TURBULENT DRAG REDUCTION OF POLYACRYLAMIDE AND 70% HYDROLYZED POLYACRYLAMIDE SOLUTIONS

Ms. Wunpen Chonkeaw

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 1999 ISBN 974-331-943-3

.

Thesis Title	:	Turbulent Drag Reduction of Polyacrylamide and 70%
		Hydrolyzed Polyacrylamide Solutions
By	:	Ms. Wunpen Chonkeaw
Program	:	Polymer Science
Thesis Advisors	:	Professor Alexander M. Jamieson
		Assoc. Prof. Anuvat Sirivat

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Mater of Science.

(Prof. Somchai Osuwan)

Thesis Committee :

berled,

(Prof. Alexander M. Jamieson)

Aniwatsorival

(Assoc. Prof. Anuvat Sirivat)

R. Magaraphi

(Dr. Rathanawan Magaraphan)

ABSTRACT

##972025 POLYMER SCIENCE PROGRAM

KEY WORDS : Turbulent Drag Reduction / Polyacrylamide / PAM / 70% Hydrolyzed Polyacrylamide / 70% HPAM

MS. Wunpen Chonkaew : Turbulent Drag Reduction of Polyacrylamide and 70 % Hydrolyzed Polyacrylamide Solutions. Thesis Advisors : Prof. Alexander M. Jamieson and Assoc. Prof. Anuvat Sirivat, 101 pp. ISBN 974-331-943-3

It is well know that the energy loss due to skin friction in a turbulent flow is substantially lowered when a small amount of polymer is added to the flowing solvent. In this work, the effects of polymer concentration, salt concentration and molecular weight on the turbulent drag reduction were investigated in PAM and 70% HPAM solutions. They were tested for turbulent drag reduction using our homemade Couette apparatus. Polymer hydrodynamic radius and solution viscosity were measured using dynamic light scattering technique and Ubbelohde viscometer for both sterile water and saline solutions. The amount of turbulent drag reduction was found to correlate well with polymer hydrodynamic radius. The Kolmogorov microscale scales with both hydrodynamic radius, degree of polymerization and concentration, but the scaling exponents differ from those predicted by Lumley's and de Gennes's theories. Our viscoelastic theory with the new truncation length scale is proposed to explain drag reduction mechanism. The theory suggest two opposing roles for elasticity. The correlation between our viscoelastic length scale, l_{ve} and N, c_p was shown. The approximate agreements with experimental data was obtained if we take 'a' to lie between 0.2-0.3, depending whether we want to match concentration or degree of polymerization dependences more closely.

บทคัดย่อ

นางสาววันเพ็ญ ช้อนแก้ว : ชื่อหัวข้อวิทยานิพนธ์ (ภาษาไทย) การลดแรงเสียดทานที่ ผนังในการไหลแบบปั่นป่วนโดยสารละลายโพลีอะคริลาไมด์และ70%ไฮโครไลซ์โพลีอะคริลา ไมด์ (ภาษาอังกฤษ) (Turbulent Drag Reduction of Polyacrylamide and 70 % Hydrolyzed Polyacrylamide solutions) อ. ที่ปรึกษา : ศ. คร. อะเล็กซานเดอร์ เอ็ม เจมิสันและ รศ. คร. อนุวัฒน์ ศิริวัฒน์ 101 หน้า ISBN 974-331-943-3

