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CHAPTER I

INTRODUCTION

1.1 History and Overview

For a graph G, we will use the notations V (G) and E(G) to denote the vertex

set and the edge set of the graph G. Note that a graph in this work is always a

simple graph.

A clique is a complete subgraph of G. A clique decomposition (or a clique

partition) of G is a collection of cliques of G such that each edge of G belongs to

exactly one clique in the collection. Note that a clique decomposition of a graph

always exists since its edge set is certainly a clique decomposition. However, it is

more interesting to find a clique decomposition with smaller number of cliques. A

minimum clique decomposition of G is a clique decomposition of G with minimum

number of elements among all possible clique decompositions of G. A clique par-

tition number of G, denoted by cp(G), is the number of elements in a minimum

clique decomposition of G.

Clique decompositions of graph have been extensively studied for a long time.

The first related paper came out around 1941. Hall [5] showed that an edge set

of any graph can be covered by at most
⌊
n2

4

⌋
cliques whose order are at most 3.

Later on, in 1966, Erdős, Goodman and Pósa [3] showed that the number
⌊
n2

4

⌋
happened to be the bound of clique partition number.

Various studies about graph decomposition are related to the decompositions of

complete graphs. Furthermore, some of them investigate cyclic decompositions of

complete graphs into certain subgraphs such as bipartite graphs, almost-bipartite

graphs, cycles etc. See more details in [1], [2] and [4].

Note that when k ≥
⌊n
2

⌋
, the complete graph Kn is a k-power of an n-cycle
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which will be denoted by Ck
n. In 2007, Wichianpaisarn [9] studied clique decom-

positions of square (2-power) of cycles in order to determine the clique partition

number.

Our aim is to investigate minimum cyclic clique decompositions of Ck
n, the

k-power of n-cycles for k ≥ 3 and all natural numbers n. Note that there is a

well-known construction of a cyclic K3-decomposition of Kn for n ≡ 1, 3 (mod 6)

which is equivalent to a cyclic Steiner triple system of order n. Such a construc-

tion relies on the solution of Heffter’s difference problem [6]. In this work, we

focus on Ck
n when k <

⌊n
2

⌋
and we introduce a certain method to construct their

cyclic clique decompositions. Our method is a generalization of the construction

of cyclic Steiner triple systems using Heffter’s difference problem. The objective is

to investigate a minimum cyclic clique decomposition of Ck
n into cliques of order

at most 4.

This thesis is divided into 4 chapters. The first chapter includes most of the

definitions and notation needed for our work. In Chapter II, we give details re-

garding Steiner triple system and Heffter’s difference problem. In Chapter III,

we talk about the k-power of an n-cycle and explain our idea to construct cyclic

clique decomposition of Ck
n. Furthermore, we will introduce a classification of cer-

tain 2-cliques, 3-cliques and 4-cliques. Our main results will also be given in this

chapter.

Finally, we conclude the results of our work in Chapter IV including some

interesting open problems.

1.2 Definitions and Notation

A path with n vertices, denoted by Pn, is an n-vertex graph whose vertices can

be ordered so that two vertices are adjacent if and only if they are consecutive in

the list. The length of a path is the number of edges in it. A u, v-path is a path

whose endpoints are u and v. The distance between vertices u and v in a graph

G, denoted by dG(u, v) or d(u, v), is the length of a shortest u, v-path in G. The
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diameter of G, denoted by diam(G), is the maximum distance d(u, v) over vertex

pairs u, v in V (G).

A cycle is a closed path. The n-cycle, denoted by Cn, is a cycle with n vertices.

Let Zn be the group of integers modulo n. In our work, we use Zn to represent

V (Cn) and E(Cn) = {(i)(i + 1) | i ∈ Zn} as shown in Figure 1.1. We denote

elements 0, 1, 2, . . . , n − 1 in Zn as (0), (1), (2), . . . , (n − 1) in the figure when we

label vertices of a graph.

Figure 1.1: The n-cycle Cn

The k-power of a graph G, denoted by Gk, is the graph with the same vertex

set as G, and for any u, v in V (Gk), there exists an edge uv in E(Gk) if and only

if dG(u, v) ≤ k.

Example 1.1. Figure 1.2 illustrates the k-power of P5.

Figure 1.2: The k-power of P5

�
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Given a k-power of n-cycle Ck
n, we define the length function of edges as fol-

lowing.

