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CHAPTER 1
INTRODUCTION

In 1966, Fujita 8] considered positive solutions of the nonlinear heat equation
Ou = Au+u" in (0,00) x R",

with a non-negative, nontrivial initial data. It was shown that the solutions blow
up in finite time if 0 < p < %, whereas the equation admits a global solution if
p > % provided that the initial condition is sufficiently small. Later on, the case
p = 2 was shown to belong to the finite time blow-up case (see [15]). Consequently,
the number p = % has been called the Fujita critical exponent for the nonlinear
heat equation.

The Fujita phenomenon has become interested ever since. The investigation of
such critical exponent has permeated other nonlinear equations.

In 1997, Bates, Fife, Ren, and Wang [4] considered the nonlinear nonlocal
equation

Owu=Jxu—u— f(u) in (0,00) X R,

where the kernel J is nonnegative and radially symmetric with unit integral, and
f € C?*(R) has only one zero in (—1,1) and no zero outside [—1,1] satisfying
f(£1) =0 < f'(£1). They established the existence and the uniqueness of weak
solutions. Moreover, they proved the regularities of weak solutions, and compared
the asymptotic behavior to stationary-wave solutions, see [3] for more details on

higher dimension. This leads to the study of the nonlocal equations of the form

Ou=Jxu—u, (1.1)



where the kernel J is a nonnegative, radially symmetric, continuous function with
unit integral. The nonlocal equations have been applied to various disciplines, e.g.,
biology, image processing, mathematical finances, etc., see [2] for more details.

In 2006, Chasseigne, Chaves, and Rossi [§] studied the nonlocal equation of
the form () when the kernel J is a nonnegative, radially symmetric, continuous
function with unit integral. They considered (EI) on a bounded smooth domain,
and showed that the Dirichlet or Neumann type boundary value problem has a
unique solution, and such solution is also global. Furthermore, they studied ()

on the whole space with the Fourier transform of the kernel J satifying
J(€) = 1= Alg)’ + o(lg]*) as €0, (1.2)

for 0 < f < 2and A > 0. As a result, they found that the solutions is global,
and have the same behavior as the solutions of d,u = —A(—A)gu. Moreover, they
also investigated the the case that the Fourier transform of the kernel J has the

asymptotic expansion with logarithmic perturbation

J(6) = 1— Al¢P (m %) vl (¢g|2 (ln %)) as €0,  (L3)

where A > 0. They showed that the solutions have the same behavior as the
solutions of the heat equation d,u = %Au with a certain time scaling.

In 2009, Llanos and Rossi [16] studied the nonlinear nonlocal equation
D — / I — y)(ult, y) — ult, 2))dy + ' in (0,T) x O,
Q

where the kernel J € C(R"™) is nonnegative and radially symmetric with unit
integral, and €2 is a bounded, connected, smooth domain. The local existence was
establihed by using the contraction mapping theorem. They also showed that the
solutions blow up when p > 0. On the other hand, the solutions are global when

p <0.



In 2010, Garcia-Melidn and Quirds [9] considered both (@) and the nonlinear

nonlocal equation

O = J*u—u+u in (0,00) x R,
(1.4)

u(0,2) = ug(x),

where the kernel J € C'(R") is nonneagative, compactly supported, radially sym-
metric and radially decreasing with unit integral. Note that (@) is used to model
the dispersal of a species by taking into some account of long-range effects, see
[4] for more details. First, they used the idea in [16] to prove the local existence
and the uniqueness of solution to (EI) and (@) The comparison principle for
positive solutions to (@) is also established by using the Gronwall’s inequality.
Furthermore, they showed that p = % is the Fujita critical exponent to ()

In 2017, Alfaro [[] considered positive solutions to (]l.4) where p > 0 with a non-
negative, nontrivial initial data. He also assumed that the kernel J is nonnegative,
bounded, and radially symmetric with unit integral, and the Fourier transform of

the kernel J satisfies the condition (@) Consequently, Alfaro showed that the
B

—

In 2018, Khomrutai [13] studied the asymptotic behavior for () with a initial

Fujita critical exponent for (@) is

condition. He proved that there is a constant C' depending on dimension n and

the kernel J such that for large enough ¢,
~ _n_1
[lut, e < C(lluol |zt + [ldo] 1)t 707 (1.5)

where 1 < ¢ < 00, or ¢ is 00, and the kernel J is nonnegative and radially symmetric
with unit integral satisfying ([L.2). Moreover, he also considered the asymptotic

behavior for () in the case that the Fourier tranform of the kernel J satisfies

J(€) =1— Al¢f (m %)“ +o0 (|g|ﬁ (m %)3 as & — 0, (1.6)

for 0 < <2, u€R,and A > 0. He obtained the same result as ()



