PHYSICAL INTERACTION BETWEEN POLYMER MELTS AND SOLID SURFACE

Mr. Narin Sarapirom

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2000

ISBN 974-334-178-1

119358700

Thesis Title	:	Physical Interaction between Polymer Melts and Solid
		Surface
By	:	Mr. Narin Sarapirom
Program	:	Polymer Science
Thesis Advisors	:	Prof. Ronald G. Larson
		Assoc. Prof. Anuvat Sirivat

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

(Prof. Somchai Osuwan)

Thesis Committee:

Luse 9/5/2000 anied ?

(Prof. Ronald G. Larson)

princt brint 1 May 2000

(Assoc. Prof. Anuvat Sirivat)

ygh.

(Dr.Pitt. Supaphol)

ABSTRACT

4172015063 : POLYMER SCIENCE PROGRAM

 KEYWORDS : Wall slip / Stick-slip transition / Disentanglement / Extrapolation length /Melt flow instabilities
Narin Sarapirom: Physical interaction between polymer melts and solid surface. Thesis Advisors: Prof. Ronald G. Larson and Assoc. Prof. Anuvat Sirivat, 137 pp. ISBN 974-334-178-1

Slip velocity between HDPE melts and tungsten capillary was determined by means of the classical Mooney analysis. Above a critical shear stress, wall slip occurred and the plots of the extrapolation length, b, versus wall slip velocity, V_s were qualitatively amenable to the Brochard and de Gennes' disentanglement model which predicted three distinct regimes: (I) Entangled slip regime, b_o is independent of temperature and increases as polydispersity increases but decreases as molecular weight increases with the scaling exponent of -0.36; (II) Marginal regime, b depends on V_s following a power law with the scaling exponent in the range of 0.42-0.68 but it is independent of temperature and polydispersity; (III) Rouse regime, b_{∞} is found when molecular weight is greater than 2.4×10^5 g/mol and obviously increases as polydispersity increases but slightly decreases as temperature increases with the scaling exponent of -1.21. We attempted to construct a common HDPE master curve of wall shear stress normalized by the crossover storage modulus vs. the true shear normalized by the inverse of the cross over frequency. The normalized curves collapse at low elastic effect (Wi<1). For Wi>1, the normalized curves do not collapse since the elastic is predominant as molecular weight, polydispersity and temperature were varied.

บทคัดย่อ

นรินทร์ สาระภิรมย์ : ความสัมพันธ์ทางกายภาพระหว่างพอลิเมอร์หลอมเหลวและพื้น ผิวแข็ง (Physical Interaction between Polymer Melts and Solid Surface) อ. ที่ปรึกษา : ศ. โรนาลด์ จี ลาสัน (Prof. Ronald G. Larson) และ ร.ศ. คร. อนุวัฒน์ ศิริวัฒน์ 137 หน้า ISBN 974-334-178-1

