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CHAPTER I

INTRODUCTION

Let G be a locally compact group. A nonzero continuous function f : G → C

is said to be a solution of the d’Alembert functional equation if for any x, y ∈ G,

we have

f(xy) + f(xy−1) = 2f(x)f(y).

This equation can be solved by an algebraic method, see [3]. However, in 2013,

Yang provided a solution of this functional equation on compact groups in his pa-

per [4] using methods from abstract harmonic analysis.

In 2015, Chahbi et al. generalized d’Alembert functional equation to the equa-

tion

f(xy) +
n−1∑
k=1

f(σk(y)x) = nf(x)f(y). =, (1.1)

where σ is an automorphism on G such that σn = idG . They solved equation (1.1)

on compact groups by applying Fourier transform to the functional equation. The

solution they gave in their paper [1] is

f(x) =
1

n

n−1∑
k=0

χ ◦ σk(x)

where χ : G → Cr {0} is a continuous group homomorphism.

In this work, we generalized the domain of solutions of the functional equation.

We define the functional equation on a compact homogeneous space based on

equation (1.1) and give the solution to this functional equation by using Fourier

analysis on compact homogeneous spaces.



CHAPTER II

PRELIMINARIES

In this chapter, we introduce a definition of a topological group and a homo-

geneous space. we also give a reference to important results about Haar measure

on a topological group and G-invariant Radon measure on a homogeneous space.

The material in this chapter can be found in [2].

2.1 Locally Compact Groups

Definition 2.1. A group G is called a topological group if it is equipped with

Hausdorff topology such that the group operations are continuous; that is the

maps (x, y) 7→ xy and x 7→ x−1 are continuous.

If G is locally compact Hausdorff, then we call G a locally compact group.

Definition 2.2. Let f be a function on a group G. For each y ∈ G, we define the

left translation of f through y by

Lyf(x) = f(y−1x), for x ∈ G,

and the right translation of f through y by

Ryf(x) = f(xy), for x ∈ G.

Note that Lyzf = LyLzf and Ryzf = RyRzf .

Definition 2.3. Let G be a locally compact group. A left (resp. right) Haar

measure on G is a nonzero Radon measure µ on G that satisfies µ(xE) = µ(E)

(resp. µ(Ex) = µ(E)) for every x ∈ G and every Borel set E ⊂ G.

A Haar measure on G is a measure µ that is both left and right Haar measure.
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Observe that if µ is a left Haar measure, then the measure µ̃ defined by µ̃(E) =

µ(E−1) is a right Haar measure, and vice versa. Thus it suffices to consider only

left Haar measures on G. Let Cc(G) denote the space of continuous functions on

G with compact support.

Proposition 2.4. Let µ be a Radon measure on a locally compact group G. Then

i) µ is a left Haar measure if and only if
∫

Lyf dµ =

∫
f dµ for all y ∈ G and

for all f ∈ Cc(G).

ii) µ is a right Haar measure if and only if
∫

Ryf dµ =

∫
f dµ for all y ∈ G

and for all f ∈ Cc(G).

Theorem 2.5. Every locally compact group has a left Haar measure and it is

unique up to scaling.

Let µ be a left Haar measure on G. For each x ∈ G, we define a measure µx

by µx(E) = µ(Ex) for every Borel set E ⊂ G. Notice that µx is also a left Haar

measure. By the uniqueness of left Haar measure, there is a positive real number

cx such that µx = cxµ.

Definition 2.6. A function ∆ : G → R+ defined by ∆(x) = cx is called a modular

function of G.

Note that ∆ ≡ 1 if and only if every left Haar measure on G is a right Haar

measure. We call a group G with such property a unimodular group.

Proposition 2.7. Let G be a locally compact group and µ be the left Haar measure

on G. If f ∈ Cc(G), then

∫
G

f(x) dµ(x) =

∫
G

f(x−1)∆(x−1) dµ(x).

Proposition 2.8. ∆ is a continuous group homomorphism from G to (R+,×).

Theorem 2.9. If G is a compact group, then G is unimodular.
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Proof. Since ∆ is continuous, ∆(G) is a compact subgroup of (R+,×), and the

only compact subgroup of (R+,×) is {1}.

Let G be a compact group. Then G possesses a Haar measure µ. Since Haar

measure is a Radon measure, µ(G) < ∞. We say that a Haar measure µ on G is

normalized if µ(G) = 1.

2.2 Homogeneous Spaces

Let G be a locally compact group and S be a locally compact Hausdorff space.

An action of G on S is a continuous map (x, s) 7→ xs from G× S to S such that

1. For each x ∈ G, the map s 7→ xs is a homeomorphism on S.

2. (xy)s = x(ys) for all x, y ∈ G and s ∈ S.

