REFERENCES

- Abe, M., Tsubaki, N., and Ogino, K. (1985). Solution properties of mixed surfactant system: V. The effect of alkyl groups in nonionic surfactant on surface tension of anionic-nonionic surfactant systems. <u>Journal of</u> <u>Colloid and Interface science</u>, 107(2) 503-513.
- Abe, M., Uchiyama, H., Yamaguchi, T., Suzuki, T., and Ogino, K. (1992).
 Micelle formation by pure nonionic surfactants and their mixtures.
 <u>Langmuir</u>, 8, 2147-2151.
- Al-Ghamdi, A. M. and Nasr-El-Din, H. A. (1997). Effect of oilfield chemicals on the cloud point of nonionic surfactants. <u>Colloids and Surfaces A: Physicochemical and Engineering Aspects</u>, 125, 5-18.
- Aveyard, R., Binks, B. P., Clark, S., and Fletcher P. D. I. (1990). Cloud points, solubilisation and interfacial tensions in systems containing nonionic surfactants. <u>Journal of Chemical Technology and Biotechnology</u>, 48, 161-171.
- Bonfillon-Colin, A. and Langevin, D. (1997). Why do ethoxylated nonionic surfactants not foam at high temperature?. Langmuir, 13(4), 598-601.
- Chaisalee, R. (1999). Foaming of nonionic surfactants below and above the cloud point. M.S. Thesis in Petrochemical Technology, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Clint, J. H. (1992). Surfactant aggregation. New York: Chapman and Hall.
- Cohen, L., Moreno, A., and Berna, J. L. (1993). Influence of anionic concentration and water hardness on foaming properties of LAS. <u>Journal of American Oil Chemist Society</u>, 70(1), 75-78.

- Colin, A., Giermanska-kahn, J., and Langevin, D. (1997). Foaming properties of modified ethoxylated nonionic surfactants. <u>Langmuir</u>, 13, 2953-2959.
- Holland, P. M. and Rubingh, D. N. (Eds.). (1992). <u>Mixed surfactant systems</u>. American Chemical Society, Washington, DC.
- Hongpaya, P. (1998). Foaming of anionic surfactant/soap mixtures. M.S.
 Thesis in Petrochemical Technology, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Iglesias, E., Anderez, J., Forgiarini, A., and Salager, J. L. (1995). A new method to estimate the stability of short-life foams. <u>Colloid and Surfaces A-physichemical and engineering aspects</u>, 98, 167-174.
- Jha, B. K., Patist, A., and Shah, D. O. (1999). Effect of antifoaming agents on the micellar stability and foamability of sodium dodecyl sulfate solutions. <u>Langmuir</u>, 15, 3042-3044.
- Koczo, K. and Racz, G. (1991). Foaming properties of surfactant solutions. Colloid and surfactant, 56, 59-82.
- Koczo, K., Koczone, J. K., and Wasan, D. T. (1994). Mechanisms for antifoaming action in aqueous systems by hydrophobic particles and insoluble liquids. <u>Journal of Colloid and Interface Science</u>, 166, 225-238.
- Lange, K. R. (Eds.). (1994). Detergents and cleaners: <u>A handbook for</u> <u>formulators</u>. New York: Hanser/Garder Publications.
- Lionti-Addad, S. and Meglio, J. M. (1992). Stabilization of aqueous foam by hydrosoluble polymers: 1. Sodium dodecyl sulfate-poly(ethylene oxide) systems. Langmuir, 8, 324-327.
- Marszall, L. (1988). Cloud point of mixed ionic-nonionic surfactant solutions in the presence of electrolytes. <u>Langmuir</u>, 4, 90-93.

- McCarroll, M., Toerne, K., and Wandruszka, R. V. (1998). Micellar fluidity and preclouding in mixed surfactant solutions. <u>Langmuir</u>, 14, 2965-2969.
- Michael A. and Irene A. (1993). <u>Handbook of industrial surfactants</u>. Gower Publishing Company.
- Nakama, Y., Harusawa, F., and Murotani, I. (1990). Cloud point phenomena in mixtures of anionic and cationic surfactants in aqueous solution. <u>Journal of American Oil Chemist Society</u>, 67(11), 717-721.
- Nemeth, Z., Racz, G., and Koczo, K. (1998). Foam control by silicone polyethers-Mechanisms of "cloud point antifoaming". <u>Journal of</u> <u>Colloid and Interface Science</u>, 207, 386-394.
- Nikolov, A. D. and Wasan, D. T. (1989). Ordered micelle structuring in thin films formed from anionic surfactant solutions: I. Experimental. Journal of Colloid and Interface Science, 133(1), 1-12.
- Nikolov, A. D., Kralchevsky, P. A., Ivanov, I. B., and Wasan, D. T. (1989). Ordered micelle structuring in thin films formed from anionic surfactant solutions: II. Model development. <u>Journal of Colloid and Interface Science</u>, 133(1), 13-22.
- Ogino, K. and Abe, M. (Eds.). (1993). <u>Mixed surfactant systems</u>. New York, Basel, Hong Kong: Marcel Dekker.
- Ogino, K., Tsubaki, N., and Abe, M. (1984). Solution properties of mixed surfactant system: II. Electric properties of anionic-nonionic surfactants in aqueous solutions. <u>Journal of Colloid and Interface Science</u>, 98(1), 78-83.
- Porter, M. R. (1994). <u>Handbook of surfactants</u>. 2nd ed. London: Chapman and Hall.