งานวิจัยนี้ได้ทำการศึกษาความเร็วการลื่นไหลระหว่างพอลิเอทิลีนหลอมเหลวกับท่อ กลมทั้งสเตน โคยเชิงการวิเคราะห์แบบมูนนี่ เหนืองุควิกฤตความเค้นเฉือน การลื่นไหลที่พื้นผิว ้ความสัมพันธ์ระหว่างความขาวของการลื่นกับความเร็วของการลื่นที่ผิว เกิดขึ้บ พบว่าความ สัมพันธ์ที่ได้สอดคล้องเป็นไปตามแบบจำลองการคลายตัวการพันกันของสายโซ่พอลิเมอร์ที่เกี่ยว พันกัน โดยแบบจำลองนี้แบ่งช่วงการเปลี่ยนแปลงที่แตกต่างกันดังนี้ ช่วงแรกคือ ช่วงการลื่นที่การ เกี่ยวพันกันของสายโซ่ (b,) ซึ่งค่านี้ไม่ขึ้นอยู่กับอุณหภูมิและมีค่าเพิ่มขึ้นเมื่อค่าการกระจายของ ้มวลโมเลกุลเพิ่มมากขึ้น แต่มีค่าลคลงเมื่อค่ามวลโมเลกุลเพิ่มขึ้นค้วยเอกซ์โพเนนท์ของ -0.36 ช่วง ที่ 2 คือช่วงมาจินอล ค่าความยาวของการลื่นจะขึ้นอยู่กับความเร็วของการลื่นในช่วงเอกซ์โพเนนท์ 0.42-0.68 แต่ไม่ขึ้นอยู่กับอุณหภูมิและค่าการกระจายของมวลโมเลกุล ช่วงที่3 คือช่วงราวส์ (b_∞) พบเมื่อมวลโมเลกลมีค่ามากกว่า 2.4x10⁵ กรัมต่อโมล และมีการเปลี่ยนแปลงเล็กน้อยเมื่อค่าการ กระจายของมวลโมเลกุลเพิ่มขึ้น แต่มีค่าลคลงเมื่ออุณหภูมิเพิ่มขึ้นในช่วงเอกซ์โพเนนท์ -1.21 นอก ้งากนั้นงานวิจัยนี้พยายามที่จะสร้างกราฟความสัมพันธ์ระหว่างค่าความเค้นเฉือนที่ถูกปรับค่าค้วย ้ค่าสตอเรจมอดูลัส ณ จุดคัดกันกับลอสมอดูลัส กับค่าไวซ์เซนเบิร์ก จากผลการทดลองพบว่ากราฟ ที่ได้ยังไม่ซ้อนทับกันสนิท เมื่อมีการเปลี่ยนแปลงของมวลโมเลกุล การกกระจายของมวลโมกุล และอุณหภูมิ โดยเฉพาะอย่างยิ่งเมื่อค่าไวซ์เซนเบิร์กมีค่ามากกว่า 1

ACKNOWLEDGEMENTS

The author would like to thank the Petroleum and Petrochemical College, Chulalongkorn University, where he has gained invaluable knowledge in the Polymer Science program and he greatly appreciates all professors who have tendered invaluable knowledge to him at this College.

He would like to give special thanks to his U.S. advisor, Prof. Ronald G. Larson who gave some recommendations on the research. He is also deeply indebted to his Thai advisor, Assoc. Prof. Anuvat Sirivat who also gave him intensive suggestion, invaluable guidance, constructive advice, and vital help throughout the research work. He is also grateful to Dr. Pitt Supaphol for being a thesis committee.

He wishes to extend his appreciation to Thai Polyethylene Co., Ltd. for supporting of the raw materials used throughout this work.

He would like to express the grateful appreciation to Mr. John W. Ellis for providing technical knowledge and helpful suggestion. He would like to sincerely thank all the staff of the Petroleum and Petrochemical College, Chulalongkorn University for their assistance and in helping him to use the research facilities.

Ultimately, extreme appreciation is to his family for their love, understanding, encouragement, and advice.

TABLE OF CONTENTS

	PAGE
Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	x
List of Figures	xii

CHAPTER

I	INTRODUCTION	1
II	LITERATURE SURVEY	10
III	EXPERIMENTAL	16
	3.1 Materials	16
	3.2 Experimental Procedure	17
	3.2.1 Melt flow index meter	17
	3.2.2 Density measurement	17
	3.2.3 Molecular weight measurement	18
	3.2.4 Differential scanning calorimetry	19
	3.3 Characterization of rheological properties	20
	3.3.1 Capillary rheometer	20
	a) Instrument	20
	b) Procedure	21

IV

. :