Definition 1.2. Let ℓ : E(Ck
n) → N be a function of edges in Ck

n defined by

ℓ(ij) = min{|i− j|, n− |i− j|} for all ij ∈ E(Ck
n).

For each edge ij in Ck
n, note that ℓ(ij) is the distance between vertices i and j in

Cn. Thus, we call the function ℓ(ij) the length of the edge ij.

We write Kn{v1, v2, . . . , vn} to denote the clique of order n (or n-clique) on the

vertex set {v1, v2, . . . , vn}.

Example 1.3. Given a graph G such that V (G) = {u, v, x, y, z} and E(G) =

{uv, ux, uy, vx, vy, vw,wy, xy} as in Figure 1.3, let C1, C2 be two collections of

cliques of G defined as follows:

C1 =
{
K4{u, v, x, y}, K2{v, w}, K2{w, y}

}
and

C2 =
{
K3{u, v, x}, K3{v, w, y}, K2{u, y}, K2{x, y}

}
.

Figure 1.3: The graph G

Note that C1 and C2 are both clique decompositions of G. Consequently, clique

decompositions of G might not be unique. Observe that in this example, two cliques

are not enough to partition the graph G. Therefore, any clique decomposition of

G has to contain at least 3 cliques. Hence, C1 is an example of a minimum clique

decomposition of G. �

Next, we mention a special type of decompositions of a graph. If all cliques in a

clique decomposition C have the same order k, then we call C a Kk-decomposition.



5

A clique decomposition P is cyclic if there is an isomorphism α : V (G) → V (G),

which is not an identity, such that Kk{α(v1), α(v2), α(v3), ..., α(vk)} is a clique in

P whenever Kk{v1, v2, v3, ..., vk} is. As in [2], we recall the notion of clicking.

Given a graph G with V (G) = Zn, clicking G means applying the isomorphism

i → i+1 on V (G). Therefore, if clicking each element in P yields another element

in P, then P is cyclic. Figure 1.4 illustrates an example of clicking the clique

K3{x, y, z}. If edges xy, yz and xz are of length ℓ1, ℓ2 and ℓ3, respectively, then

edges (x+1)(y+1), (y+1)(z+1) and (x+1)(z+1) of K3{x+1, y+1, z+1} are

of the length ℓ1, ℓ2 and ℓ3, respectively. Therefore, clicking preserves the length of

edges of 3-clique.

Figure 1.4: Clicking K3{x, y, z}

Example 1.4. We illustrate three different clique decompositions of the complete

graph K7 with V (K7) = Z7. Let C1, C2 and C3 be three clique decompositions of

K7 as follows:

C1 =
{
K7{0, 1, 2, 3, 4, 5, 6}

}
,

C2 =
{
K6{1, 2, 3, 4, 5, 6}, K2{0, 1}, K2{0, 2},

K2{0, 3}, K2{0, 4}, K2{0, 5}, K2{0, 6}
}

and

C3 =
{
K3{i, i+ 1, i+ 3} : 0 ≤ i ≤ 6

}
.
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Figure 1.5: Clique decompositions of the complete graph K7

Clearly, C1 is a minimum clique decomposition of K7.

Furthermore, C3 is a cyclic K3-decomposition of K7 but C2 is certainly not. �



CHAPTER II

PRELIMINARIES

Before we discuss a method to construct cyclic clique decompositions of Ck
n,

we would like to review a Steiner triple system. Note that Ck
n = C

⌊n
2
⌋

n = Kn if

k ≥
⌊n
2

⌋
. Essentially, the well-known cyclic Steiner triple system is equivalent to a

cyclic K3-decomposition of the complete graph. The idea behind the construction

of a cyclic Steiner triple system motivates us to make certain generalization and

then use it in this work to construct cyclic clique decompositions of Ck
n into cliques

of order at most 4.

A Steiner triple system of order n, STS(n), is an ordered pair (S, T ), where S

is a finite set of points such that |S| = n and T is a set of 3-element subsets of

S called triples, such that each pair of distinct elements of S occurs together in

exactly one triple of T .

Graphically, if we represent each point in S by a vertex and represent each triple

{x, y, z} by a triangle whose vertices are x, y and z, then the Steiner triple system

(S, T ) is equivalent to a decomposition of a complete graph K|S| into 3-cliques.