- Pradhan, M. S. and Khilar, K. C. (1994). Stability of aqueous foams with polymer additives: III. Measurements and calculation of stability of foams generated at different pressure. <u>Journal of Colloid and Interfacial Sciences</u>, 168, 333-338.
- Pradhan, M. S., Sita Ram Sarma, D. S. H., and Khilar, K. C. (1990). Stability of aqueous foams with polymer additives: II. Effect of temperature. <u>Journal of Colloid and Interface Science</u>, 139(2), 519-526.
- Prud'homme, R. B. (Eds.). (1996). <u>Foams: Theory, measurement, and</u> <u>applications</u>. New York, Basel, Hong Kong: Marcel Dekker.
- Pugh, R. J. (1996). Foaming, foam films, antifoaming and defoaming. Advances in Colloid and Interface Science, 64, 67-142.
- Rathman, J. F. and Scamehorn, J. F. (1984). Counterion binding on mixed micelles. <u>The Journal of Physical Chemistry</u>, 88, 5807-5816.
- Rathman, J. F. and Scamehorn, J. F. (1986). Electrostatic model to describe mixed ionic/nonionic micellar nonidealities. Langmuir, 2, 354-361.
- Raymundo, A., Empis, J., and Sousa, I. (1998). Method to evaluate foaming performance. Journal of Food Engineering, 36, 445-452.
- Rodriguez, C. H. and Scamehorn, J. F. (1999). Modification of krafft temperature or solubility of surfactants using surfactant mixtures. Journal of Surfactants and Detergents, 2(1), 17-28.
- Rosen, M. J. (1989). <u>Surfactants and interfacial phenomena</u>. 2nd ed. New York: John Wiley and Sons.
- Ross, J. and Miles, R. M. (1953). AM. Soc. For Testing Materials Method D1173-53, Philadelphia, PA, 1953. <u>Oil and Soap</u>. 18, 99.
- Sadaghiania, A. S. and Khan, A. (1991). Clouding of a nonionic surfactant: The effect of added surfactants on the cloud point. <u>Journal of Colloid</u> <u>and Interface Science</u>, 144(1), 191-200.

- Sawyer, W. M. and Fowkes, F. M. (1958). Interaction of anionic detergents and certain polar aliphatic compounds in foams and micelles. <u>Journal</u> <u>of American Oil Chemist Society</u>, 62, 159-166.
- Scamehorn, J. F. (Eds.). (1986). <u>Phenomena in mixed surfactant systems</u>. ACS Symposium Series 311, American Chemical Society, Washington, DC.
- Schick, M. J. (1966). Nonionic surfactant. New York: Marcel Dekker.
- Schick, M. J. and Fowkes, F. M. (1957). Foam stabilizing additives for synthetic detergents. <u>Journal of American Oil Chemist Society</u>, 61, 1062-1068.
- Schick, M. J. and Schmolka, I. R. (Eds.). (1987). <u>Foaming: Nonionic</u> <u>surfactants physical chemistry</u>. New York: Marcel Dekker.
- Schmit, T. M. (1992). Analysis of surfactants. New York: Marcel Dekker.
- Shen, Y. (1997). Cloud point foaming technique for separation of nonionic surfactant from solution. <u>Separation Science and Technology</u>, 32(13), 2229-2235.
- Shinoda, K., Yamaguchi, T., and Hori, R. (1961). The surface tension and the critical micelle concentration in aqueous solution of β-D-alkyl glucoside and their mixtures. <u>Bulletin of the Chemical Society of Japan</u>, 34, 237.
- Sita Ram Sarma, D. S. H., Pandit, J., and Khillar, K. C. (1988). Enhancement of stability of aqueous foams by addition of water-soluble polymer-Measurements and analysis. Journal of Colloid and Interface Science, 124(1), 339-347.
- Valaulikar, B. S. and Manohar, C. (1985). The mechanism of clouding in TritonX-100: The effect of additives, <u>Journal of Colloid and Interface</u> <u>Science</u>, 108(2), 403-406.