•

	c) Calc	sulation	21
	(I)	Determination of wall shear stress	22
	(II)	Determination of the apparent shear	
		strain rate	22
	(III)	Determination of slip velocity and	
		apparent shear strain rate without slip	23
	(IV)	Determination of extrapolation length	23
	(V)	Determination of power law index and	
		power law correction	24
3.3.2	Cone a	nd plate rheometer	25
	a) Instr	ument	27
	b) Proc	edure	27
	c) Calc	ulation	27
	(I)	Determination of phase shift	28
	(II)	Determination of storage modulus and	
		loss modulus	28
3.4 Meth	odology		29
3.4.1	Flow c	urve investigation	29
	a) Effe	ct of molecular weight and	
	poly	dispersity	30
	b) Effe	ct of temperature	31
3.4.2	Crosso	ver modulus characterization	31
3.4.3	Norma	lization of flow curve	32
RESULT	SAND	DISCUSSION	33
4.1 Rheo	logical c	haracterization	33

.

	4.1.1	G' and G" versus frequency	33
	4.1.2	Master curve	33
4.2	Slip d	etermination	36
	4.2.1	Apparent flow curves	36
		a) Effect of molecular weight and	
		polydispersity	36
		b) Effect of temperature	37
	4.2.2	Oscillating stress regime	37
		a) Hysteresis	38
		b) Effect of molecular weight and	
		polydispersity	39
		c) Effect of temperature	39
	4.2.3	The critical shear stress	40
		a) Effect of molecular weight and	
		polydispersity	40
		c) Effect of temperature	42
	4.2.4	Extrapolation length	43
		a) Effect of molecular weight and	
		polydispersity	44
		(I) Entangled slip regime	44
		(II) Marginal regime	47
		(III) Rouse regime	48
		b) Effect of temperature	49
		(I) Entangled slip regime	49
		(II) Marginal regime	49
		(III) Rouse regime	50

V

4.3 Normalization of flow cu	irve 51
4.3.1 True flow curve	51
a) Effect of molec	ular weight and
polydispersity	51
b) Effect of tempe	strature 52
4.3.2 Normalized flow	curve 53
a) Effect of molec	ular weight and
polydispersity	54
b) Effect of tempe	rature 54
CONCLUSIONS	87
REFERENCES	88
APPENDIX A	90
APPENDIX B	94
CURRICULUM VITAE	137

LIST OF TABLES

TABLE

3.1	Physical properties of HDPE used	16
3.2	Melt flow index	17
3.3	Density measurement	18
3.4	Fixed parameter for molecular weight measurement for	
	HDPE at the temperature of 190 0 C	19
3.5	Molecular weight measurement	19
3.6	Melting temperature and percentage of crystallinity	20
3.7	Capillary die features	21
3.8	The conditions of capillary rheometer focused on the effect	
	of molecular weight	30
3.9	The conditions of capillary rheometer focused on the effect	
	of temperature	31
3.10	The conditions of cone and plate rheometer of dynamic	
	frequency sweep	31
4.1	The crossover modulus, G_c , and the crossover frequency, $\omega_{c,}$	
	at the different reference temperatures for H5604F HDPE	
	and H5690S HDPE	34
4.2	The extrapolated crossover modulus, G _{c,ext} , and the	
	extrapolated crossover frequency, $\omega_{c,ext}$ at different reference	
	temperatures for H5840B HDPE and H5818J HDPE	35
4.3	The scaling exponent of the crossover modulus and the	
	crossover frequency on the effect of temperature	36
4.4	The onset and the terminal shear strain rates of the	
	oscillating stress regime of H5604F HDPE at the temperature	

.