In this work, we consider positive solutions to () with a nonnegative, nontriv-
ial initial data where the kernel J is nonnegative, bounded, and radially symmetric
with unit integral. However, in our case, we assume that the Fourier tranform of
the kernel J satisfies () First, we consider positive mild solutions of (@) with
a nonnegative, nontrivial, smooth initial data. Provided that the kernel J is non-
negative bounded and radially symmetric with unit integral, we establish the local
existence and the uniqueness of mild solutions by using the idea from [16]. We also
investigate some qualitative behaviors, e.g., blow-up or global existence, of the so-
lutions. In Chapter II, we review some background knowledges and some estimates
which will be used thoughtout this thesis. In Chapter III, we use the idea from
[16] and [9] to establish the local existence, the uniqueness and the comparison
principle of positive mild solutions of (@) In Chapter IV, we apply the idea in
[] to prove some estimates, and show that the solutions blow up when p > g
When p = g, we show that the solutions blow up if © < 0, and the solutions can
be global if © > 1, and the initial condition is sufficientlly small. Consequently,

we prove that the solution can be global or blow-up depending upon the initial
B

n"

conditions when p >



CHAPTER II
PRELIMINARIES

In this chapter, we introduce basic definitions of some background knowledges
needed in this thesis. We review the theorm of integration on Lebesgue measure,
the properties of the Fourier transform, facts regarding the behavior of solutions,
some basics of topology about the contraction mappings, and some useful inequal-
ities.

Let (R™, £, i) be a Lebesgue mesure space. We write (x)dz for fdu.

R R

Definition 2.1 ([7]). A statment is true almost everywhere, if a statement is

true for all € R™ except for x in some null set, a set measures zero.

Definition 2.2 ([7]). Let £ C R". The characteristic function yp of F is
defined by

1
Xe(zT) =
0, ifz¢FE.

, ifx ek,

Definition 2.3 ([{]). Let f : R* — R. The positive part of f, of f is defined
by
f+(z) = max(f(z),0).

Theorem 2.4 ([7], The Monotone convergence theorem). Let f,, be a sequence of

nonnegative integrable function such that f, < fn,11 for allm € N. Then,

/ lim f,(z)dr = lim Jo(x)de.
Rn M—r00

n—00 Jpn

Theorem 2.5 ([7], The Dominated convergence theorem). Let f,, be a sequence of

integrable function such that there exist a nonnegative, integrable function g with



|ful < g almost everywhere for all n € N. Then,

/ lim f,(z)dzr = lim Jo(z)de.
R

n N—00 n—00 Jpn

Theorem 2.6 ([7]). Let T be a bijection linear transformation from R™ to R™. If
f>0orfeL'(R"), then

flz)dz =|detT| | foT(z)dx.
Rr Rr

For x = (21, x9, 23, ..., x,) and y = (y1, Y2, Y3, ..., Yn) in R™, we use the notation

L2 = Zxkyk-
k=1

Definition 2.7 ([1]). Let f € L'(R"). The Fourier tranform f and inverse

Fourier transform f, respectively, of f are the functions defined by

f(f) = . f(x)e™Sdz and f(€) = s f(x)e™€ dz.

Lemma 2.8 ([1]). If f, f € L'(R"), then (2m)"f = f.
Lemma 2.9 ([1], Plancherel formula). Let f, g € L*>(R™). Then,

1

[, J(©ae)de.

[ f@)g()ar =

Lemma 2.10 ([10]). If f € L'(R"), then f and f are bounded and continuous.
Moreover,

lim f(§)=0 and lim f(z)=0.

Definition 2.11 ([10]). A function f on R" is radially symmetric, if f(z) = f(y)

when |z| = |y|.

Note: By [10], the Fourier transform of a radially symmetric function f is a real-

valued function when n > 2. For the case n = 1, a radially symmetric function f



is even. Therefore,

/ sin(z) f(z)dx = 0.
R
Thus, for a radially symmetric function f,

~

fl&) = /Rcos(—w 6 f(xr)dz € R.

Lemma 2.12. Let f be a nonnegative, radially symmetric function on R™ with

unit integral. Then, for & € R™, ]f(f)] < 1, and the equality holds when & = 0.

Proof. Since (1 — cos(—xz-&))f(x) is a nonnegative, continuous function in « vari-

able, and there is value that more than 0 when & # 0,
1= f(6) = [ (1~ cos(—a- ) (o) do > 0.

For the case & = 0, we get f(0) = Jon flx)dz = 1. H

We define ||- ||y := || || za@n for ¢ € Rwith 1 < ¢ < 0o and ||+ ||ae := ||-||zoe(n)-
Definition 2.13 ([[l]). We assume that v is a solution to () almost everywhere
with

u € CH(0,T), L>(R™) N LY(R™)) N C°([0, T), L>°(R™) N L'(R™)),

for some T > 0.

1. w is blow-up in finite time, if the maximal of 7" is finite (T}, < 00), i.e.,

for each t < Taa, ||u(t, )]l < oo and lim ||u(t,-)||e = 0.

A)Tmaz
2. w is global, if the maximal of T is infinity, i.e., ||u(t, )|l < oo for all ¢.
Definition 2.14 ([12]). Let (X, d) be a metric space. A mapping 7' : X — X is

a contraction, if there exists a constant C' with 0 < C' < 1 such that

d(T(z), T(y)) < Cd(x,y) forall z,ye X.