1

- Vora, S., George, A., Desai, H., and Bahadur, P. (1999). Mixed micelles of some anionic-anionic, cationic-cationic, and ionic-nonionic surfactants in aqueous media. <u>Journal of Surfactants and Detergents</u>, 2, 213-221.
- Watanavitukul, D. (1998). Foaming of nonionic surfactants around the cloud point. M.S. Thesis in Petrochemical Technology, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.

APPENDICES

Appendix A: Technical data of nonionic surfactants (Handbook of Industrial Surfactant).

÷.

Technical Data for CO-610

Igepal CO-610 [Rhone-Poulenc Surf] Nonoxynol-8 (7-8 EO); CAS 9016-45-9; nonionic; low foaming detergent, wetting agent, emulsifier, lubricant; for metal working; biodeg; FDA compliance; pale yel. Liq., aromatic odor, sol. in naphtha, xylene, butyl Cellusolve, perchloroethylene, ethanol, water, sp.gr. 1.05; visc. 230-290 cps; HLB 12.2; cloud pt. 72-82 F (1%) flash pt. > 200 F (PMCC); pour pt. 37 ± 2 F; surf. Tens. 30 dynes/cm (0.01 %); 100 %act.

Technical Data for CO-630

Igepal CO-630 [Rhone-Poulenc Surf] Nonoxynol-9 ; CAS 9016-45-9; nonionic; detergent, wetting agent and rewetting agent, corrosion inhibitor, penetrant, emulsifier, dispersant for textile, paper, leather, household/industrial cleaners, agric., paints, metal processing, emulsion cleaning ; biodeg; FDA, EPA compliance; almost colorless liq., aromatic odor, sol. in naphtha, xylene, butyl Cellusolve, perchloroethylene, ethanol, water, sp.gr. 1.06; visc. 225-300 cps; HLB 13.0; cloud pt. 126-133 F (1%) flash pt. > 200 F (PMCC); pour pt. 31 ± 2 F; surf. Tens. 31 dynes/cm (0.01 %); toxicology: severe eye irritant; LD50(oral, rat) 3 g/kg; 100 %act.

Technical Data for CO-660

Igepal CO-660 [Rhone-Poulenc Surf] Nonoxynol-10, CAS 9016-45-9; nonionic; detergent, wetting agent and rewetting agent, corrosion inhibitor, penetrant, emulsifier for textile, paper, leather, household/industrial cleaners, agric., paints, metal processing, emulsion cleaning ; biodeg; FDA, EPA compliance; pale yel. liq., aromatic odor, sol. in naphtha, xylene, butyl Cellusolve, perchloroethylene, ethanol, water, sp.gr. 1.06; visc. 225-275 cps; HLB 13.2 ; cloud pt. 140-149 F (1%); flash pt. > 200 F (PMCC) ; pour pt. 46 ± 2 F; surf. Tens. 31 dynes/cm (0.01 %); 100 % act. Appendix B: Technical Data.

 Table B-1
 Technical data of each raw material.

Surfactants	Cloud point specification (°C)	Molecular weight	Density (g/cm ³)	CMC* (mole/l)
NP(EO) ₈	22 - 28	572	1.05	4.4*10 ⁻⁵
NP(EO)9	52 - 56	616	1.05	6.7*10 ⁻⁵
NP(EO) ₁₀	60 - 65	660	1.06	6.8*10 ⁻⁵

* From Handbook of surfactants

 Table B-2
 Comparison of concentrations of the surfactant solution in different units.

Surfactants	Molecular weight	Concentration		
-		wt%	Μ	
NP(EO) ₈	572	0.5	0.0087	
		1.0	0.0175	
NP(EO)9	616	0.5	0.0081	
		1.0	0.0162	
NP(EO) ₁₀	660	0.5	0.0075	
		1.0	0.0152	

Appendix C: Cloud point test data.

Table C-1 Cloud point of 0.01 M NP(EO)₈/SDS and NP(EO)₉/SDS at differentmole ratio.

Xana	Cloud po	oint (⁰ C)
T SDS	NP(EO) ₈	NP(EO)9
0.000	27	55
0.001	31	57
0.002	46	61
0.003	53	74
0.004	56	77
0.005	72	86

Table C-2 Cloud point of 0.01 M NP(EO)₈/SDS, NP(EO)₉/SDS, and NP(EO)₁₀/SDS ratio 0.9/0.1 with NaCl.