са. Х

	of 180 ⁰ C	39
4.5	Comparison of the critical shear stresses obtained in our	
	experiment: H5604F HDPE; H5840B HDPE; H5818J HDPE	
	and H5690S HDPE at temperature of 180 ⁰ C in Kwaengsobha	
	(1998) experiment: H5690S HDPE; H6205JU HDPE; L2009F	
	LLDPE; L2020F LLDPE and M3204RU LLDPE at the	
	temperature of 190 ⁰ C	41
4.6	The critical shear stress comparison between our experiment:	
	H5604F HDPE and H5840B HDPE with Kwaengsobha (1998)	
	experiment: L2020F LLDPE and H5690S HDPE at various	
	temperatures	43
4.7	Comparison slip data of b_0 in the entangled slip regime of five	
	experiments: HDPE, 180 ⁰ C; PBD, room temperature (Archer);	
	PDMS, 23 ⁰ C (Massey); LLDPE, 190 ⁰ C (Kwaengsobha) and	
	HDPE, 190 ⁰ C (Kwaengsobha) experiments	46
4.8	b_0 of two HDPE (H5604F and H5690S) melts of different	
	polydispersity at the temperature of 180 ⁰ C	47
4.9	b_{∞} of two HDPE (H5604F and H5690S) melts of different	
	polydispersity at the temperature of 180 ⁰ C	48
4.10	Power law index and power law correction of four different	
	HDPE (H5604F, H5840B, H5818J and H5690S) melts at	
	temperature of 180 ⁰ C	52
4.11	Power law index and power law correction for each regime	
	of H5604F HDPE and H5840B HDPE at the temperatures of	
	160, 180 and 200 ⁰ C	53

xi

LIST OF FIGURES

•

.

FIGUI	GURE	
1.1	Schematic of extrapolation length	5
1.2	Extrapolation length versus slip velocity for a weakly grafted	_
	surface expose to a polymer melt (chemically identical to the	
	grafted chains); (E) = entangled slip regime; (M) = Marginal	
	regime; (R) = Rouse regime	6
3.1	Tube flow velocity profiles calculated from the power law	
	for several values of power law index (n)	24
3.2	Schematic flow curve of polymer melts shows the bending	
	and gives two power law indices n1 and n2 following the	
	power law correction	25
3.3	Schematic of cone and plate rheometer	26
3.4	Flow chart of true flow curve, a plot of shear stress versus	
	true shear strain rate	30
4.1	The storage modulus of H5604F HDPE melt as a function	
	of frequency at strain amplitude equal to 10 and at different	
	temperatures	55
4.2	The loss modulus of H5604F HDPE melt as a function of	
	frequency at strain amplitude equal to 10 and at different	
	temperatures	55
4.3	The storage modulus of H5690S HDPE melt as a function of	
	frequency at strain amplitude equal to 10 and at different	
	temperatures	56
4.4	The loss modulus of H5690S HDPE melt as a function of	
	frequency at strain amplitude equal to 10 and at different	

FIGURE

	temperatures	56
4.5	The storage modulus of H5840B HDPE melt as a function of	
	frequency at strain amplitude equal to 10 and at different	
	temperatures	57
4.6	The loss modulus of H5840B HDPE melt as a function of	
	frequency at strain amplitude equal to 10 and at different	
	temperatures	57
4.7	The storage modulus of H5818J HDPE melt as a function of	
	frequency at strain amplitude equal to 10 and at different	
	temperatures	58
4.8	The loss modulus of H5818J HDPE melt as a function of	
	frequency at strain amplitude equal to 10 and at different	
	temperatures	58
4.9	Master curve of H5604F HDPE melt at the reference	
	temperature of 160 ⁰ C	59
4.10	Master curve of H5604F HDPE melt at the reference	
	temperature of 160 ⁰ C	59
4.11	Master curve of H5604F HDPE melt at the reference	
	temperature of 200 ⁰ C	60
4.12	Master curve of H5690S HDPE melt at the reference	
	temperature of 180 ⁰ C	60
4.13	Master curve of H5840B HDPE melt at the reference	
	temperature of 160 ⁰ C	61
4.14	Master curve of H5840B HDPE melt at the reference	
	temperature of 180 ⁰ C	61