Theorem 2.15 ([12], The contraction mapping theorem). If T : X — X is a
contraction on a complete metric space (X, d), then it has excactly one fized point

mn X.

Definition 2.16 ([7]). For any f,g € L*(R"), the convolution of f and g is
defined by

(f*g)(z) = - fWg(z —y)dy.

Remark 2.17. By [[7], the convolution operator has commutative and associative

properties.
Lemma 2.18 ([1)). If f, g € LY(R"), then f+g = f§.

Definition 2.19 ([14]). The Green operator G(t) associated with (@) is defined
by

where J° is the identity, and J**#) = J % J<* =1 for k > 1.

Definition 2.20 ([14]). A function w is called a mild solution of (@) provided
u € C([0,T], L>*(R™) N C(R™)), and satisfies

u(t, z) = G(Huo(z) + /0 Gt — ) {u(r, z)* 7 in (0,00) x RT.  (2.1)

A function u is called a mild subsolution of (@) provided u € C([0, T], L (R™)N
C(R™)), and satisfies

u(t,z) < G(t)uo(x) +/0 G(t — 7){u(r,z)?**}dr in (0,00) x R™.

A function w is called a mild supersolution of () provided u € C([0,T], L>=(R™)N
C(R™)), and satisfies

u(t,z) > G(t)uo(x) —{—/0 G(t — m){u(r,z)?*'}dr in (0,00) x R™.



Theorem 2.21 ([18], Weight AM-GM). Let p1, pa, ..., pn be nonnegative rational

numbers such that Y. p; = 1. Then, for ay, as, ..., a, >0,

p1 P2
ayray’...alr < prap + paas + ..ppay,.

Theorem 2.22 ([[7], The Holder’s inequality). Let p and q be real numners such

that 1 < p,q < oo and i + é = 1. If f and g are measurable functions, then

1 Fglle < 111l lgllq

Theorem 2.23 ([[7], The Young’s convolution inequality). Let f € LP(R™) and
g € LYR™) where p,q are real numbers satisfying 1 < p,q < oo. Then, the

following statements hold.

LIF =1 then [[£ % glly < 11, ol

2. If there exists r € R such that }D N é =1+, then || f *gl|, < 1AL, gll,-
Moreover, if f € L'(R") and g € L=(R"), then || f * gll ., < [If]l; |9/l -

Theorem 2.24 ([L7], The Miscellaneous inequality). Let I denote an interval of
the form [a,b], and continuous functions f, A, B : I — R. If B is nonnegative, and

f satisfies the following condition

F() < A(t) + / B(s)f(s)ds in I,

then
¢
ft) < At) +/ A(s)B(s)els B@drgs  in T,

Lemma 2.25 ([13]). There is a constant C > 0 depending on the dimension n
and the kernel J such that the solution to ) under the assumption ) with

the initial condition vy satisfies, for large t,

[0t Moo < CJJvoll1 + [[do][1) (t(In 1)) 5.
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Let us present the assumptions on J as presented in Chapter I and its proper-

ties.

Hypothesis 2.26. Let J : R®™ — R be a nonnegative, bounded, radially symmetric

function with unit integral, and the Fourier transform of J satisfies

J(€) =1— Al¢)? (m %)“ +o0 (|g|ﬁ (m é)ﬁ as £ — 0,

for 0 < B <2, peR, and A > 0.
Note: The kernel J satifies the following :
1. lim J(£) =0;
€[00

2. [J(€)| <1 and the equality holds when & = 0;

3. The Hypothesis (228) implies that

JE) 1+ A (n )"

lim =

o RP ()




CHAPTER I11
LOCAL EXISTENCE, COMPARISON PRINCIPLE AND
UNIQUENESS

In this chapter, we cosider the mild solutions u(t,z) of the form (@) We will
estimate the Green operator, and prove the local existence of positive mild solu-
tions by using Theorem . This idea is inspired by [16] to apply to () The
comparison principle is shown by considering mild supersolution and mild subso-
lution applying Theorem to prove it. The uniqueness of mild solutions is the

consequence of the comparison principle and the local existence.

Lemma 3.1. For f € L>®(R") and t > 0, then
1G(8) flloss < M oo-
Proof. Since ||J||;: = 1, by Theorem D.23, we have for each k € N that
17 5 flloe < 1T % flloo = 11770 5 .

Continuing the process, we have ||J***1 x f||o < ||f]|oo, S0 that

-t - tR
19O flloe < |le™ D 7™ = £l <e D Gl flloo = [ flle- - O
k=0 0o k=0

Lemma 3.2. Let T be a positive constant. Let Q = C([0,T]; L>*(R™) N C(R™)).

