) be such that ρ ≡ 1 on (−1, 1), 0 ≤ ρ ≤ 1 and supp(ρ) = [−2, 2].

For any ε > 0, R > 0 and T > 0, we define

ψR(t) = ρ

(
t− T

Rβ

)
and θR(x) = ρ

(
ε
|x|
R

)
.
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Consider

• By Theorem ??, we have

∫
Rn

(J ∗ u− u)(t, x)θR(x) dx =

∫
Rn

(J ∗ θR − θR)(x)u(t, x) dx. (4.12)

• By integration by parts with respect to time, we get

∫ ∞

T

∫
Rn

ut(t, x)ψR(t)θR(x) dx dt

=

∫
Rn

u(t, x)ψR(t)θR(x) dx
∣∣∣∣∣
∞

T

−
∫ ∞

T

∫
Rn

u(t, x)ψ′
R(t)θR(x) dx dt,

= −
∫
Rn

u(T, x)θR(x) dx−
∫ ∞

T

∫
Rn

u(t, x)ψ′
R(t)θR(x) dx dt,

≤ −
∫ ∞

T

∫
Rn

u(t, x)ψ′
R(t)θR(x) dx dt. (4.13)

Multiplying (1.4) with ψR(t)θR(x) and integrating it over (T,∞)× Rn. By (4.12)

and (4.13), we obtain

∫ ∞

T

∫
Rn

u1+p(t, x)ψR(t)θR(x) dx dt

= −
∫ ∞

T

∫
Rn

(J ∗ u− u)(t, x)ψR(t)θR(x) dx dt+
∫ ∞

T

∫
Rn

ut(t, x)ψR(t)θR(x) dx dt,

≤ −
∫ ∞

T

∫
Rn

(J ∗ θR − θR)(x)u(t, x)ψR(t) dx dt−
∫ ∞

T

∫
Rn

u(t, x)ψ′
R(t)θR(x) dx dt.

Since θR(x) = 0 on |x| > 2R
ε
, J ∗ θR ≥ 0. Thus,

∫ ∞

T

∫
Rn

u1+p(t, x)ψR(t)θR(x) dx dt

≤ −
∫ T+2Rβ

T

∫
|x|<2R

ε

(J ∗ θR − θR)(x)u(t, x) dx dt−
∫ ∞

T

∫
|x|<2R

ε

u(t, x)ψ′
R(t) dx dt,

= −I1 − I2,
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where

I1 =

∫ T+2Rβ

T

∫
|x|<2R

ε

(J ∗ θR − θR)(x)u(t, x) dx dt and

I2 =

∫ ∞

T

∫
|x|<2R

ε

u(t, x)ψ′
R(t) dx dt.

For any t > T , we have

ψ′
R(t)| =

∣∣∣∣ 1Rβ
ρ′
(
t− T

Rβ

)∣∣∣∣ ≤ C

Rβ
χ(T+Rβ ,T+2Rβ). (4.14)

Then, by Theorem 2.22 and (4.14),

|I2| ≤
C

Rβ

∫ T+2Rβ

T+Rβ

∫
|x|<2R

ε

u(t, x) dx dt,

≤ C

Rβ

(∫ T+2Rβ

T+Rβ

∫
|x|<2R

ε

1 dx dt
) p

p+1
(∫ T+2Rβ

T+Rβ

∫
|x|<2R

ε

u1+p(t, x) dx dt
) 1

p+1

,

=
C

ε
β

p+1

(∫ T+2Rβ

T+Rβ

∫
|x|<2R

ε

u1+p(t, x) dx dt
) 1

p+1

. (4.15)

Deriving from (4.11) by taking R → ∞ in (4.15), we get that I2 tends to zero. On

the other hand, let

B(x) = (J ∗ θR − θR)(x).

By Lemma 2.9, we have

(2π)nB(x) = (2π)n
∫
Rn

θR(z − x)J(z) dz − (2π)nθR(x),

=

∫
Rn

Ĵ(ξ)e−ix·ξθ̂R(ξ) dξ − (2π)nθR(x),

=

∫
Rn∖{0}

(
1−A(ξ)|ξ|β

(
ln 1

|ξ|

)µ)
e−ix·ξθ̂R(ξ) dξ − (2π)nθR(x),

where A is a bounded function. Since θR is radial, (2π)nθR(x) =
∫
Rn e

−ix·ξθ̂R(ξ) dξ.
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Thus, θ̂R(ξ) = (R
ε
)nρ̂n(

R
ε
ξ) where ρn(x) = ρ(|x|), we have

(2π)nB(x) = −
( ε
R

)β ∫
Rn∖{0}

(
A
( ε
R
ξ′
)
|ξ′|β

(
ln R

|εξ′|

)µ)
e−i ε

R
x·ξ′ ρ̂n(ξ

′) dξ′.

Then,

|B(x)| ≤ (2π)−n
( ε
R

)β
||A||∞

∫
Rn∖{0}

|ξ′|β
(

ln R

|εξ′|

)µ

|ρ̂n(ξ′)| dξ′.