A space S equipped with an action of G is called a G-space.

Definition 2.10. A locally compact Hausdorff space S is called a homogeneous

space if S is a G-space such that the action of G is transitive and S is homeomorphic

to a quotient space G/H for some closed subgroup H of G.

Here we regard G/H as the space of left cosets of H in G. Let dx and dξ be

the left Haar measure on G and its closed subgroup H respectively, ∆G and ∆H

be the modular functions of G and H, and let q : G → G/H be the canonical

quotient map q(x) = xH. We define the map P : Cc(G) → Cc(G/H) by

Pf(xH) =

∫
H

f(xξ) dξ.

Lemma 2.11. If K ⊆ G/H is compact, then there exists ϕ ∈ Cc(G) such that

ϕ ≥ 0 and Pϕ = 1 on K.

Proposition 2.12. If F ∈ Cc(G/H), then there exists f ∈ Cc(G) such that

Pf = F , q(supp f) = suppF and f ≥ 0 if F ≥ 0.
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The following theorem gives a condition for the existence of a G-invariant Radon

measure on G/H, and its relation with the Haar measure on the underlying group

G, which will be used in section 3.3. To cover this aspect, we present a proof for

this theorem, which can also be found in [2].

Theorem 2.13. There is a left G-invariant Radon measure µ on G/H if and only

if ∆G|H = ∆H . In this case, µ is unique up to a constant factor, and if this factor

is suitably chosen we have

∫
G

f(x) dx =

∫
G/H

Pf dµ =

∫
G/H

∫
H

f(xξ) dξ dµ(xH) (2.1)

for all f ∈ Cc(G).

Proof. Assume that ∆G|H = ∆H . Let f ∈ Cc(G). Firstly, we show that
∫
G

f dx =

0 whenever Pf = 0. Indeed, suppose Pf = 0. By Lemma 2.11, We can choose

ϕ ∈ Cc(G) such that ϕ ≥ 0 and Pϕ = 1 on q(supp f). Then we have

0 =

∫
H

f(xξ) dξ

=

∫
H

f(xξ−1) ∆H(ξ
−1) dξ

=

∫
G

ϕ(x)

∫
H

f(xξ−1)∆H(ξ
−1) dξ dx

=

∫
G

∫
H

ϕ(x)f(xξ−1)∆G(ξ
−1) dξ dx.

Since the map (x, ξ) 7→ ϕ(x)f(xξ−1) has support contained in suppϕ×
(
(supp f)−1 suppϕ

)
,

which is compact in G×H, we can apply Fubini’s Theorem to get

0 =

∫
G

∫
H

ϕ(x)f(xξ−1)∆G(ξ
−1) dξ dx

=

∫
H

∫
G

ϕ(x)f(xξ−1)∆G(ξ
−1) dx dξ.

=

∫
H

∫
G

ϕ(xξ)f(x) dx dξ.



6

Since suppϕ is compact, we can apply Fubini’s Theorem again to get

0 =

∫
H

∫
G

ϕ(xξ)f(x) dx dξ

=

∫
G

(∫
H

ϕ(xξ) dξ

)
f(x) dx

=

∫
G

Pϕ(xH)f(x) dx

=

∫
G

f(x) dx.

Then we have
∫
G

f dx =

∫
G

g dx whenever Pf = Pg. From Lemma 2.12, the

map Pf 7→
∫
G

f dx is a well-defined left G-invariant positive linear functional on

Cc(G/H). By Riesz representation theorem, there is a unique Radon measure µ

on G/H that satisfies the equation (2.1).

Conversely, suppose that the G-invariant Radon measure µ on G/H exists.

Then the map f 7→
∫
G/H

Pf dµ is a left G-invariant positive linear functional on

Cc(G). By Theorem 2.5,
∫
G/H

Pf dµ = c

∫
G

f dx for some c > 0 and we can assume

that c = 1 so that the equation (2.1) holds. Let f ∈ Cc(G) and h ∈ H. Then we

have

∆G(h)

∫
G

f(x) dx =

∫
G

f(xh−1) dx

=

∫
G/H

∫
H

f(xh−1ξ) dξ dµ(xH)

= ∆H(h)

∫
G/H

∫
H

f(xξ) dξ dµ(xH)

= ∆H(h)

∫
G

f(x) dx.

Thus ∆G(h) = ∆H(H) for all h ∈ H.

Corollary 2.14. If G is compact, then G/H admits a G-invariant Radon measure.

Proof. Assume that G is compact. Since H is a closed subgroup of G, H is also

compact. By Theorem 2.9, we have ∆G|H = 1 = ∆H .
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Theorem 2.15. If G is compact and dx, dξ are normalized, then the G-invariant

Radon measure µ in (2.1) is the pushforward measure of the measure dx under the

quotient map q : G → G/H.