For each ¢ € Q, we denote

|[[|zoe (o773, L ®n)) = sup [|(t, )] oo
t€[0,T)
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Let € be a positive constant. Let

Qe ={p€Q:9>0,|[ol|lreqorsrem) <&}

Then, ). is a complete metric space with norm || - || Lo (jo,1];50 (R7Y)-
Proof. Since || - || is @ norm and definition of supremum, we have the following
results:

For any a € R and 1, 5 € €.,

L. sup [[o1+ @2floe < sup (||g1]los + [[#2lloc) < sup [lp1]loc + sup [|2]oo,
T te[0,7 te[0,7

te[0,T) t€[0,77]

2. sup |lapi|le < sup |afl|erloo,
te[0,T te[0,7)

3. sup [[p1]le = 0.
te[0,7]

Let ¢ € Q. be such that ||| e(or)z00n)) = 0. Then, for each ¢ € [0,T],

llo(t, )||ee = 0, ie., @(t,-) = 0 almost everywhere. Since ¢(t,-) is continuous for
all t € [0, 77, we have ¢ = 0. Thus, || - ||Le(j0,7);200(rn)) IS @ norm on ..

Let (f,) be a Cauchy sequence in (), i.e.,
Ve > 0,IN € N with Vm,n > N, ||fo = fallzee(o1),000mny) < €.

Fixed t € [0,T], we have (f,(t,)) is a Cauchy sequence in L>(R"). Since L>(R")

is a complete metric space, a limit of (f,,(¢, -)) converges to a function g; in L>(R").

We define the function f by

f(t,z) = g(xz) on[0,T] x R™.

Note that, for any t € [0,T], f(t, ) € L*(R").
Fixed t € [0, 7], we claim that f(¢,-) € C(R"). Let o € R" and € > 0.

By construction of f(¢,-), there exists N € N with Vn > N,

€

||fn(t7 ) - f(tv )||oo < g
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Since fy(t,-) € C(R™), there exists 6 > 0 with Vz, |x — zo| < 4,
|fn(t, @) — fan(t )| < %
Thus,

|f(t7l’) - f(taxﬂﬂ
<|f(t,z) = fn(t, o)+ [ fn(t ) — fn(t o) + [fn(t z0) — f(E, 20)],

< €.

Next, we are going to show that f € Q. Let to € [0,7] and € > 0.
By construction of f(to,-) and definition of Cauchy sequence of (f,), there exists

N € N with Vm,n > N,

IS e

€
[ fu(to, ) = f(to, )||ee < ; and [ = Fullzeo (o100 )y <

Since fy € Q, there exists § > 0 with V¢, |t — to| < 0,

€
1w, ) = Fn(to. lleo < 7-
Let ¢ be such that |t —ty| < 0. By construction of f(t,-), there exists M € N with
Vn > M,

€

[1falts) = (&)l < 7
Then,
£ (t, ) = f(tos oo < |1 (tos-) — Fn(to, Moo + || Fn(t, ) — F(to, )]|oo

F N ) = Faen (&) oo + (e () = F () oo

< €.
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Lastly, we will show that f € Q.. Fixed t € [0, T], we have
lim ||fn(t’ ) - f(t7 >||OO =0.
n—o0
By triangle inequality and since f,, € €.,
L oo <1 fnlt,) = F(E oo + 11falt, oo <€+ [[fults ) = fE)loo-

Letting n — oo, then we are done. ]

Lemma 3.3. Let a,b and p be nonnegative real numbers. Then,
|a” ! — b < (p+1)]a — bl (max(a, b))”.
Proof. WLOG, let a > b. We define a function f by
fp) = a"*' =" = (p+1)(a —b)a” on [0,00).

Consider f when p € Qf, i.e., p = m where m,n € N. Let = {/a and y = b.

Then, the inequality will be
GHUTALORNGKERM: UNIVERSITE™-

It is equivalent to

mx™ " + ny™ " > (m + n)a™y",

which is implied from Theorem . Thus, f < 0 on QF. Since f is continuous

and Q is dense in R, we have f < 0. Hence, we are done. O

Theorem 3.4. Assume that ug € L>®°(R™) N C(R™) is nonnegative. Then, there
exists T' > 0 such that ) admits a unique mild solution.
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Proof. Let € and T be positive constants. By Lemma @, we have (), is a complete

metric space with norm || - ||z (jo,7];L00(rn)). Define the mapping M as follows

M()(t,z) = G(t)uo(z) + /0 G(t — ) {v(r,2)P™}dr on Q..