NP(EO) ₈ /SDS		NP(EO) ₉ /SDS	NP(EO) ₁₀ /SDS
$C_{NaCl}(M)$	CP (°C)	$C_{NaCl}(M)$	CP (°C)	$C_{NaCl}(M)$	CP (°C)
0.000	91.0	0.020	84.0	0.050	74.0
0.010	77.0	0.060	66.0	0.100	69.0
0.014	73.0	0.080	63.0	0.200	63.0
0.020	57.5	0.100	61.0	0.250	60.5
0.025	46.0	0.120	59.0	0.300	59.0
0.030	43.0	0.140	58.0	0.400	55.5
0.040	40.0	0.160	57.0	0.450	54.5
0.060	33.0	0.200	55.0	0.500	53.0
0.070	32.0	0.240	52.0	0.600	50.0
0.075	31.5	0.300	50.0	0.700	48.0
0.080	31.0	0.400	47.0	0.800	46.0
0.100	26.0	0.500	44.0	1.000	42.0

	NP(EO) ₈ /SDS + NaCl									
1.0/	/0.0	0.9/	/0.1	0.8/0.2		0.7/0.3		0.6/0.4		
C _{NaCI}	СР	C _{NaCI}	СР	C _{NaCl}	СР	C _{NaCI}	СР	C _{NaCI}	СР	
(M)	(°C)	(M)	(°C)	(M)	(°C)	(M)	(°C)	(M)	(°C)	
0.000	27.0	0.000	91.0	0.050	82.0	0.100	93.0	0.200	98.0	
0.100	26.0	0.010	77.0	0.080	60.5	0.120	84.0	0.250	85.0	
0.200	24.5	0.014	73.0	0.100	51.0	0.150	69.0	0.300	61.0	
0.300	23.0	0.020	57.5	0.110	47.0	0.160	67.0	0.320	50.0	
0.400	22.0	0.025	46.0	0.120	43.0	0.180	60.0	0.340	39.0	
0.500	21.0	0.030	43.0	0.140	38.0	0.200	51.0	0.350	35.0	
		0.040	40.0	0.150	35.0	0.220	45.0	0.360	30.5	
		0.060	33.0	0.160	33.5	0.240	38.0	0.370	26.0	
		0.070	32.0	0.180	30.0	0.250	34.0	0.380	21.0	
		0.075	31.5	0.200	27.0	0.260	33.0			
		0.080	31.0			0.280	28.0			
		0.100	26.0			0.300	23.0			

 Table C-3 Cloud point of 0.01 M NP(EO)₈/SDS with NaCl at varying mole ratio.

Appendix D: Ross-Miles test data.

Table D-1 Foam height of SDS at different SDS concentration, temperature = 30° C.

Time	Foam height (cm)						
(min)	0.002 M	0.004 M	0.006 M	0.008 M	0.010 M	0.020 M	
0	17.0	19.1	19.6	21.7	22.0	22.6	
5	13.3	17.2	17.9	19.7	20.2	20.5	
10	10.0	15.7	16.4	19.5	20.2	20.1	
15	8.00	14.6	15.8	19.3	19.8	19.6	
20	5.50	13.3	14.9	19.1	19.6	19.6	

 Table D-2
 Foam height and stability index of 0.01 M SDS at different temperature.

Temperature	Fe	oam height (c	m)	Stability index		
(°C)	0 min	5 min	20 min	5 min	20 min	
20.0	22.0	20.2	19.5	0.918	0.886	
30.0	22.0	20.2	19.6	0.918	0.891	
40.0	21.4	19.7	18.8	0.921	0.878	
50.0	21.3	18.7	13.0	0.878	0.610	
60.0	19.9	15.7	8.10	0.789	0.407	
70.0	18.6	9.00	0.70	0.484	0.038	

Table D-3 Foam height of 0.01 M NP(EO)₈, NP(EO)₉, and NP(EO)₁₀ at different temperature, cloud point = 27, 55, and 64° C respectively.

Temperature	NP(EO) ₈	Temperature	NP(EO) ₉	Temperature	NP(EO) ₁₀
(°C)		(°C)		(°C)	
20.0	12.4	20.0	19.1	20.0	20.8
25.0	12.9	30.0	19.8	30.0	20.4
27.0	12.8	40.0	20.8	40.0	23.0
30.0	8.70	50.0	20.9	50.0	22.0
35.0	4.90	55.0	21.1	60.0	21.7
40.0	4.60	60.0	11.1	64.0	22.3
45.0	3.20	70.0	4.50	70.0	8.10
50.0	2.80			80.0	4.70

Temperature	F	oam height (cn	n)	Stability index		
(°C)	0 min	5 min	20 min	5 min	20 min	
20.0	12.4	10.4	7.10	0.838	0.572	
25.0	12.9	9.90	5.50	0.767	0.425	
27.0	12.8	9.60	5.30	0.750	0.414	
30.0	8.70	6.50	3.70	0.747	0.425	
35.0	4.90	3.50	2.00	0.714	0.408	
40.0	4.60	3.20	1.80	0.695	0.391	
45.0	3.20	2.10	1.30	0.656	0.406	
50.0	2.80	1.80	1.10	0.643	0.393	

Table D-4 Foam height and stability index of 0.01 M NP(EO)₈ at different temperature, cloud point = 27° C.