เป็นที่ทราบกันอย่างคีว่าการสูญเสียพลังงานเนื่องจากความเสียคทานที่ผิวในการไหล แบบปั่นป่วนจะลดลงเมื่อเติมสารละลายเจือจางพอลิเมอร์ลงไป การวิจัยนี้ทำการศึกษาอิทธิพลของ ความเข้มข้นของสารละลายพอลิเมอร์ ความเข้มข้นของเกลือ และน้ำหนักโมเลกุลของพอลิเมอร์ที่ มีต่อการถดแรงเสียดทานที่ผนังในการใหลแบบปั่นป่วนโดยทดสอบกับสารถะถายโพลีอะคริลา ไมด์และ70%ไฮโครไลซ์โพลีอะคริลาไมด์ สารละลายของพอลิเมอร์ทั้งสองชนิคนี้ถูกทคสอบการ ้ลดแรงเสียดทานที่ผนังโดยใช้เครื่องมือวัดคุณสมบัติทางการใหลแบบทรงกระบอกซึ่งได้รับการ ออกแบบเป็นพิเศษ เทคนิคการวัดการกระจายแสงและการวัดความหนืดได้ถูกนำมาใช้ในการวัด รัศมีไฮโครไคนามิกและความหนืดของสารละลายทั้งในน้ำสเตอไรล์และสารละลายเกลือ เราพบ ้ว่าปริมาณการถคลงของแรงเสียคทานที่ผนังมีความสัมพันธ์ยิ่งกับรัศมีไฮโครไคนามิก และโคลโม โกรอฟไมโครเสกุลสามารถเสกุลกับรัศมีไฮโครไคนามิกและความเข้มข้นของสารละลายพอลิ เมอร์ แต่ก่าเลขกำลังที่กำนวณได้จากการทดลองแตกต่างจากก่าที่ได้จากการทำนายโดยทฤษฎีของ ้ลัมเลย์และคิ เงนเนส นอกงากนี้ทฤษฎีวิสโคอิลาสติกได้ถูกเสนอขึ้นเพื่อที่งะอธิบายกลไกการลด ลงของแรงเสียคทานที่ผนัง โคยทฤษฎีนี้ได้เสนอสองบทบาทที่ขัดแย้งกันของแรงอิลาสติกและยัง ใด้แสดงกวามสัมพันธ์ระหว่างเสกลกวามยาววิส โกอิลาสติกกับกวามเข้มข้นและก่าแสดงกวามยาว ของการเกิดปฏิกิริยาซึ่งพบผลที่ได้จากการทดลองจะสามารถอธิบายได้โดยทฤษฎีนี้เมื่อเรากำหนด ้ ค่าเลขชี้กำลังที่ไม่ทราบค่า 'a' ให้อยู่ในช่วงระหว่าง 0.2 ถึง 0.3 ซึ่งจะเป็นค่าใคนั้นขึ้นอยู่กับว่าเรา ้ต้องการให้ความสำคัญกับค่าความสัมพันธ์ของความเข้มข้นหรือความสัมพันธ์ของค่าแสดงความ ยาวของการเกิดปฏิกิริยากับความยาววิสโคอิลาสติกมากกว่ากัน

ACKNOWLEDGEMENTS

The author would like to gratefully acknowledge all professors who have taught her at the Petroleum and Petrochemical College, Chulalongkorn University, especially those in the Polymer Science Program.

The author greatly appreciates the efforts of her research advisors, Professor Alexander M. Jamieson and Associate Professor Anuvat Sirivat for their constructive criticism, suggestions and proof-reading of this manuscript. The author would like to give sincere thanks to Dr. Ratthanawan Magaraphan for being a thesis committee member.

The author wishes to express her thanks to Ms. Khine Yi Mya who has given her suggests and encouragement and also to all of college staffs for providing the use of research facilities.

Finally, the author is deeply indebted to her parents for their love, understanding encouragement, and for being a constant source of her inspiration.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	ix
List of Figures	х
List of Symbols	xiv

CHAPTER

Ι	INTRODUCTION	1	
	1.1 Background	2	
	1.2 Literature Survey		
	1.2.1 Proposed Mechanism	4	
	1.2.2 Effect of Molecular Structure on Drag		
	Reduction Effectiveness	8	
	1.3 Objectives	10	
Π	EXPERIMENTAL	11	
II	EXPERIMENTAL 2.1 Materials	11 11	
II	EXPERIMENTAL 2.1 Materials 2.1.1 Polymers	11 11 11	
II	EXPERIMENTAL 2.1 Materials 2.1.1 Polymers 2.1.2 Solvents and other Chemicals	11 11 11 11	
II	EXPERIMENTAL 2.1 Materials 2.1.1 Polymers 2.1.2 Solvents and other Chemicals 2.2 Instruments	11 11 11 11 12	
II	 EXPERIMENTAL 2.1 Materials 2.1.1 Polymers 2.1.2 Solvents and other Chemicals 2.2 Instruments 2.2.1 Rheometric Fluid Spectrometer 	11 11 11 11 12 12	
II	 EXPERIMENTAL 2.1 Materials 2.1.1 Polymers 2.1.2 Solvents and other Chemicals 2.2 Instruments 2.2.1 Rheometric Fluid Spectrometer 2.2.2 Light Scattering Instrument 	11 11 11 11 12 12 14	