Proof. Assume that G is compact. Then Cc(G) = C(G) and Cc(G/H) = C(G/H).

Let F ∈ C(G/H) and let d(xH) denote the pushforward measure on G/H. Then

we have ∫
G/H

F d(xH) =

∫
G

F ◦ q dx.

Observe that F ◦ q ∈ C(G) and F ◦ q(xξ) = F ◦ q(x) for all ξ ∈ H. Thus

∫
G/H

F d(xH) =

∫
G

F ◦ q dx

=

∫
G/H

∫
H

F ◦ q(xξ) dξ dµ(xH)

=

∫
G/H

∫
H

F ◦ q(x) dξ dµ(xH)

=

∫
G/H

F (xH)

(∫
H

dξ

)
dµ(xH)

=

∫
G/H

F (xH) dµ(xH).



CHAPTER III

ABSTRACT HARMONIC ANALYSIS

In this chapter, we introduce a tool that is used for solving the functional equa-

tion. The basic definitions about unitary representations are provided in Section

3.1. In Section 3.2, we give a well-known result about Fourier analysis on compact

group. Our main tool for solving the functional equation on a compact homoge-

neous space is developed in Section 3.3. The detailed proof in Section 3.1 and 3.2

can be found in [2].

3.1 Unitary Representations

Definition 3.1. A unitary representation of G is a continuous group homomor-

phism π : G → U(Vπ) where Vπ is a nonzero Hilbert space and U(Vπ) is the

group of unitary operators on Vπ equipped with the strong operator topology. The

dimension of π is defined by dπ := dimVπ.

If Vπ is one-dimensional, then for each x ∈ G, π(x) is a scalar multiplication.

In this case, we identify U(Vπ) with the circle group T := {z ∈ C | |z| = 1} and

call π a character of G.

The most natural unitary representation of G arises from the translation action

of G on itself. Suppose G is unimodular. Let L2(G) denote the space of square-

integrable functions on G with respect to the Haar measure dx. The left regular

representation of G is a representation πL : G → U(L2(G)) given by the left

translation

(πL(y)f)(x) = Lyf(x) = f(y−1x), x, y ∈ G.
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Similarly, the right regular representation πR : G → U(L2(G)) is defined by

(πR(y)f)(x) = Ryf(x) = f(xy), x, y ∈ G.

Proposition 2.4 implies that πL and πR are unitary representations.

Definition 3.2. Let π1, π2 be representations of G. An intertwining operator for

π1 and π2 is a bounded linear map T : Vπ1 → Vπ2 such that Tπ1(x) = π2(x)T for all

x ∈ G. The set of all intertwining operator for π1 and π2 is denoted by C(π1, π2).

Note that C(π1, π2) is a vector space over C. For convenience, we write C(π) :=

C(π, π). We say that π1 and π2 are equivalent if C(π1, π2) contains a unitary

isomorphism. In this case, we write π1 ∼ π2. It is easy to see that ∼ is an

equivalent relation.

Definition 3.3. Let π : G → U(Vπ) be a representation of G. A closed subspace

W of Vπ is called an invariant subspace for π if π(x)[W ] ⊆ W for all x ∈ G. The

representation πW : G → U(W ) defined by

πW (x) = π(x)|W

is called a subrepresentation of π.

A representation π is said to be irreducible if π has no invariant subspace other

than {0} and Vπ. Otherwise π is reducible.

Theorem 3.4 (Schur’s Lemma).

i) A unitary representation π of G is irreducible if and only if C(π) contains

only scalar multiple of identity map.

ii) Let π1, π2 be irreducible unitary representations of G. If π1 ∼ π2, then

C(π1, π2) is one-dimensional. Otherwise, C(π1, π2) = {0}.
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3.2 Fourier Analysis on Compact Groups

For this section, let G be a compact group with the normalized Haar mea-

sure dx, Ĝ denote the set of all equivalence classes of irreducible unitary repre-

sentations of G. For each C ∈ Ĝ, we fix the representative π ∈ C = [π], so

Ĝ = {[π] | π are those fixed representatives}.

One of the most important result in harmonic analysis on compact group is the

following theorem.

Theorem 3.5. If G is compact, then every irreducible representation of G is finite

dimensional, and every unitary representation of G is a direct sum of irreducible

representations.

Let G be a compact group. From Theorem 3.5, we know that for each [π] ∈ Ĝ,

Vπ is finite dimensional. Let {e1, . . . , edπ} be an ordered orthonormal basis for Vπ.

For each i, j ∈ {1, . . . , dπ}, the matrix coefficient πij is a continuous function on G

defined by

πij(x) = ⟨π(x)ej, ei⟩ x ∈ G.