To use contraction mapping theorem, it is enough to show that M is a contraction

mapping on €).. Since J is nonnegative, for nonnegative function f,

o0

Git)f=e" k'J*k)*f>0

k=0

Thus, M (v)(t, x) is nonnegative. Then, by Lemma @, for each v € .,

[IM()(# )]0 < 11G()uo]ls +/0 1G(t = 7){u(r, )" 1| dr,

¢
< ||u0|\oo+/ HU(T")pH”oodT'
0

If we take

1
> 2 oo d 0<T<———, 3.1

then

[[M(V)]| Lo 0,170 @) < U0l oo 4 TePtl < ¢

Consequently, M(v) € Q.. For vy, vy € ., we have by Lemma @ and @ that

M) ()~ M)
/ 6= 7)ol 17 = vatr P
/Hv P (e, dr

(-4 D(wr(r, ) — o, ) mas{n(r, ), (7, )}

z€R™

S@+nwlnm@ g )| dr

dr,

o0

< (p+ DT [Jvr = vall oo o, 17, 100 () -
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By the condition (@), we have
1
M (01) = M(w2)l|Loio,rpzeeny) < 5 llor = Vall Lo 0,770 e -

Then, M is a contraction mapping on 2.. Therefore, by applying Theorem ,
we get the result that there exists a unique fixed point of M on ()., i.e., there exist

u € €, such that
u(t,x) = M(u)(t,z) = G(t)uo(z) + /0 G(t — 7){u(r, z)P*}dr.

Hence, u € Q. C 2 is a mild solution of (@) as desired. O

Theorem 3.5. Let u,v € C([0,T}; L=(R")NC(R™)) be positive mild supersolution
and subsolution of ), respectively, with

0 < wo(z) <wup(x) onR™

Then, 0 <v <w on [0,T] x R™.

Proof. Since u is a mild supersolution of (@), we have

ult,z) > Gt / Gt — ) {ul(r, o)1} dr.
For a mild subsolution v, we have

o(t,z) < Gt / G(t — ) {o(r, 2)7} dr.

Since ug > vy and J is nonnegative,

G(t)(vo — uo) = Zk_ J®) s (vg — ug) < 0.
k=0
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Thus, we have
v(t,x) —u(t,r) < G(t)(vo(w) — uo(x)) +/O G(t — 7){v(r, )" — u(r, )P} dr,
< /O Gt — 7){v(r,2)"" — u(r, 21} dr,
= /o Gt —7m){(v(r,z) —u(r,x))H(r,2)} dr,
where
Hit,2) = (p+ 1)/0 (ot 2) + (1~ v)u(t,z)Pdv on [0,T] x R™.

Since v and v are positve, H is nonnegative. Then,

(v—u)y(t,x) < /0 Gt —71){(v—u)p(r,2)H(T,2)}dT.

By Lemma @, we have
t
(v = w) (£, )| < /0 (v = ) (7, )l oo [1H (7, 7)o 7
By Theorem R.24, by letting f(t) = [|(v = u)+ (7)., B(t) = |[H(t,2)|l, and
A =0, we get f =0, that is u > v. [

This idea also can apply to the solution when u € C([0,T), L'(R") N L>*(R"))

Corollary 3.6. Assume that uy € L>®(R™) N C(R™) is nonnegative. Then, there
exists a unique positive mild solution of )

Proof. By Theorem @, we have the existence of mild solutions of () Let v and

u be mild solutions with initial condition ug. Then
ve C(0,T1]; L°(R") NnC(R™)) and wu € C([0,Tz]; L=(R") N C(R™)),

for some T7,Ty > 0. Let T = min(T3,Ty). By Theorem @, fort € [0, T"], u ="
on [0,7"]. O



CHAPTER IV
CRITICAL EXPONENT

In this chapter, we discuss the behavior of solutions to (@) in the case v # 0. For
the case pu = 0, the kernel J is a dispersal kernel, and the result was discussed by

Alfaro in [[L]. We will divide the investigation into 3 cases:
1. When 0 < p < %, we show that the solutions blow up in finite time;

2. When p = g, we show that the solutions blow up in finite time for g < 0 and
solutions can be global provided the initial condition is sufficiently small for

p=> 1

3. When p > %, we show that the solutions can be global or blow-up provided

the initial condition is sufficiently small or sufficiently large, respectively.

B

n

4.1 Systematic blow up: 0 < p <

In this section, we prove that the positive solution to (@) is blow-up in finite time
by contradiction. Thus we assume that the solution is global. We define for any

t > 0, the quantity
£ = [ O Nag(e)de
This idea is originated by Kaplan [11]. We are going to estimate f(t) from above

and below as ¢t — oo.

4.1.1 Estimate from below and above

We assume in this subsection that the initial condition wu satisfies

1. wug is nonnegative, nontrivial, radially symmetric, continuous and bounded.
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2. up and g are integrable function.
For the esitimate from below, we divide the proof into 2 cases: € R and € R™.

Theorem 4.1. There is a positive constant G depending on the dimension n and

the kernel J such that for large t, we have the following results.