CHAPTER			PAGE	
	2.2.4	Centrifugation	15	
	2.2.5	Refractrometer	15	
	2.3 Methodology			
	2.3.1	Sample Preparation	15	
	2.3.2	Static Light Scattering Measurement	16	
	2.3.3	Dynamic Light Scattering	18	
	2.3.4	Viscosity Measurement	21	
	2.3.5	Drag Reduction Measurement	23	
	2.3.6	Refractive Index Increment Measurement	25	
III	RESULT	S	27	
	3.1 Chara	cterizations	27	
	3.1.1	Polyacrylamide	27	
		3.1.1.1 Static Light Scattering	27	
		3.1.1.2 Dynamic Light Scattering	28	
		3.1.1.3 Viscosity	32	
	3.1.2	70 % Hydrolyzed Polyacrylamide	35	
		3.1.2.1 Static Light Scattering	35	
		3.1.2.2 Dynamic Light Scattering	36	
		3.1.1.3 Viscosity	37	
	3.2 Drag	Reduction Measurement	41	
	3.2.1	Effect of Polymer Concentration	41	
	3.2.2	Effect of Molecular Weight	44	
	3.2.3	Effect of Salt Concentration	47	
	3.3 Scalir	ng Relation	46	
IV	THEORI	ES AND DISCUSSION	56	
	4.1 Luml	ey's Viscous Theory	56	

CHAPTER		PAGE
	4.1.1 Range of Eddy Size	56
	4.1.2 Lumley-Einstein model	58
	4.1.3 Lumley-FENE-P model	60
	4.2 de Gennes's Elastic Theory	62
	4.3 Our Proposed Model: Viscoelastic Fluid	63
v	CONCLUSIONS	67
	REFERENCES	69
	APPENDIX	73
	CURRICULUM VITAE	101

LIST OF TABLES

TABLE

1.1	Drag reducing polymeric fluids	2
2.1	Geometry of couette cell units (CCU)	14
2.2	<i>a</i> and <i>K</i> values of polyacrylamide in water at 30° C	22
2.3	dn/dc_p of PAM-PS-19901, PAM-PS-02806 and	
	70 % HPAM-SPP-377 solutions at 30°C.	25
3.1	Static light scattering properties of polyacrylamide	
	solutions at 30°C	30
3.2	Overlap concentration of polyacrylamide at 30°C	34
3.3	Dynamic light scattering properties of polyacrylamide	
	at 30°C	35
3.4	Static light scattering properties of 70 % hydrolyzed	
	polyacrylamide in 0.02 M NaCl at 30°C	36
3.5	Dynamic light scattering properties of 100 mg/l 70 %	
	hydrolyzed polyacrylamide in various salt concentration at 30° C	37
3.6	Intrinsic viscosity, Huggins coefficient and overlap	
	concentration of 70 % hydrolyzed polyacrylamide at	
	various salt concentrations at 30°C	40
3.7	Scaling exponents of l_d , l_d / l_{do} -1 on hydrodynamic radius,	
	volume fraction, degree of polymerization and polymer	
	concentration	56
4.1	Scaling exponent of Lumley's theory	59
4.2	Scaling exponent of de Gennes theory	62
4.3	Value of 'a' determined from experimental data	66

PAGE

LIST OF FIGURES

FIGURE

PAGE

1.1	Instantaneous values of measured characteristic	
	of turbulent flow	3
2.1	Assembly of the single Couette cell unit (SCU)	13
2.2	Assembly of the double Couette cell unit (DCU)	13
2.3	Determination of <i>dn/dc_p</i> for PAM-PS-19901, PAM	
	-PS-02806 and 70 % HPAM-SPP-377 solutions	26
3.1	(a) Zimm plot for light scattering intensity of	
	PAM-PS-19901 solutions at 30°C	27
	(b) Zimm plot for light scattering intensity of	
	PAM-PS-02806 solutions at 30°C	28
3.2	(a) Apparent diffusion coefficient as a function of	
	the square of scattering wave vector for PAM-PS-02806	
	solutions at 30°C	29
	(b) Apparent diffusion coefficient as a function of	
	the square of scattering wave vector for PAM-PS-19901	
	solutions at 30°C	29
3.3	Center of mass diffusion coefficient versus polymer	
	concentration for PAM-PS-19901 and PAM-PS-02806	
	solutions at 30°C	30
3.4	Polydispersity of relaxation time of polyacrylamide	
	solutions at scattering angle of 90° as a function of polymer	
	concentration at 30°C	31
3.5	(a) Reduced viscosity as a function of polymer	
	concentration at 30°C for PAM-PS-22581 in 0.1 M NaCl	32