Notice that if we identify Vπ with Cdπ with this ordered orthonormal basis, the

matrix representation of a linear map π(x) is precisely the matrix [πij(x)]. Let Mπ

be the closure of subspace of L2(G) spanned by the set

{⟨π(x)u, v⟩ | u, v ∈ Vπ}.

Theorem 3.6 (Schur Orthogonality Relations). Let π and π′ be irreducible repre-

sentations of G.

i) If π ≁ π′, then Mπ ⊥ Mπ′.

ii) The set

{
√

dππij | i, j = 1, . . . , dπ}

is an orthonormal basis for Mπ.
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Theorem 3.7 (Peter-Weyl Theorem). Let M(i)
π be the subspace of L2(G) spanned

by ith row of the matrix [πij]. Then M(i)
π is invariant under right regular represen-

tation, and the restriction of the right regular representation to M(i)
π is equivalent

to π. Moreover, L2(G) can be decomposed into the Hilbert space direct sum:

L2(G) =
⊕
[π]∈Ĝ

Mπ

and the set

{
√
dππij | i, j = 1, . . . , dπ, [π] ∈ Ĝ}

is an orthonormal basis of L2(G).

Definition 3.8. Let f ∈ L1(G) and [π] ∈ Ĝ. The Fourier transform of f at π is

the operator on Vπ defined by

f̂(π)u =

∫
G

f(x)π(x)u dx, u ∈ Vπ,

which we inteprete in the weak sense, that is

⟨f̂(π)u, v⟩ =
∫
G

f(x)⟨π(x)u, v⟩ dx

for all u, v ∈ Vπ.

Note that our definition of the Fourier transform is different from the usual

one (we regard G/H as a space of left cosets). The reason for using this definition

will become clear in the next section. For usual definition of Fourier transform on

compact groups, see [2].

Theorem 3.9 (Fourier Inversion Formula). Let f ∈ L2(G). Then

f(x) =
∑
[π]∈Ĝ

dπ tr
(
π(x−1)f̂(π)

)

where the sum converges in L2 norm.
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Proof. Let f ∈ L2(G). From Peter-Weyl Theorem, {
√
dππij | i, j = 1, . . . , dπ, [π] ∈

Ĝ}, is an orthonormal basis for L2(G). Thus, in L2(G),

f(x) =
∑
[π]∈Ĝ

dπ∑
i=1

dπ∑
j=1

(∫
G

f(y)
√
dππij(y) dy

)√
dππij(x)

=
∑
[π]∈Ĝ

dπ

dπ∑
i=1

dπ∑
j=1

(∫
G

f(y)πij(y) dy

)
πij(x).

Observe that

dπ∑
i=1

dπ∑
j=1

(∫
G

f(y)πij(y) dy

)
πij(x) =

∫
G

f(y)

(
dπ∑
i=1

dπ∑
j=1

πij(x)πij(y)

)
dy

=

∫
G

f(y)

(
dπ∑
i=1

dπ∑
j=1

⟨π(x)ej, ei⟩⟨π(y)ej, ei⟩

)
dy

=

∫
G

f(y)

(
dπ∑
j=1

dπ∑
i=1

⟨π(x)ej, ei⟩⟨ei, π(y)ej⟩

)
dy

=

∫
G

f(y)

(
dπ∑
j=1

⟨π(x)ej, π(y)ej⟩

)
dy

=
dπ∑
j=1

∫
G

f(y)⟨π(x)ej, π(y)ej⟩ dy

=
dπ∑
j=1

∫
G

f(y)⟨π(y)ej, π(x)ej⟩ dy

=
dπ∑
j=1

⟨f̂(π)ej, π(x)ej⟩

=
dπ∑
j=1

⟨π(x)∗f̂(π)ej, ej⟩

= tr
(
π(x)∗f̂(π)

)
.

Hence, in L2(G),

f(x) =
∑
[π]∈Ĝ

dπ tr
(
π(x)∗f̂(π)

)
=
∑
[π]∈Ĝ

dπ tr
(
π(x−1)f̂(π)

)
.
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The following lemmas is frequently used to solve functional equations.

Lemma 3.10. Let f ∈ L2(G). Then

L̂yf(π) = π(y)f̂(π) and R̂yf(π) = f̂(π)π(y)−1 (3.1)

for all x, y ∈ G and [π] ∈ Ĝ.

Proof. Let f ∈ L2(G), [π] ∈ Ĝ and y ∈ G. Since dx is a Haar measure on G, we

have

L̂yf(π) =

∫
G

Lyf(x)π(x) dx

=

∫
G

f(y−1x)π(x) dx

=

∫
G

f(x)π(yx) dx

= π(y)

∫
G

f(x)π(x) dx

= π(y)f̂(π).