Next, we give some examples of Steiner triple systems.

Example 2.1. We consider the following Steiner triple systems.

(i) S1 = {0, 1, 2, 3, 4, 5, 6},

T1 =
{
{0, 1, 3}, {1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 0}, {5, 6, 1}, {6, 0, 2}

}
.

Note that (S1, T1) is a STS(7) which is equivalent to a K3-decomposition of K7

shown in Figure 1.5 (C3).

(ii) S2 = {0, 1, 2, 3, 4, 5, 6, 7, 8}

T2 =
{
{0, 1, 2}, {3, 4, 5}, {6, 7, 8}, {0, 3, 6}, {1, 4, 7}, {2, 5, 8}

{0, 4, 8}, {1, 5, 6}, {2, 3, 7}, {0, 5, 7}, {1, 3, 8}, {2, 4, 6}
}

.

Note that (S2, T2) is a STS(9).
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In 1847, Kirkman solved the problem regarding to a positive integers n such

that a Steiner triple system of order n exists. The reader may see more details

in [7].

Theorem 2.2. [7] An STS(n) exists if and only if n ≡ 1, 3 (mod 6).

More studies have been conducted on STS. Some of them are to determine

whether STS is cyclic. Recall that an automorphism of an STS (S, T ) is a bijection

α : S → S such that t = {x, y, z} ∈ T if and only if α(t) = {α(x), α(y), α(z)}. An

STS(n) is cyclic if there is an automorphism which is a permutation consisting of

a single cycle of length n. Note that (Zn, T ) is a cyclic STS(n) if clicking gives a

permutation of T .

Note that in Example 2.1, (S1, T1) is a cyclic STS(7) because clicking is a

permutation on T1. On the other hand, (S2, T2) is a STS(9) but it is not cyclic.

Next, we would like to introduce Heffter’s difference problems [6] which will be a

key to construct a cyclic Steiner triple system. In particular, the Heffter’s problems

concern the partition of a given set into difference triples. In details, for each integer

n, a difference triple is a subset of 3 distinct elements of {1, 2, 3, . . . , k − 1} such

that either

(i) their sum is 0 (mod k), or

(ii) one element is the sum of the other two (mod k).

In 1896, Heffter [6] posed the following problems which are known as Heffter’s

difference problems which compose of two difference problems:

(1) Let n = 6m+1. Is it possible to partition the set
{
1, 2, 3, . . . ,

n− 1

2
= 3m

}
into difference triples?

(2) Let n = 6m + 3. Is it possible to partition the set
{
1, 2, 3, . . . ,

n− 1

2
=

3m+ 1

}
\
{
n

3
= 2m+ 1

}
into difference triples?

For more details regarding these problems, see [7]. We mention here some

results regarding to the above problems in Example 2.3.
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Example 2.3. Here are some certain solutions to the Heffter’s first difference

problem.

(i) For n = 7, the solution is
{
{1, 2, 3}

}
.

(ii) For n = 13, the solution is
{
{1, 3, 4}, {2, 5, 6}

}
.

The following are some solutions to the Heffter’s second difference problem.

(iii) For n = 9, the set we have to partition is {1, 2, 4} which is not a difference

triple. Therefore, there is no solution in this case.

(iv) For n = 15, the only solution is
{
{1, 3, 4}, {2, 6, 7}

}
. �

In 1939, Peltesohn [8] completely solved the Heffter’s difference problems except

when n = 9, which is shown that the solution does not exist. Peltesohn’s solutions

can be used to prove the existence of a cyclic STS(n) which is precisely stated in

Theorem 2.4.

Theorem 2.4. [7] For all n ≡ 1, 3 (mod 6) and n ̸= 9, there exists a cyclic

STS(n).

In order to construct a cyclic STS(n), we introduce the notion of a base block.

Given a difference triple {x, y, z}, we define the corresponding base block to be

the triple {0, x, x + y}. Graphically, observe that the base block {0, x, x + y} is

a 3-clique K3{0, x, x + y} with the set of edge lengths {x, y, z} as illustrated in

Figure 2.1. The base blocks corresponding to difference triples in the solution to

Heffter’s difference problems are then used to construct a cyclic STS(n).