By Lemma 4.4 and ρ̂n ∈ S(Rn), we have |B(x)| ≤ C
(
ε
R

)β. Thus,

|I1| < Cε
βp
p+1

(∫ T+2Rβ

T

∫
|x|<2R

ε

u1+p(t, x) dx dt
) 1

p+1

. (4.16)

Using (4.16) and (4.15) by letting R → ∞, we have

∫ ∞

T

∫
Rn

u1+p(t, x) dx dt ≤ Cε
βp
p+1

(∫ ∞

T

∫
Rn

u1+p(t, x) dx dt
) 1

p+1

.

Since this holds for any ε > 0 and T > 0, u ≡ 0 on (0,∞)× Rn.

Proof of Theorem 4.6 (ii). Let v be according to Lemma 2.25 for a positive smooth

function v0 to be specified. Then there exists t0 > 0 such that

||v(t, ·)||∞ ≤ C(||v0||1 + ||v̂0||1)(t(ln t)µ)−
n
β for any t ≥ t0.

Since µ > 1, there exists t1 > t0 such that (ln t)µ ≥ 1 for any t > t1. Define g on

[t1,∞) by

g(t) =

 1

1
(ln t1)µ−1 −

pCp(||v||L1+||v̂0||L1 )p

µ−1

(
1

(ln t1)µ−1 − 1
(ln t)µ−1

)
 1

p

,

where v0 is sufficiently small so that

||v0||1 + ||v̂0||1 ≤
1

C

(
µ− 1

p

) 1
p

.
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Then
g′(t)

g1+p(t)
=
Cp(||v0||1 + ||v̂0||1)p

t(ln t)µ .

For t > t1, we have

g′(t)

g1+p(t)
≥ Cp(||v||1 + ||v̂0||1)p

(t(ln t)µ) ≥ ||v(t, ·)||p∞. (4.17)

Since ||v(t, ·)||p∞ is continuous, ||v(t, ·)||p∞ attains a maximum on [0, t1], denoted by

M . Given M ′ = −Mt1 − 1, we define g on [0, t1) by

g =

(
− 1

p(Mt+M ′)

) 1
p

.

Then g > 0 on [0,∞) and it satisfies (4.17). A straighforward computation shows

that g(t)v(t, x) is a supersolution to (1.4). If we make

u0 ≤
(

1

p(Mt1 + 1)

) 1
p

v0,

then we can apply Theorem 4.3. So, we have

u(t, x) ≤ g(t)v(t, x).

Hence, u(t, x) is global with δ :=
(

1
p(Mt0+1)

) 1
p 1

C

(
µ−1
p

) 1
p
.

4.3 Blow up vs extinction: p > β
n

In this subchapter, we prove that the solutions to (1.4) can be global or blow-up

in finite time depending upon the initial condition.

Theorem 4.7. There is δ > 0 such that if u0 ∈ L1(Rn) ∩ L∞(Rn) and ||u||1 +

||û0||1 < δ, then the solution to (1.4) is global and satisfies, for large t,

||u(t, ·)||L∞ ≤ C(||u||L1 + ||û0||L1)(t(ln t)µ)−
n
β ,



29

for some constant C > 0.

Proof. Let v be according to Lemma 2.25 for a positive smooth function v0 to be

specified. Then, there exists t0 > 0 such that

||v(t, ·)||∞ ≤ C(||v0||1 + ||v̂0||1)(t(ln t)µ)−
n
β for any t ≥ t0.

Since p > β
n
, there exists t1 > t0 such that (ln t)

nµp
β t

np
2β

− 1
2 ≥ 1 for any t > t1. Define

g on [t1,∞) by

g(t) =

 1

1
tα−1
1

− pCp(||v||1+||v̂0||1)p
α−1

(
1

tα−1
1

− 1
tα−1

)
 1

p

,

where α =
1+np

β

2
and v0 is sufficiently small so that

||v0||1 + ||v̂0||1 ≤
1

C

(
α− 1

p

) 1
p

.

Then,
g′(t)

g1+p(t)
=
Cp(||v0||1 + ||v̂0||1)p

tα
.

For t > t1, we have

g′(t)

g1+p(t)
≥ Cp(||v||1 + ||v̂0||1)p

(t(ln t)µ)
np
β

≥ ||v(t, ·)||p∞. (4.18)

Since ||v(t, ·)||p∞ is continuous, ||v(t, ·)||p∞ attains a maximum on [0, t1], denoted by

M . Given M ′ = −Mt1 − 1, we define g on [0, t1) by

g =

(
− 1

p(Mt+M ′)

) 1
p

.

Then, g > 0 on (0,∞) and it satisfies (4.18). A straighforward computation shows
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that g(t)v(t, x) is a supersolution to (1.4). If we make

u0 ≤
(

1

p(Mt1 + 1)

) 1
p

v0,

then we can apply Theorem (4.3). Thus, we have

u(t, x) ≤ g(t)v(t, x).

Hence, u(t, x) is global with δ :=
(

1
p(Mt0+1)

) 1
p 1

C

(
α−1
p

) 1
p
.

Finally, we state without prove the following blow-up result which was establish

in [1].

Theorem 4.8 ([1]). Assume λ > 0 and R > 0 are such that

λ >

(
1− Cn

∫
|z|≤R

J(z)dz

) 1
p

,

where 0 < Cn < 1 is a constant that depends only on the dimension n. Then, the

solution to (1.4) with λχ|x|≤R as an initial data blows up in finite time.
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