Similarly,

R̂yf(π) =

∫
G

Ryf(x)π(x) dx

=

∫
G

f(xy)π(x) dx

=

∫
G

f(x)π(xy−1) dx

=

(∫
G

f(x)π(x) dx

)
π(y−1)

= f̂(π)π(y)−1.

Lemma 3.11. If f ∈ L2(G) is nonzero, then there exists [π] ∈ Ĝ such that

f̂(π) ̸= 0.
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Proof. Suppose f̂(π) = 0 for all [π] ∈ Ĝ. By Fourier inversion formula, we have

f(x) =
∑
[π]∈Ĝ

dπ tr
(
π(x−1)f̂(π)

)
=
∑
[π]∈Ĝ

dπ tr (0)

= 0.

3.3 Fourier Analysis on Compact Homogeneous Spaces

Let G be a compact group and H be a closed subgroup of G with normalized

Haar measure dx and dξ respectively. Let q : G → G/H be the canonical quotient

map, let d(xH) be the G-invariant Radon measure on G/H as in Theorem 2.13

and L2(G/H) be the space of square-integrable functions on G/H with respect to

this measure. The following theorem gives a relation between L2(G) and L2(G/H).

Definition 3.12. The space of right H-invariant square-integrable functions is

denoted by

L2(G)H = {f ∈ L2(G) | ∀x ∈ G ∀ξ ∈ H, f(xξ) = f(x)}.

Equivalently, f ∈ L2(G)H if and only if Rξf = f for all ξ ∈ H.

Theorem 3.13. L2(G)H is a closed subspace of L2(G), and the map q∗ : L
2(G/H) →

L2(G)H given by

q∗(F ) = F ◦ q, F ∈ L2(G/H),

is a unitary isomorphism.

Proof. Let {fn} be a sequence in L2(G)H that converges to f ∈ L2(G). Then
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∫
G

|fn − f |2 dx converges to 0. For each ξ ∈ H, we have

∫
G

|Rξf − f |2 dx =

∫
G

|Rξf −Rξfn +Rξfn − f |2 dx

≤
∫
G

|Rξf −Rξfn|2 dx+

∫
G

|Rξfn − f |2 dx

=

∫
G

Rξ(|f − fn|2) dx+

∫
G

|fn − f |2 dx

= 2

∫
G

|fn − f |2 dx → 0 as n → ∞.

Thus Rξf = f , so f ∈ L2(G)H .

Clearly q∗ is linear, also, by universal mapping property of G/H, we can see

that q∗ is onto. Let F ∈ L2(G/H). Then for any ξ ∈ H, F ◦ q(xξ) = F (xξH) =

F (xH) = F ◦ q(x), so F ◦ q ∈ L2(G)H . Since d(xH) is the pushforward measure,

we have

∫
G/H

|F |2 d(xH) =

∫
G

|F ◦ q|2 dx.

Hence q∗ is a unitary isomorphism.

For each unitary representation π : G → U(V ), we define the space of H-fixed

vectors by

V H = {v ∈ V | ∀h ∈ H, π(h)v = v}.

Since V is finite dimensional, V H is a closed subspace of V .

Proposition 3.14. For [π] ∈ Ĝ, the map Pπ : V → V H given by

Pπv =

∫
H

π(ξ)v dξ

is an orthogonal projection.

Proof. Let v ∈ V and h ∈ H. Then

π(h)Pπv =

∫
H

π(h)π(ξ)v dξ =

∫
H

π(hξ)v dξ =

∫
H

π(ξ)v dξ = Pπv,
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and thus, Pπv ∈ V H . Note that if v ∈ V H , then
∫
H

π(ξ)v dξ =

∫
H

v dξ = v. Thus

Pπ is a projection. To show that Pπ is self-adjoint, let u, v ∈ V . Then we have

⟨Pπu, v⟩ =
∫
H

⟨π(ξ)u, v⟩ dξ

=

∫
H

⟨u, π(ξ)∗v⟩ dξ

=

∫
H

⟨u, π(ξ−1)v⟩ dξ

=

∫
H

⟨u, π(ξ)v⟩ dξ

= ⟨u, Pπv⟩.

Thus P ∗
π = Pπ, and so Pπ is a self-adjoint projection. Therefore, it is an orthogonal

projection.