Figure 2.1: Base block K3{0, x, x+ y} corresponding to a difference triple {x, y, z}
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According to a solution of Heffter’s difference problems, Examples 2.5, 2.6

and 2.7 illustrate the construction of a cyclic K3-decomposition of Kn, which is

equivalent to cyclic STS(n). Recall that for Kn = Ck
n when k ≥

⌊n
2

⌋
, we define

the length function of edges in Kn as in Definition 1.2.

Example 2.5. We consider the complete graph K7 with V (K7) = Z7.

Figure 2.2: The complete graph K7

The set {1, 2, 3} is the set of all edge lengths of K7, which is itself a differ-

ence triple. Therefore, the solution to Heffter’s difference problem when n = 7 is{
{1, 2, 3}

}
. We obtain the corresponding base block K3{0, 1, 3} with the set of

edge lengths {1, 2, 3}. As clicking preserves the length of edges and K7 contains 7

edges of each length 1, 2 and 3, we have a cyclic K3-decomposition C1 of K7 where

C1 =
{
K3{i, i+ 1, i+ 3} : 0 ≤ i ≤ 6

}
after clicking this base block 6 times.

Equivalently, (V (K7), T1) is a cyclic STS(7) where

T1 =
{
{i, i+ 1, i+ 3} : 0 ≤ i ≤ 6

}
.

�
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Example 2.6. We consider the complete graph K13 with V (K13) = Z13.

Figure 2.3: The complete graph K13

The set {1, 2, 3, 4, 5, 6} is the set of edge lengths of K13. A solution to Heffter’s

difference problem when n = 13 is
{
{1, 3, 4}, {2, 5, 6}

}
. Consequently, we obtain

the base blocks K3{0, 1, 4} and K3{0, 2, 7} with the set of edge lengths {1, 3, 4}

and {2, 5, 6}, respectively. Those two base blocks are shown in Figure 2.3. Note

that edges of those two 3-cliques contain all edge lengths that occur in K13. Also,

observe that K13 contains 13 edges of each length i ∈ {1, 2, 3, 4, 5, 6}. By clicking

each base block 12 times, we obtain that

C2 =
{
K3{i, i+ 1, i+ 4}, K3{i, i+ 2, i+ 7} : 0 ≤ i ≤ 12

}
which is a cyclic K3-decomposition of K13.

Equivalently, (V (K13), T2) is a cyclic STS(13), where

T2 =
{
{i, i+ 1, i+ 4}, {i, i+ 2, i+ 7} : 0 ≤ i ≤ 12

}
.

�



12

Example 2.7. We consider the complete graph K15 with V (K15) = Z15.

Figure 2.4: The complete graph K15

The set of edge lengths of K15 is {1, 2, 3, 4, 5, 6, 7}. A solution to Heffter’s second

difference problem when n = 15 is
{
{1, 3, 4}, {2, 6, 7}

}
. Thus the corresponding

base blocks are K3{0, 1, 4} and K3{0, 2, 8} which are shown in Figure 2.4 on the

left.

Note that edges of length 5 are not included in any base block. However, we

can form 3-cliques using these edges, consequently, there must be one more base

block, namely K3{0, 5, 10}, which is shown on the right of Figure 2.4.

Thus, all the base blocks in this case are K3{0, 1, 4},K3{0, 2, 8} and K3{0, 5, 10}.

Therefore,

C3 =
{
K3{i, i+1, i+4}, K3{i, i+2, i+8}, K3{j, j+5, j+10} : 0 ≤ i ≤ 14, 0 ≤ j ≤ 4

}
which is a cyclic K3-decomposition of K15 that we are looking for.

Equivalently, (V (K15), T3) is a cyclic STS(15) where

T3 =
{
{i, i+ 1, i+ 4}, {i, i+ 2, i+ 8}, {j, j + 5, j + 10} : 0 ≤ i ≤ 14, 0 ≤ j ≤ 4

}
.

�



CHAPTER III

CYCLIC CLIQUE DECOMPOSITIONS OF Ck
n

In this chapter, we explain the method to construct cyclic clique decompositions

of Ck
n. First, we classify certain cliques of order at most 4. Finally, we can construct

cyclic clique decompositions of Ck
n.