+

4.15	Master curve of H5840B HDPE melt at the reference	
	temperature of 200 ⁰ C	62
4.16	Master curve of H5818J HDPE melt at the reference	
	temperature of 180 ⁰ C	62
4.17	Master curve of H5840B HDPE melt and the extrapolated	
	crossover modulus and the extrapolated crossover frequency	
	at the reference temperature of 160 0 C	63
4.18	Master curve of H5840B HDPE melt and the extrapolated	
	crossover modulus and the extrapolated crossover frequency	
	at the reference temperature of 180 0 C	63
4.19	Master curve of H5840B HDPE melt and the extrapolated	
	crossover modulus and the extrapolated crossover frequency	
	at the reference temperature of 200 0 C	64
4.20	Master curve of H5818J HDPE melt and the extrapolated	
	crossover modulus and the extrapolated crossover frequency	
	at the reference temperature of 180 ^{0}C	64
4.21	The apparent flow curve of four different HPDE (H5604F,	
	H5840B, H5818J and H5690S) melts at the temperature of	
	180 ⁰ C	65
4.22	The apparent flow curve of H5604F HDPE at the temperatures	
	of 160, 180 and 200 ⁰ C	65
4.23	The apparent flow curve of H5840B HDPE at the temperatures	
	of 160, 180 and 200 ⁰ C	66
4.24	Step up and step down experiments of H5604F HDPE at the	
	temperature of 180 ⁰ C	66

4.25	The oscillating stress regime of H5604F HDPE and H5690S	
	HDPE at the temperature of 180 ^{0}C	67
4.26	The oscillating stress regime of H5604F HDPE at the	
	temperatures of 160, 180 and 200 0 C	67
4.27a	Slip velocity of H5604F HDPE as a function of shear stress	
	at the temperature of $180 \ ^{0}C$	68
4.27b	Slip velocity of H5840B HDPE as a function of shear stress	
	at the temperature of 180 0 C	68
4.27c	Slip velocity of H5818J HDPE as a function of shear stress	
	at the temperature of 180 0 C	69
4.27d	Slip velocity of H5690S HDPE as a function of shear stress	
	at the temperature of $180 \ ^{0}C$	69
4.28	Critical shear stress of H5604F HDPE, H5840B HDPE and	
	H5818J HDPE at the temperature of 180 ⁰ C	70
4.29	Critical shear stress of H5604F HDPE and H5690S HDPE	
	at the temperature of 180 ^{0}C	70
4.30	Critical shear stress as a function of molecular weight of	
	three experiments: HDPE at 180 ⁰ C; HDPE at 190 ⁰ C	
	(Kwaengsobha, 1998) and LLDPE at 190 ⁰ C (Kwaengsobha,	
	1998)	71
4.31a	Slip velocity as a function of shear stress of H5604F HDPE	
	at the temperature of 160 0 C	71
4.31b	Slip velocity as a function of shear stress of H5604F HDPE	
	at the temperature of 180 ^{0}C	72
4.31c	Slip velocity as a function of shear stress of H5604F HDPE	
	at the temperature of 200 0 C	72

xvi

	4.32a	Slip velocity as a function of shear stress of H5840B HDPE	
		at the temperature of 160 0 C	73
	4.32b	Slip velocity as a function of shear stress of H5840B HDPE	
		at the temperature of $180 \ ^{0}C$	73
	4.32c	Slip velocity as a function of shear stress of H5840B HDPE	
		at the temperature of 200 0 C	74
	4.33	Critical shear stress of H5604F HDPE at the temperatures	
		of 160, 180 and 200 ⁰ C	74
	4.34	Critical shear stress of H5840B HDPE at the temperatures	
		of 160, 180 and 200 ⁰ C	75
	4.35	Critical shear stress as a function of temperature of four	
		experiments: H5604F HDPE; H5840B HDPE; H5690S	
		HDPE (Kwaengsobha, 1998) and L2020F LLDPE	
		(Kwaengsobha, 1998) melts	75
	4.36	Extrapolation length as a function of slip velocity of three	
		different molecular weights at the temperature of 180 ^{0}C	76
	4.37	Extrapolation length as a function of slip velocity of two	
		different polydispersities at the temperature of 180 0 C	76
4	4.38	b_0 as a function of molecular weight of five experiments:	
		HDPE at 180 ⁰ C; PBD at room temperature (Archer, 1998);	
		PDMS at 23 ⁰ C Massey, 1997); HDPE at 190 ⁰ C	
		(Kwaengsobha, 1998) and LLDPE at 190 ⁰ C (Kwaengsobha,	
		1998)	77
4	4.39	b_{∞} as a function of molecular weight of three experiments:	
		HDPE at 180 ⁰ C; PBD at room temperature (Archer, 1998)	
		and PDMS at 23 ⁰ C (Massey, 1997)	77