Theorem 3.15. If f ∈ L2(G)H , we have the identity

f̂(π)v = f̂(π)Pπv, for v ∈ V, [π] ∈ Ĝ (3.2)

Proof. Let f ∈ L2(G)H . Then we have for v ∈ V and [π] ∈ Ĝ,

f̂(π)Pπv = f̂(π)

(∫
H

π(ξ)v dξ

)
=

∫
G

∫
H

f(x)π(x)π(ξ)v dξdx

=

∫
G

∫
H

f(x)π(xξ)v dξ dx

=

∫
H

∫
G

f(x)π(xξ)v dx dξ

=

∫
H

∫
G

f(xξ−1)π(x)v dx dξ

=

∫
H

∫
G

f(x)π(x)v dx dξ

=

∫
H

f̂(π)v dξ

= f̂(π)v.
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Definition 3.16. An H-spherical representation of G is a unitary representation

π : G → U(V ) such that V H ̸= {0}. Moreover, we define the set

Ĝ/H = {[π] ∈ Ĝ | π is a H-spherical representation}.

Lemma 3.17. Let f ∈ L2(G)H . If [π] /∈ Ĝ/H, then f̂(π) = 0.

Proof. Suppose [π] /∈ Ĝ/H. Then V H = {0}, so that Pπv = 0 for any v ∈ V . Thus

f̂(π)v = f̂(π)Pπv = f̂(π)0 = 0

for all v ∈ V .

Combining Theorem 3.9 and Lemma 3.17, we get the following theorem.

Theorem 3.18. Let f ∈ L2(G)H . Then

f(x) =
∑

[π]∈Ĝ/H

dπ tr
(
π(x−1)f̂(π)

)

where the sum converges in L2 norm.



CHAPTER IV

FUNCTIONAL EQUATION ON COMPACT

HOMOGENEOUS SPACES

In this chapter, we define the functional equation on a compact homoge-

neous space G/H based on the following functional equation on G:

f(xy) +
n−1∑
k=1

f(σk(y)x) = nf(x)f(y), for x, y ∈ G, (4.1)

where σ is a continuous automorphism on G such that σn(x) = x for all x ∈ G.

We give a solution to the functional equation in Theorem 4.4.

4.1 The Functional Equation on G/H

Let G be a compact group and H a closed subgroup of G with normalized Haar

measure dx and dξ respectively. Let σ be a continuous automorphism such that

σn is the identity map on G for some n ≥ 2. Our main focus is the functional

equation on G/H given by

F (xyH) +
n−1∑
k=1

F (σk(y)xH) = nF (xH)F (yH), for x, y ∈ G, (4.2)

where F : G/H → C is a nonzero continuous function.

4.2 Solution of the Functional Equation

In this section, we prove lemmas used in solving the functional equation (4.2).

The proofs of these lemmas are similar to the ones given in [1] with a slight mod-

ification since the definition of Fourier transform in [1] is different from what we
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use here.

Lemma 4.1. If f : G → C is a nonzero continuous solution of (4.1), then f(e) = 1

and f ◦ σ = f where e denotes the identity of G.

Proof. Take y = e in the equation (4.1), we get for any x ∈ G,

nf(x) = nf(x)f(e).

Since f is nonzero, we can choose x ∈ G such that f(x) ̸= 0. Then we have

f(e) = 1.

Next, We take x = e in (4.1). Then we get the equation

n−1∑
k=0

f(σk(y)) = nf(y).

Since σn(y) = y, we have

f(σ(y)) =
1

n

n∑
k=1

f(σk(y)) =
1

n

n−1∑
k=0

f(σk(y)) = f(y)

for all y ∈ G.

Lemma 4.2. Let f : G → C be a nonzero continuous solution of (4.1) Then for

[π] ∈ Ĝ, either f̂(π) = 0 or f̂(π) is invertible.

Proof. Let f ∈ C(G) be a nonzero continuous solution of the functional equation

(4.1). Rewrite the equation as

Ryf(x) +
n−1∑
k=1

Lσk(y)−1f(x) = nf(y)f(x).

Let [π] ∈ Ĝ. By Lemma 3.10, taking Fourier transform at π with respect to x gives

f̂(π)π(y−1) +
n−1∑
k=1

π(σk(y−1))f̂(π) = nf(y)f̂(π) (4.3)
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Let v ∈ ker f̂(π). Then

f̂(π)π(y−1)v = nf(y)f̂(π)v −
n−1∑
k=1

π(σk(y−1))f̂(π)v = 0,

so that π(y−1)v ∈ ker f̂(π) for all y ∈ G. Thus ker f̂(π) is an invariant subspace of

π. Since π is irreducible, ker f̂(π) is {0} or Vπ, which means that f̂(π) is invertible

or f̂(π) = 0.

Lemma 4.3. Let f ∈ L2(G)H be a solution of (4.1). For each [π] ∈ Ĝ, if f̂(π) ̸= 0,

then [π] ∈ Ĝ/H.