(i). If p € R™, then

) > 1lh® (@)
(7). If p € RT, then
|[wol[: G
f(t) = ity )E (4.2)

Proof of Theorem @ (i). By the Hypothesis (2228), there exists & > 0 such that

for any [£] < &,
J6) = 1> ~24/¢° (m |-§—|)M > _24l¢)’. (4.3)

Since g is nontrivial and non-negative, o(0) = [5, uo(x) dz > 0. Therefore there

exists & > 0 such that if |§] < &, then 4y(£) > 0. Thus, we set

§= min (o, &1)-

By Lemma , there exists N € N such that for any [¢| > N, J(¢) < L. By

2
Lemma , we know that J achieves a maximum on (€, N| with the value less
than 1. Thus, there exists § > 0 such that for any || > &',

J(€)—1< —4. (4.4)
Next, we are going to approximate the value of th f(t) by dividing into 2 parts,

15 f(t) = gi(t) + ga(t),

where g1(t) = 7 [ eV O iig(&) A€ and ga(t) = t7 [ €O Viig () €.
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By (Q), we have
lg2(0)] < 36 [l ()l s (4.5)

and the RHS of (@) converges to 0 as t — co. On the other hand, from (@),
gi(t) > 15 / e P iy (€) dg = 1 / e 2 0 (€)x 08 (6) .
lgl<¢’ "
By Theorem @ with the map : £ — t_%z, we have

_1 "
9i(t) = tﬁ/ e 27 g (15 2) x 0 (t P )P dz,

1 1

= / e’QA‘ZWﬂO(t_Ez)X(O,g)(t_Ez) dz. (4.6)
R
By Lemma and ug € L'(R"), 4 is bounded. Thus,

o AlelB ] L —9Al58
e~ 247l ot #z) < Me 24121

for some constant M. By [{], we know that e~ >4\ is an integrable function. Thus,

we can apply Theorem @ to (@) to get the integral converges, as ¢ — o0, to

/ 2457 4,(0) dz.

Since 1o(0) = [|ugl||1, we can conclude that

where G =1 [, e=24127 4z, O

Proof of Theorem B (it). By the Hypothesis (228), there exists & > 0 such that
for any [£] < &,

J(6) — 1> —24)¢)° <ln %)M (4.7)

Since o is nontrivial and non-negative, tg(0) =[5, uo(x) dz > 0. Therefore there
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exists & > 0 such that if || < &, then

Then, we set

¢ = min(§, &, 1).

By using the same idea as in the proof of Theorem @(z), it is enough to show
that there exists a positive constant G depending only on the dimension n and the
kernel J such that

9(t) = |[uol LG,
where g(t) = (t(Int)*)? / et(‘j@)‘l)ﬂg(ﬁ) d¢. From (@) and (@), we have

l§1<¢’

1

o) 2 (tmty)? [ A ) e

lgl<¢’
= Glmeyyh [ (0 ey

By Theorem @ with the map : £ — (¢(In t)“)_%z, we have

~ 2P tlnt)’"‘)% i
o (0 _2A(|n‘t)ﬂ <ln(( 2] ) 1
g(t) > <—02( ))/ e X0 ((t(Int)")"52) dz.

There exists ty such that for t > t,

ln(lnt)u_ﬁ N 1 L) s (e
— 5 ﬁ<1 [t7 (Int) 7 (£)].

0<

Then, for t > ty,

1\ B
R 2|8 Int)H) B
o) o)

g(t)Z(O())/e ()7 T2 N

(O,(lnt)%ef%)(z) dz. (4.9)
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Consider h(t) = % + ";}Et — l?n"zl. Then,

B(t) = 1 (,u—l—ﬁln|z|—,ulnlnt>

(Int)? St

so h is decreasing function on (g, c0). We can apply Theorem @ in (@) to get

that, as ¢ — o0, the integral converges to

/ 2315 400y dz = |[uo|: G-

Hence we are done. O

For the esatimate from above, we use the result in [[1]. This estimate requires the
condition of the kernel J that J is nonnegative, bounded, and radially symmetric

with unit integral.

Theorem 4.2 ([1]). If u is a global solution to ) with the kernel J satisfying

that J is a nonnegative, radially symmetric function with unit integral, then, for

() < (21" ((Iil> Y e*tu0(0)> | (4.10)

any t > 0,

4.1.2 Systematic blow up

In this subsection, we show that, when p < 2, the positive solution to (@) is blow-

up in finite time by using estimate from below and above of f(t). We assume the

initial condition u satisfies ug € L>(R™) N L'(R") is nonnegative and nontrivial.

For the comparison principle of solution, we use the result in [9].

Theorem 4.3 ([9]). Let u,v € C*((0,T), L>(R™) N L*(R™))NC°([0,T), L>(R™) N
L' (R™)) be nonnegative functions satisfitying

uy > Jxu—u+u? and v, <Jxv—v+0? in(0,T)x R"

for some T > 0, with vy < ug in R™. Then, v < wu in [0,T) x R".
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Lemma 4.4. For any o > 0 and u € R,

1 14
lim [£]* ( In — = 0.
A Il ( |s|>

Theorem 4.5. Assume that ug € L*(R™) N L>®(R™) is nonnegative and nontrivial
satisfying the condition that there exist xyg € R™, € > 0, and r > 0 such that ug > €

in B(xg,r). The solutions to ) are blow-up in finite time when p < g

Proof. Suppose that there exists a global solution u to () Since there exist
g € R" & > 0, and r > 0 such that ug > ¢ in B(zo, ), there exists a nonnegative,
nontrivial, radially symmetric, continuous function v with compact support that
is smaller than ug. By Theorem , the solution to (@) with v as the initial
condition is global. Thus, we can assume, without loss of generality, that the
initial condition is nonnegative, nontrivial, radially symmetric, and continuous

with compact support. The result in Section BT are available.
e peRY, 0<p< BBy (@) and (), for a large ¢, we have

oG _ o (PN .
(t(Int)n)? = (( P > o 0(0)>'

Letting ¢t — oo ,we have ||ug||; < 0. This is a contradiction since ||ug||; > 0.

e peR,0<p< g: By (@) and (), letting ¢ — oo, which gives a

contradiction like the first case.