FIGURE		PAGE
	(b) Reduced viscosity as a function of polymer	
	concentration at 30°C for PAM-PS-19901 and	
	PAM-PS-02806 in water	33
3.5	(c) Reduced viscosity as a function of polymer	
	concentration at 30°C for PAM-PS-18522 in water	33
3.6	Zimm plot for light scattering intensity of	
	70 % HPAM-SPP-377 in 0.02 M NaCl solution at 30°C	36
3.7	Apparent diffusion coefficient as a funtion of the square	
	of scattering wave vector at 30°C for 70 % HPAM-SPP-377	
	at various polymer concentrations	38
3.8	Reduced viscosity as a function of polymer concentration	
	at 30°C for 100 mg/l 70 % HPAM-SPP-377 in sterile water	
	and various salt concentrations	38
3.9	Friction factor versus Reynolds number for:	
	(a) water/glycerol: 70/30 mixture,	
	(b) water/glycerol: 100/0 mixture, and	
	(c) water/glycerol: 70/30 and 100/0 mixture at 30° C	42
3.10	Friction factor as a function of Reynolds number for	
	PAM-PS-02806 solutions at 30°C	43
3.11	% Drag Reduction as a function of polymer concentration	
	for PAM-PS-02806 and PAM-PS-19901 solutions at Reynolds	
	number of 5460 at 30°C	43
3.12	Physical picture of polymeric molecules in the turbulent region	45
3.13	Friction factor as a function of Reynolds number for	
	PAM-PS-22581, -PS-19901, -PS-02806, and -PS-18522	
	solutions at 30°C	46

FIGUR	E	PAGE
3.14	% Drag reduction as a funtion of polymer hydrodynamic	
	radius for 100 mg/l PAM-PS-22581, -PS-19901, -PS-02806	
	and –PS-18522 solutions at Reynolds number of 5460 at 30°C	46
3.15	Friction factor as a function of Reynolds number for	
	100 mg/l 70% HPAM-SPP-377 at various NaCl	
	concentrations from 0 M to 0.5 M at 30°C	48
3.16	% Drag reduction as a function of polymer	
	hydrodynamic radius for 100 mg/l 70 % HPAM-SPP-377	
	at various NaCl concentrations from 0 M to 0.5 M at	
	Reynolds number of 5460 at 30°C	48
3.17	(a) l_d as a function of polymer hydrodynamic radius	
	for 100 mg/l PAM-PS-19901,-PS-02806 and -PS-18522	
	solutions and 100 mg/l 70%HPAM-SPP-377 at various salt	
	concentrations at 30°C.	52
	(b) $l_d/l_{do} - 1$ as a function of polymer hydrodynamic	
	radius for 100 mg/l PAM -PS-19901, -PS-02806	
	and -PS-18522 solutions and 100 mg/l 70%HPAM-SPP-377	
	at various salt concentrations at 30°C	52
3.18	(a) l_d as a function of polymer volume fraction for	
	100 mg/l PAM-PS-19901, PS-02806 and PS-18522	
	solutions and 100 mg/l 70%HPAM-SPP-377 at various	
	salt concentrations at 30°C	53
	(b) l_d/l_{do} -1 as a function of polymer volume fraction	
	for 100 mg/l PAM-(PS-19901, PS-02806	
	and PS-18522) solutions and 100 mg/l 70%HPAM-SPP-377	
	at various salt concentrations at 30°C	53
3.19	(a) l_d as a function of polymer concentration for	
	PAM-PS-02806 solutions at 30°C	54

FIGURE	
(b) $l_d/l_{do} - 1$ as a function of polymer concentration	
for PAM-PS-02806 solutions at 30°C	54
3.20 l_d as a function of N of PAM at 30°C	55

LIST OF SYMBOLS

- $R_h = hydrodynamic radius (nm)$
- R_g = radius of gyration (nm)
- T_1 = molecular relaxation time (s)
- N = degree of polymerization
- N_A= Avogadro's number
- M_a= molecular weight of repeating unit
- $u_* =$ friction velocity of drag reduction $(\tau_W / \rho)^{1/2}$ (cm/s)

 $c_p = polymer concentration (g/l)$

 C_p^* = overlap concentration (g/l)

Greek Letters

 $[\eta]$ = intrinsic viscosity (l/g)

 Π = reduced slope increment

 κ = slope modulus

v = kinematic viscosity of solution (cm²/s)

 v_s = kinematic viscosity of solvent (cm²/s)

 v_{turb} = kinematic viscosity of solution due to unraveling chains (equation 1.3)

 ζ_{turb} = effective kinematic viscosity enhancement

$$\rho$$
 = density (g/cm³)

- τ_* = wall shear stress at onset of drag reduction
- τ_w = wall shear stress
- Ω = onset length scale constant
- δ = slope increment