Table D-5 Foam height and stability index of 0.01 M NP(EO)₉ at different temperature, cloud point = 55° C.

Temperature	F	oam height (cn	n)	Stability index		
(°C)	0 min	5 min	20 min	5 min	20 min	
20.0	19.1	16.6	8.60	0.842	0.436	
30.0	19.8	15.3	8.30	0.772	0.419	
40.0	20.8	15.1	2.40	0.725	0.115	
50.0	20.9	4.10	1.00	0.196	0.048	
55.0	21.1	2.50	0.00	0.118	0.000	
60.0	11.1	1.30	0.00	0.117	0.000	
70.0	4.50	1.00	0.00	0.222	0.000	

Table D-6 Foam height and stability index of 0.01 M NP(EO)₁₀ at different temperature, cloud point = 64° C.

Temperature	H	Foam height (cn	n)	Stabilit	Stability index		
(°C)	0 min	5 min	20 min	5 min	20 min		
20.0	20.8	18.2	14.1	0.875	0.678		
30.0	20.4	18.0	12.5	0.882	0.613		
40.0	23.0	19.6	4.40	0.852	0.191		
50.0	22.0	10.1	2.30	0.459	0.104		
60.0	21.7	3.90	1.10	0.179	0.050		
64.0	22.3	3.00	0.00	0.134	0.000		
70.0	8.10	0.90	0.00	0.111	0.000		
80.0	4.70	0.90	0.00	0.183	0.000		

Table D-	7 Foam	height and	stability	index	of 0.01	M NI	P(EO) ₈ /3	SDS,	NP(E	O)9
/SDS, an	d NP(EC	$)_{10}/SDS$ at	differen	t mole	ratio, te	emper	ature =	30°C.		

NP(EO)₈/SDS

v	Foam height (cm)			Stability index	
ASDS	0 min	5 min	20 min	5 min	20 min
0.0	8.70	6.50	3.70	0.747	0.425
0.2	19.0	16.5	15.5	0.868	0.815
0.5	20.1	17.6	16.8	0.875	0.836
0.8	20.7	19.1	17.1	0.922	0.826
1.0	22.0	20.2	19.6	0.918	0.891

NP(EO)₉/SDS

v	Foam height (cm)			Stability index	
ASDS	0 min	5 min	nt (cm) 20 min 8.30 17.3 17.5 18.5 19.6	5 min	20 min
0.0	19.8	15.3	8.30	0.772	0.419
0.2	20.5	18.5	17.3	0.902	0.844
0.5	20.7	19.2	17.5	0.928	0.845
0.8	20.9	19.5	18.5	0.933	0.885
1.0	22.0	20.2	19.6	0.918	0.891

NP(EO)₁₀/SDS

v	Foam height (cm)			Stability index	
ASDS	0 min	5 min	20 min	5 min	20 min
0.0	20.4	18.0	12.5	0.882	0.613
0.2	20.1	18.4	16.5	0.915	0.821
0.5	20.4	18.7	15.7	0.916	0.770
0.8	20.8	18.9	18.0	0.908	0.865
1.0	22.0	20.2	19.6	0.918	0.891

Temperature	F	oam height (c	m)	Stability index	
(°C)	0 min	5 min	20 min	5 min	20 min
20.0	12.4	10.4	7.10	0.838	0.572
25.0	12.9	9.90	5.50	0.767	0.425
27.0	12.8	9.60	5.30	0.750	0.414
30.0	8.70	6.50	3.70	0.747	0.425
35.0	4.90	3.50	2.00	0.714	0.408
40.0	4.60	3.20	1.80	0.695	0.391
45.0	3.20	2.10	1.30	0.656	0.406
50.0	2.80	1.80	1.10	0.643	0.393

Table D-8 Foam height and stability index of 0.01 M NP(EO)₈/SDS at different

 $NP(EO)_8/SDS 1.0/0.0$, cloud point = $27^{\circ}C$

mole ratio and temperature.