xvii

4.40	Extrapolation length as a function of slip velocity of H5604F	
	HDPE at the temperatures of 160, 180 and 200 ^{0}C	78
4.41	Extrapolation length as a function of slip velocity of H5840B	
	HDPE at the temperatures of 160, 180 and 200 ^{0}C	78
4.42	b_0 as a function of temperature of four experiments: H5604F	
	HDPE; H5840B HDPE; H5690S HDPE (Kwaengsobha, 1998)	
	and L2020F LLDPE (Kwaengsobha, 1998)	79
4.43	b_{∞} as a function of temperature of H5604F HDPE at the	
	temperatures of 160, 180 and 200 0 C	79
4.44	The true flow curve of H5604F HDPE at the temperature of	
	180 ⁰ C	80
4.45	The true flow curve of H5840B HDPE at the temperature of	
	180 ⁰ C	80
4.46	The true flow curve of H5818J HDPE at the temperature of	
	180 ⁰ C	81
4.47	The true flow curve of H5690S HDPE at the temperature of	
	180 ⁰ C	81
4.48	The true flow curve of H5604F HDPE at the temperature of	
	160 ⁰ C	82
4.49	The true flow curve of H5604F HDPE at the temperature of	
	180 ⁰ C	82
4.50	The true flow curve of H5604F HDPE at the temperature of	
	200 ⁰ C	83
4.51	The true flow curve of H5840B HDPE at the temperature of	
	160 ⁰ C	83

FIGURE

4.52	The true flow curve of H5840B HDPE at the temperature of	
	180 ⁰ C	84
4.53	The true flow curve of H5840B HDPE at the temperature of	
	200 ⁰ C	84
4.54	The normalized flow curves of three HDPE (H5604F, H5840B	
	and H5818J) melts of different molecular weight at the	
	temperature of 180 ⁰ C	85
4.55	The normalized flow curves of two HDPE (H5604F and	
	H5690S) melts of different polydispersity at the temperature	
	of 180 ⁰ C	85
4.56	The normalized flow curves of H5604F HDPE at the	
	temperatures of 160, 180 and 200 0 C	86
4.57	The normalized flow curves of H5840B HDPE at the	
	temperatures of 160, 180 and 200 0 C	86
Al	The apparent flow curve with slip correction of H5604F HDPE	
	at the temperature of 180 0 C	90
A2	The apparent flow curve with slip correction of H5840B HDPE	
	at the temperature of $180 \ ^{0}C$	90
A3	The apparent flow curve with slip correction of H5818J HDPE	
	at the temperature of 180 0 C	91
A4	The apparent flow curve with slip correction of H5690S HDPE	
	at the temperature of 180 0 C	91
A5	The apparent flow curve with slip correction of H5604F HDPE	
	at the temperature of 160 0 C	92
A6	The apparent flow curve with slip correction of H5604F HDPE	
	at the temperature of 200 0 C	92

FIGURE

A7	The apparent flow with slip correction of H5840B HDPE	
	at the temperature of 160 0 C	93
A8	The apparent flow with slip correction of H5840B HDPE	
	at the temperature of 200 0 C	93