Hence the solutions are blow-up. ]

4.2 Blow up vs extiction: p = g and p € R~ (0,1]

In this subsection, we show that, when p = g and p < 0, the positive solution to
(@) is blow-up in finite time by using estimate from below and above of f(t). We
assume the initial condition ug satisfies ug € L(R™) N L'(R") is nonnegative and

nontrivial. For the comparison principle of solution, we use the result in [9].
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Theorem 4.6. Let p = g Assume that ug € L*'(R") N L>®(R™) is nonnegative and
nontrivial satisfying the condition that there exist xo € R™, ¢ >0, and r > 0 such

that ug > € in B(xg, 7).
. If w <0, then the solutions to ) is blow-up in finite time.
. If p > 1, the solution to ) is global if ||ul|1 + ||to||1 < & for some § > 0.

Proof of Theorem @ (i). Suppose that there exists a global solution u to (@)
Since there exist g € R", ¢ > 0, and r > 0 such that ug > ¢ in B(xg,r), there
exists a nonnegative, nontrivial, radially symmetric, continuous function v with
compact support that is smaller than uy. By Theorem @, the solution to ()
with v as the initial condition is global. Thus, we can assume, without loss of
generality, that the initial condition is nonnegative, nontrivial, radially symmetric,
and continuous with compact support. The result in Section EI1 are available.
By (@) and () and letting ¢ — oo as above, we have ||ug||; < C where C'is a
constant that depends on the dimension n and the kernel J. Thus, by regarding

u(t,-) as an initial value and apply the preceeding argrument, we derive that
m(t) == [u(t,)|[, <C

for any ¢ > 0. By Theorem ??, we have

dm(t)

= atudx:/ (J*u—u)dx+/ u1+p(t,x)d$:/ uP(t, ) d.
RTL n n n

Then, m(t) — m(0) = [y [y u'*P(t,2) da dt. Thus,
/ / u'P(t,x)dzdt < C. (4.11)
0 n

Let p € C°(R) be such that p=1on (—1,1),0 < p < 1 and supp(p) = [—2,2].
For any ¢ > 0, R > 0 and 7" > 0, we define

Yr(t) =p (t];—f) and Og(z) = p(@'%')
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Consider

e By Theorem 7?7, we have
/ (Jxu—u)(t,z)0p(r)dr = / (J x0r — O0r)(x)u(t, z) dz. (4.12)

» By integration by parts with respect to time, we get

/TOO /n uy(t, ) r(t)0r(x) do dt
:/n ult, ) s (1) / / ) e

__/ ulT, D)0k dx_/ / (t, )¢ (1)0r(x) dz dt,
/ /n u(t, 2)y(t)0r(x) dz dt. (4.13)

Multiplying () with g (t)0r(z) and integrating it over (7, 00) x R"™. By ()

and (), we obtain

/TOO /n utP(t, 2)p(t)Or () de dt
__/TOO /H(J*u—u)(t,x)wR(t)eR(x) dacchwr/oo /R uy(t, 2)Yp(t)0r(z) dz dt,

T

— /TOO /n(J * 0p — Og)(2)u(t, 2)Yp(t) dz dt — /OO /R w(t, )Yy (t)0r(z) dz dt.

T

Since Op(z) =0 on |z| > 2&, J %0z > 0. Thus,

/TOO /n wtP(t, 2)YR(t)0r () d dt

T+2RP o0
— / / (Jx0r — 0p)(x)u(t,z) de dt — / / u(t, x)Pp(t) dz dt,
T <2 T Jz|<2f

= _Il - IQ;
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where

T+2RF
L = / / (J x0r — O0r)(x)u(t,z)dzdt and
T lz|<2 &

L= / / w(t, )0 (1) da dt.
T Jiz|<2&

For any t > T, we have
1 t—1T C
1/J§z(t)| = ‘ﬁp, (F)‘ < ﬁX(T+RB7T+QRB). (4.14)

Then, by Theorem and ()7

T+2RP
|| < / / u(t, x) dz dt,
RB +RA |z|<2£
T+2RA T+2RP =y
/ / Ldz dt / u'P(t, ) dz dt ,
+RA |z|<2 T+RB |z|<2f
T+2R5 ey
i / / Wy ded || (4.15)
cp+l +RA |z|<2£&

Deriving from () by taking R — oo in (), we get that I, tends to zero. On
the other hand, let

m|

B(z) = (Jx0g — 0r)(x).