NP(EO)₈/SDS 0.999/0.001, cloud point = 31°C

Temperature	F	Foam height (cm)			Stability index	
(°C)	0 min	5 min	20 min	5 min	20 min	
20.0	12.7	11.3	10.0	0.889	0.787	
25.0	12.6	11.2	10.0	0.888	0.793	
30.0	12.5	11.0	6.60	0.880	0.528	
31.0	12.0	7.60	6.00	0.633	0.500	
35.0	8.50	6.00	4.80	0.706	0.565	
40.0	5.70	5.50	4.50	0.965	0.789	
45.0	5.00	4.70	3.80	0.940	0.760	

 $NP(EO)_8/SDS 0.998/0.002$, cloud point = 46°C

Temperature	F	Foam height (cm)			Stability index	
(°C)	0 min	5 min	20 min	5 min	20 min	
20.0	11.9	10.7	10.0	0.899	0.840	
30.0	11.8	10.5	9.80	0.889	0.831	
35.0	11.7	10.5	8.70	0.897	0.744	
40.0	11.3	10.0	8.50	0.885	0.752	
46.0	11.0	9.40	7.80	0.854	0.709	
50.0	6.00	5.80	5.60	0.966	0.933	
55.0	5.60	5.50	5.30	0.982	0.946	

Table D-9 Foam height and stability index of 0.01 M NP(EO)₉/SDS at different mole ratio and temperature.

Temperature	Foam height (cm)			Stability index	
(°C)	0 min	5 min	20 min	5 min	20 min
20.0	19.1	16.6	8.60	0.842	0.436
30.0	19.8	15.3	8.30	0.772	0.419
40.0	20.8	15.1	2.40	0.725	0.115
50.0	20.9	4.10	1.00	0.196	0.048
55.0	21.1	2.50	0.00	0.118	0.000
60.0	11.1	1.30	0.00	0.117	0.000
70.0	4.50	1.00	0.00	0.222	0.000

 $NP(EO)_{9}/SDS 1.0/0.0$, cloud point = 55°C

NP(EO)₉/SDS 0.999/0.001, cloud point = 57°C

Temperature	Foam height (cm)			Stability index	
(°C)	0 min	5 min	20 min	5 min	20 min
20.0	19.2	16.6	12.0	0.865	0.625
30.0	20.0	17.0	6.70	0.850	0.335
40.0	20.9	15.7	5.10	0.751	0.244
50.0	20.2	10.8	4.30	0.535	0.213
57.0	19.4	8.60	3.60	0.443	0.186
60.0	14.0	8.20	3.90	0.586	0.278
65.0	6.90	5.50	2.40	0.797	0.348
70.0	3.90	3.60	1.50	0.923	0.385

 $NP(EO)_{9}/SDS 0.998/0.002$, cloud point = 61°C

Temperature	Foam height (cm)			Stability index	
(°C)	0 min	5 min	20 min	5 min	20 min
30.0	19.6	16.9	11.5	0.862	0.587
40.0	20.4	16.8	11.1	0.823	0.544
50.0	19.9	15.5	6.60	0.779	0.332
55.0	20.2	11.6	5.40	0.574	0.267
61.0	19.6	10.2	4.30	0.520	0.219
65.0	11.3	8.40	3.90	0.743	0.345
70.0	4.30	3.70	1.10	0.860	0.256

•

NP(EO) ₈ /SDS 0.9/0.1 (CP = 93°C)		NP(EO) ₈ /SDS 0.9/0.1 + 0.035 M NaCl (CP = 46°C)		NP(EO) ₈ /SDS 0.9/0.1 + 0.075 M NaCl (CP = 31°C)	
Temperature	Foam height	Temperature	Foam height	Temperature	Foam height
(°C)	(cm)	(°C)	(cm)	(°C)	(cm)
20.0	16.5	20.0	14.8	20.0	14.3
25.0	16.1	25.0	14.9	25.0	14.1
30.0	15.8	30.0	15.0	30.0	13.9
35.0	16.2	35.0	15.1	31.0	14.1
40.0	15.6	40.0	15.5	35.0	12.2
45.0	15.5	46.0	16.1	40.0	7.2
50.0	15.5	50.0	12.1	45.0	4.9
		55.0	11.6		

Table D-10 Foam height of 0.01 M NP(EO)₈/SDS 0.9/0.1 with or without NaCl at different temperature.

 Table D-11
 Foam height of 0.01 M NP(EO)₉/SDS 0.9/0.1 with or without NaCl at different temperature.

NP(EO) ₉ /S) ₉ /SDS 0.9/0.1 NP(EO) ₉ /SDS 0.9/0.		0.9/0.1 + 0.100	NP(EO) ₉ /SDS 0.9/0.1 + 0.016	
(CF >	100 C)	MINACI (C	$P = 61^{\circ}C$	M NaCI (C	CP = 5/C
Temperature	Foam height	Temperature	Foam height	Temperature	Foam height
(°C)	(cm)	(°C)	(cm)	(°C)	(cm)
20.0	20.8	30.0	20.4	20.0	19.8
30.0	22.1	40.0	21.3	30.0	20.9
40.0	22.3	50.0	21.6	40.0	21.2
50.0	21.4	55.0	21.4	50.0	20.0
55.0	20.9	61.0	20.3	57.0	19.3
60.0	21.0	65.0	15.8	60.0	14.2
65.0	20.4	70.0	8.50	65.0	7.30
70.0	20.3				

Table D-12 Foam height of 0.01 M NP(EO)₁₀/SDS 0.9/0.1 with or without NaCl at different temperature.