Proof. Let f ∈ L2(G)H satisfies the equation (4.1) and [π] ∈ Ĝ. Assume that

f̂(π) ̸= 0. By Lemma 4.2, f̂(π) is invertible. Since f ∈ L2(G)H , f̂(π) satisfies the

identity (3.2). Then

Pπv = f̂(π)−1f̂(π)v = v

for all v ∈ Vπ, which implies that Pπ is the identity map and hence V H
π = Vπ ̸= {0}.

Thus [π] ∈ Ĝ/H.

Our main result is the following theorem.

Theorem 4.4. Let F : G/H → C be a nonzero continuous solution of the func-

tional equation (4.2), i.e.,

F (xyH) +
n−1∑
k=1

F (σk(y)xH) = nF (xH)F (yH).

Then there exists a one-dimensional H-spherical representation χ : G → T such

that H ≤ ker(χ ◦ σk) for all k ∈ {0, 1, . . . , n− 1} and

F (xH) =
1

n

n−1∑
k=0

χ ◦ σk(x) (⋆)

for all x ∈ G. Moreover, the function F defined in (⋆) is a solution of the functional

equation (4.2).
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Proof. The idea of the proof is the same as the one given in [1]. Let F ∈ C(G/H)

be a nonzero solution of (4.2). Let f = F ◦ q. Then f ∈ L2(G)H and f satisfies the

equation (4.1). Since F is nonzero, f is also nonzero. Then there exists [π] ∈ Ĝ

such that f̂(π) ̸= 0. By Lemmas 4.2 and 4.3, f̂(π) is invertible and [π] ∈ Ĝ/H.

From equation (4.3), we have

π(x−1) +
n−1∑
k=1

f̂(π)−1π(σk(x−1))f̂(π) = nf(x)I

where I denotes the identity map on Vπ. Taking trace both sides gives

tr(π(x−1)) +
n−1∑
k=1

tr(π(σk(x−1))) = ndπf(x).

Thus

f(x) =
1

ndπ

n−1∑
k=0

tr(π(σk(x)−1)). (4.4)

Observe that f(xy) = f(yx) for all x, y ∈ G. Then f̂(π)π(y) = π(y)f̂(π) for all

y ∈ G, so that f̂(π) ∈ C(π). Since π is irreducible, by Schur’s lemma, f̂(π) is a

nonzero scalar multiple of I. Thus equation (4.3) becomes

n−1∑
k=0

π ◦ σk(x) = nf(x−1)I. (4.5)

Note that π ◦ σk is also an irreducible representation of G on Vπ. Let i, j ∈

{1, . . . , dπ}. Consider the matrix coefficients in (4.5). Since I is the identity map,

we have
n−1∑
k=0

(π ◦ σk)ij(x) =

nf(x−1), if i = j;

0, if i ̸= j.

(4.6)

To show that dπ = 1, assume that dπ ≥ 2. Let S = {k ∈ N | k < n and π ∼

π ◦ σk}. If S = ∅, by Schur’s orthogonality relation, Mπ ⊥ Mπ◦σk for all k < n,

so {(π ◦ σk)ij | k = 1, . . . , n − 1} is a linearly independent set. But (4.6) implies
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that
n−1∑
k=0

(π ◦ σk)12(x) = 0,

which is a contradiction.

On the other hand, if S ̸= ∅, let s be the smallest element in S. We see that

π ∼ π ◦ σms for all m ∈ N. Let q = gcd(n, s). Then there exist a, b ∈ Z such that

an+ bs = q. Hence π ∼ π ◦σbs = π ◦σan+bs = π ◦σq, so we must have q = s. Thus

s|n and S = {s, 2s, . . . , Ns = n− s}. Since π ∼ π ◦ σs, there is a unitary operator

T on Vπ such that π ◦ σs(x) = T ∗π(x)T for all x ∈ G. Then we have

π ◦ σas+b(x) = (T a)∗π ◦ σb(x)T a

for all x ∈ G and a, b ∈ N. Since T is unitary, there is an orthonormal eigenbasis

{e1, . . . , edπ} for T . Let λi be the eigenvalue of T associated with ei. Since T

is unitary, |λi| = 1. If we compute matrix coefficients on the diagonal line with

respect to this orthonormal basis, we get

(π ◦ σas+b)ii(x) = ⟨π ◦ σas+b(x)ei, ei⟩

= ⟨(T a)∗π ◦ σb(x)T aei, ei⟩

= ⟨π ◦ σb(x)T aei, T
aei⟩

= ⟨π ◦ σb(x)λa
i ei, λ

a
i ei⟩

= |λa
i |2⟨π ◦ σb(x)ei, ei⟩

= (π ◦ σb)ii(x).