By Lemma @, we have

(2m)"B(z) = (2m)" | Or(z —x)J(2)dz — (27)"0g(x),

RTL

_ / J(€)e ™ Gn(€) d€ — (2m)"Or(x),

L. (1-alel (g ) ) e bn(e) de - (2m0nto)

where A is a bounded function. Since 0 is radial, (27)"0p(x) = [, e ShR() de.
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Thus, (&) = (E)"6,(£€) where p,(z) = p(|z|), we have

ey == (5) [ (a(Ge)er (g ) )i aenas

Then,

-n i p P R g ~ ! !
s < e (5) 1l 160 (i ) el

By Lemma @ and g, € S(R"), we have |B(z)| < C (%)B. Thus,

. T+2RP 71
|| < Cerit u'P(t, ) dz dt : (4.16)
T |z|<2 &

Using (M) and (M) by letting R — 0o, we have

1
oo n 00 p+1
/ / uP(t, x) dr dt < Certr (/ / uP(t, ) da dt) .
T n T n

Since this holds for any € > 0 and 7" > 0, v = 0 on (0, 00) x R™. O

Proof of Theorem @ (ii). Let v be according to Lemma for a positive smooth

function vy to be specified. Then there exists ¢ty > 0 such that
[10(t, )loo < C([[vollr + [Boll)(t(In£)*) 75 for any & > to.

Since p > 1, there exists ¢; > ¢y such that (Int)* > 1 for any ¢ > ¢;. Define g on
[th OO) by

=

1

t) =
g(t) 1 pCP(|[v]| 1 +IPollL1)P ( | ) ’
(Intq)r—1 u—1 (Intq)r—1 (Int)r—1

where vy is sufficiently small so that

1
. 1 —1\»
ool + lill < 5 (“22)"
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Then
g'(t)  CP(|[vollx + [l9o]]1)?

gtte(t) t(Int)»

For t > t{, we have

g@) o cdlolh + lool[)”
gre(t) — (t(Int)")

= [Jo(t, )l (4.17)

Since ||v(t, -)|[E, is continuous, [|v(t,-)|%, attains a maximum on [0, ¢;], denoted by

M. Given M' = —Mt, — 1, we define g on [0,¢;) by

1 P
3 (_p(MH M’)) '
Then g > 0 on [0,00) and it satisfies () A straighforward computation shows
that g(t)v(t, x) is a supersolution to (@) If we make

1 P
U /<) e~ g,
°—(p<Mt1+1>> °

then we can apply Theorem @ So, we have

u(t,z) < g(t)v(t, x).

5 (5) 0

3=
S =

Hence, u(t, z) is global with ¢ := <m>

B

n

4.3 Blow up vs extinction: p >

In this subchapter, we prove that the solutions to (@) can be global or blow-up

in finite time depending upon the initial condition.

Theorem 4.7. There is & > 0 such that if ug € L'(R™) N L>®(R") and ||ul|; +
||to||1 < 0, then the solution to ) is global and satisfies, for large t,

u(t, ) pe < C(|Jullpr + |Jio|| ) (t(In)*) 75,
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for some constant C' > 0.

Proof. Let v be according to Lemma for a positive smooth function vy to be
specified. Then, there exists ¢, > 0 such that

[[o(t, ) oo < C(llvolls + [[do][1) (t(In8)*) "5 for any t > .

N

Since p > 2, there exists t; > to such that (In t)%t%f

n

> 1 for any t > t;. Define

g on [t;,00) by

1
1 P
90 =\ T o (1 3 ’
t(lel a—1 t?71 ta—1
np
where o = — and vy is sufficiently small so that
1
leolly 4 ool < = ( 22
) ) — )
oll1 olh = 7 A
Then,
g(t) _ CP(|Jvoll £ ||%l]1)”
e d () te '
For t > t;, we have
"(t CP Ool|1)?
g( ) > <||U||1 1] “U0||1) > ||U<t,)”€o (4.18)

gur(t) T (t(lnt)m)F

Since ||v(t, -)|[%, is continuous, ||v(t, -)|[E, attains a maximum on [0, ], denoted by

M. Given M' = —Mt, — 1, we define g on [0,¢;) by

o= ()

Then, g > 0 on (0,00) and it satisfies () A straighforward computation shows
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that g(t)v(t, x) is a supersolution to (@) If we make

1 »
ug < | ——— | o,
0= (p(Mt1+1)> °

then we can apply Theorem (@) Thus, we have

Hence, u(t, ) is global with § := <p—(Mt10+1)> Tl <E> " =

Finally, we state without prove the following blow-up result which was establish

in [1].

Theorem 4.8 ([l]). Assume A >0 and R > 0 are such that

A > (1—Cn/ J(z)dz)p,
l2|[<R

where 0 < C, < 1 is a constant that depends only on the dimension n. Then, the

solution to ) with AX|zj<r as an initial data blows up in finite time.
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