$NP(EO)_{10}/S$ (CP >	SDS 0.9/0.1 100°C)	NP(EO) ₁₀ /SDS M NaCl (($(1)_{10}/SDS 0.9/0.1 + 0.200$ NP(EO) ₈ /SDS 0. NaCl (CP = 63°C) M NaCl (CP		0.9/0.1 + 0.500 CP = 53°C)
Temperature	Foam height	Temperature	Foam height	Temperature	Foam height
(°C)	(cm)	(°C)	(cm)	(°C)	(cm)
20.0	22.1	30.0	21.8	20.0	20.4
30.0	23.1	40.0	22.1	30.0	20.7
40.0	22.5	50.0	22.5	40.0	21.0
50.0	22.4	55.0	22.3	50.0	21.2
55.0	22.6	60.0	22.5	53.0	20.8
60.0	22.3	63.0	21.9	60.0	5.00
65.0	22.1	70.0	11.5	65.0	3.70
70.0	21.7				

	Cloud point = 31° C			Cloud point = $46^{\circ}C$	
Temperature (°C)	0.001 X _{SDS}	0.1 X _{SDS} + 0.075 M NaCl	Temperature (°C)	0.002 X _{SDS}	0.1 X _{SDS} + 0.035 M NaCl
20.0	12.7	14.3	20.0	11.9	14.8
25.0	12.6	14.1	30.0	11.8	15.0
30.0	12.5	13.9	35.0	11.7	15.1
31.0	12.0	14.1	40.0	11.3	15.5
35.0	8.50	12.2	46.0	11.0	16.1
40.0	5.70	7.20	50.0	6.00	12.1
45.0	5.00	4.90	55.0	5.60	11.6

Table D-13 Foam height of 0.01 M NP(EO)₈/SDS with or without NaCl at different mole ratio and temperature.

NP(EO)₉/SDS

Table D-14 Foam height of 0.01 M NP(EO) ₉ /SDS with or without N	aCl a	at
different mole ratio and temperature.		

NP(EO)₉/SDS

	Cloud point = 57°C			Cloud point = 61° C	
Temperature (°C)	0.001 X _{SDS}	0.1 X _{SDS} + 0.160 M NaCl	Temperature (°C)	0.002 X _{SDS}	0.1 X _{SDS} + 0.100 M NaCl
20.0	19.2	19.8	30.0	19.6	20.4
30.0	20.0	20.9	40.0	20.4	21.3
40.0	20.9	21.2	50.0	19.9	21.6
50.0	20.2	20.0	55.0	20.2	21.4
57.0	19.4	19.3	61.0	19.6	20.3
60.0	14.0	14.2	65.0	11.3	15.8
65.0	6.90	7.30	70.0	4.30	8.50

Table D-15 Foam height of 0.01 M NP(EO)₈/SDS with or without NaCl at different mole ratio and temperature, cloud point = 27° C.

	Foam height (cm)					
Temperature (°C)	$X_{SDS} = 0$	$0.2 X_{SDS} + 0.200 M$	$0.4 X_{SDS} + 0.370 M$			
		NaCl	NaCl			
20.0	12.4	15.2	19.5			
25.0	12.9	14.7	19.6			
27.0	12.8	16.3	19.4			
30.0	8.70	14.7	19.0			
35.0	4.90	10.8	18.0			
40.0	4.60	5.80	16.4			
45.0	3.20	5.80	16.3			

Appendix E: Shake test data.

Table E-1 Foam height of SDS at different SDS concentration, temperature = 30° C.

Time	Foam height (cm)						
(min)	0.002 M	0.004 M	0.006 M	0.008 M	0.010 M	0.020 M	
0	8.75	8.85	9.25	9.80	10.1	10.2	
5	8.50	8.72	9.00	9.75	10.0	10.1	
10	8.10	8.23	8.75	9.72	9.80	9.91	
15	7.10	8.02	8.44	9.70	9.73	9.85	
20	5.80	7.65	8.35	9.60	9.50	9.50	

Table E-2 Foam height of 0.01 M NP(EO)₈, NP(EO)₉, and NP(EO)₁₀ at different temperature, cloud point = 27, 55, and 64° C respectively.