From (4.6), we have

(N + 1)
s−1∑
k=0

(π ◦ σk)ii(x) = nf(x−1).
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for all i = 1, . . . , dπ, which implies that

s−1∑
k=0

(
(π ◦ σk)11(x)− (π ◦ σk)22(x)

)
= 0. (4.7)

Since π ◦ σk ≁ π ◦ σl for 0 ≤ k < l ≤ s− 1, Schur’s orthogonality relation implies

that {(π◦σk)ii | 0 ≤ k ≤ s−1, 1 ≤ i ≤ dπ} is an orthogonal set. Thus the equation

(4.7) is impossible, so we must have dπ = 1. Hence π is a character of G.

Define χ : G → T by χ(x) = tr(π(x−1)) = π(x−1). Then χ is a character and

also an H-spherical representation of G. Then (4.4) becomes

F ◦ q(x) = f(x) =
1

n

n−1∑
k=0

χ ◦ σk(x). (4.8)

Let ξ ∈ H. Since f(e) = 1 and f ∈ L2(G)H , we have f(ξ) = f(eξ) = f(e) = 1.

Then

n = nf(ξ) =
n−1∑
k=0

χ ◦ σk(ξ) (4.9)

Since χ is unitary, |χ ◦ σk(ξ)| = 1 for all k ∈ {0, 1, . . . , n − 1}. Using the triangle

inequality, we can deduce that χ ◦ σk(ξ) = 1 for all k. Thus H ≤ ker(χ ◦ σk) for

all k ∈ {0, 1, . . . , n− 1}, so that 1

n

n−1∑
k=0

χ ◦σk(x) is a well-defined function on G/H.

Finally, we check that the function F given by (4.8) is indeed a solution of the

functional equation (4.2). Since χ and σ are continuous, the right-hand side of

(4.8) is a continuous function. Moreover,

1

n

n−1∑
k=0

χ ◦ σk(xy) =
1

n

n−1∑
k=0

χ ◦ σk(x)χ ◦ σk(y)

and

1

n

n−1∑
k=0

χ ◦ σk(σl(y)x) =
1

n

n−1∑
k=0

χ ◦ σk(x)χ ◦ σk+l(y)
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for all l ∈ {1, . . . , n− 1}. Thus

1

n

n−1∑
k=0

χ ◦ σk(xy) +
n−1∑
l=1

(
1

n

n−1∑
k=0

χ ◦ σk(σl(y)x)

)

=
1

n

n−1∑
k=0

χ ◦ σk(x)χ ◦ σk(y) +
1

n

n−1∑
k=0

n−1∑
l=1

χ ◦ σk(x)χ ◦ σk+l(y)

=
1

n

n−1∑
k=0

χ ◦ σk(x)

(
n−1∑
l=0

χ ◦ σk+l(y)

)

=
1

n

n−1∑
k=0

χ ◦ σk(x)

(
n−1∑
l=0

χ ◦ σl(y)

)

=
1

n

(
n−1∑
k=0

χ ◦ σk(x)

)(
n−1∑
l=0

χ ◦ σl(y)

)

= n

(
1

n

n−1∑
k=0

χ ◦ σk(x)

)(
1

n

n−1∑
l=0

χ ◦ σl(y)

)
.

Hence the function

F (xH) =
1

n

n−1∑
k=0

χ ◦ σk(x)

is a nonzero continuous solution of (4.2).

4.3 An Example: The Circle Group

Let G := T the circle group, ζn := e
2πi
n where n is a positive integer, H := ⟨ ζn ⟩

the group of nth roots of unity in T and σ(x) := x−1 for x ∈ G. Note that H is

closed because it is the kernel of the continuous group homomorphism z 7→ zn.

Then the functional equation (4.2) on G/H is

F (xyH) + F (y−1xH) = 2F (xH)F (yH), x, y ∈ G.

It is well-known that every irreducible representation of G is one-dimensional and

Ĝ = {χm | m ∈ Z} where χm(x) := xm. Note that χm ∈ Ĝ/H if and only if there

exists z ∈ C r {0} such that χm(x)z = z for all x ∈ H. Since H is a cyclic group
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generated by ζn, we have for m ∈ Z,

χm ∈ Ĝ/H if and only if χm(ζn) = ζmn = 1

if and only if n divides m.

Hence

Ĝ/H = {χm | m ∈ nZ}.

Let χm ∈ Ĝ/H. To show that H ≤ kerχm ∩ ker(χm ◦ σ), it suffices to prove

that ζn ∈ kerχm ∩ ker(χm ◦ σ). Since χm ∈ Ĝ/H, m is divisible by n. Thus

χm(ζn) = ζmn = 1 and χm ◦ σ(ζn) = ζ−m
n = 1. By Theorem 4.4, every nonzero

continuous solution of

F (xyH) + F (y−1xH) = 2F (xH)F (yH), x, y ∈ G,

is of the form

F (xH) =
xkn + x−kn

2

where k ∈ Z.
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