Temperature	NP(EO) ₈	Temperature	NP(EO)9	Temperature	NP(EO) ₁₀
(°C)		(°C)		(°C)	
20.0	4.46	20.0	5.95	20.0	7.00
25.0	4.30	30.0	5.73	30.0	6.40
27.0	4.10	40.0	5.70	40.0	6.00
30.0	3.68	50.0	5.64	50.0	5.80
40.0	2.81	55.0	5.81	60.0	6.00
50.0	2.50	60.0	4.73	64.0	5.90
				70.0	5.00

Table E-3 Foam height and stability index of 0.01 M NP(EO)₈/SDS, NP(EO)₉ /SDS, and NP(EO)₁₀/SDS at different mole ratio, temperature = 30° C.

X _{SDS}	F	oam height (c	Stability index		
	0 min	5 min	20 min	5 min	20 min
0.0	3.68	3.02	1.87	0.821	0.508
0.2	6.35	5.28	3.20	0.831	0.636
0.5	7.34	5.95	4.20	0.908	0.641
0.8	8.78	6.55	5.36	0.894	0.759
1.0	10.1	10.0	9.50	0.992	0.941

NP(EO)₈/SDS

NP(EO)₉/SDS

X _{SDS}	Foam height (cm)			Stability index		
	0 min	5 min	20 min	5 min	20 min	
0.0	5.73	5.00	3.45	0.873	0.602	
0.2	6.78	5.88	4.26	0.867	0.628	
0.5	7.50	6.37	4.97	0.849	0.663	
0.8	8.74	7.35	6.18	0.841	0.707	
1.0	10.1	10.0	9.50	0.992	0.941	

NP(EO)₁₀/SDS

X _{SDS}	F	oam height (cr	Stability index		
	0 min	5 min	20 min	5 min	20 min
0.0	6.40	4.35	3.89	0.679	0.608
0.2	6.92	5.31	4.75	0.767	0.686
0.5	7.85	6.11	4.37	0.778	0.731
0.8	9.23	7.20	6.81	0.780	0.738
1.0	10.1	10.0	9.50	0.992	0.941

CURRICULUM VITAE

Name:

Ms. Leenaporn Jongpaiboonkit

Date of Birth: July 31, 1976

Nationality: Thai

University Education:

1993-1996 Bachelor's Degree of Science in Industrial Chemistry, Chiangmai University, Chiang Mai, Thailand

- Felse, P. A., Panda, T. (1999). Regulation and cloning of microbial chitinase genes. <u>Applied. Microbiology and. Biotechnology</u>, 51, 141-151.
- Flach, J., Pilet, P.-E., and Joells, P. (1992). What's new in chitinase research. Experienta, 48, 701-716.
- Hart, P. J., Pfluger, H. D., Manzingo, A. F., Hollis, T., Robertos, J. D. (1995) Journal of Molecular Biology, 248, 402-413.
- Hirano, S., Ohe, Y., and Ono, H. (1976). Selective N-acetylation of chitosan. <u>Carbohydrate Research</u>, 47, 315-320.
- Hendrickson, J., Bergeron, R. (1970). The protection and monoalkylation of amines. <u>Tetrahedron Letters</u>, 5, 345-348.
- Hirano, S., Tsuchida, H., and Nagao, N. (1989). N-acetylation in chitosan and the rate of its enzymatic hydrolysis. <u>Biomaterials</u>, 10, 574-576.
- Hirano, S., Itakura, C., Seino, H., Akiyama, Y., Nomaka, I., Kanbara, N., and Kawakami, I. (1990). Chitosan as an Ingredient for Domestics Animal Feeds. <u>International I. Agricaltoral Food and Chemistry</u>, 38, 1214-1217
- Hirano, S., Akiyama, Y., Ogura, M., and Ayaki, Y. (1992). The regulation of serum cholesterol level by oral administration of chitosan in rabbits. In S.-I. Tokura, I. Azuma (Eds.), <u>Chitin Derivatives in Life Science</u> (pp. 115-120). Organizing Committee of International Symposium on Chitin Derivatives in Life Science and Japanese Society for Chitin/Chitosan..
- Hirano, S., Yamanaka, K., Tanaka, H., Watatsu, C., Inui, H., and Umemura, T. (1992). Effects of chitosan and its oligosaccharides on rabbits serum lysozyme activity in the intravenous and oral admistrations and in the in vitro blood culture. In A, Domard, G .A. F. Roberts, K. M. Varum (Eds.), <u>Advances in chitin science volume II</u> (pp 751-758). Lyon: Jacques André Publisher
- Kaifu, K., Nishi, N., and Komai, T. (1981). Preparation of hexanoyl, decanoyl, and dodecanoylchitin. <u>Journal of Polymer Science: Polymer</u> <u>Chemistry Edition</u>, 19, 2361-2363.