Recall that the k-power of an n-cycle, denoted by Ck
n, is an n-cycle with addi-

tional edges for each pair of vertices u and v such that dCn(u, v) ≤ k. It is easy to

see that Ck
n = Kn for k ≥

⌊n
2

⌋
since diam(Ck

n) =
⌊n
2

⌋
. In this case, the complete

graph Kn itself can be considered as the n-clique and therefore, we have cp(Kn) = 1

for any natural number n. In order to focus on the case that Ck
n is not the com-

plete graph, from now on, we write Ck
n to denote the k-power of n-cycle where

k <
⌊n
2

⌋
. We let V (Ck

n) = V (Cn) = Zn and E(Ck
n) = E(Cn) ∪ {uv : u, v ∈ V (Cn)

and dCn(u, v) ≤ k}.

Figure 3.1: The 3-power of a 9-cycle C3
9

Remark 3.1. Let Ck
n be a k-power of an n-cycle with k <

⌊n
2

⌋
. We have the

following observations:

(i) There are kn edges in Ck
n.

(ii) The set of all lengths of edges in Ck
n is {1, 2, 3, . . . , k}.

(iii) For each i ∈ {1, 2, 3, . . . , k}, there are n edges of length i in Ck
n.
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As in Chapter II, the Heffter’s difference problems can be used to decompose

Kn into 3-cliques. In this work, we generalize such an idea and establish the

construction method for cyclic clique decompositions of Ck
n into cliques of order at

most 4.

3.1 Pure Difference Tuple Problem

Given a natural number k <
⌊n
2

⌋
, from Remark 3.1, there are n edges of length

i in Ck
n for each i ∈ {1, 2, 3, . . . , k}. We would like to find base blocks containing

cliques of order at most 4 such that there is only one edge of length i in these base

blocks. Afterward, we can use them to construct a cyclic clique decomposition

of Ck
n. In order to find such base blocks, we generalize the Heffter’s difference

problems by allowing a partition of the set {1, 2, 3, . . . , k} of edge lengths of Ck
n to

contain pure difference 3-tuples, pure difference 6-tuples and singletons which we

define as follows.

Definition 3.2. Let k be a positive integer.

(i) A pure difference 3-tuple is an ordered triple (x, y, z) of 3 distinct elements

of {1, 2, 3, . . . , k} such that z = x+ y. In particular, a pure difference 3-tuple is a

triple that can be written in the form (x, y, x+ y).

(ii) A pure difference 6-tuple is an ordered 6-tuple of the form

(x, y, z, x+ y, y + z, x+ y + z)

containing 6 distinct elements of {1, 2, 3, . . . , k}.

(iii) A singleton is a 1-tuple containing x, denoted by {x}, where x ∈ {1, 2, 3, . . . , k}.

Our construction of a cyclic clique decomposition of Ck
n into cliques of order at

most 4 will rely on the partition of the set of edge lengths of Ck
n into certain subsets.

Inspired by the Heffter’s difference problems, we pose the following problem in

order to investigate certain partition of the set. This problem plays an important

role in our work.
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Pure Difference Tuple Problem of order k. Let k ≥ 3, is it possible to

partition the set {1, 2, 3, . . . , k} into pure difference 6-tuples, pure difference 3-

tuples, or singletons where the number of elements in the partition is the minimum

among all such partitions?

We denote PDT(k) as a solution to Pure Difference Tuple Problem of order k.

Example 3.3. Here, we give some examples of partitions of the set {1, 2, 3, . . . , k}

into pure difference 6-tuples or pure difference 3-tuples or singletons and therefore,

solutions to Pure Difference Tuple Problem of order k.

(i) Let A =
{
{i} : 1 ≤ i ≤ 9

}
,

B =
{
(1, 3, 2, 4, 5, 6), {7}, {8}, {9}

}
and

C =
{
(3, 2, 4, 5, 6, 9), (1, 7, 8)

}
be ones of the partitions of the set {1, 2, 3, . . . , 9}.

Observe that C has smaller size than the sizes of A and B. In this case, C is

a PDT(9) because we need at least 2 of such tuples to form a partition of the set

{1, 2, 3, . . . , 9}.

(ii) Given D1, D2 and D3 as follows:

D1 =
{
(1, 16, 6, 17, 22, 23), (2, 12, 7, 14, 19, 21), (3, 5, 10, 8, 15, 18), (4, 9, 11, 13, 20, 24)

}
,

D2 =
{
(1, 6, 16, 7, 22, 23), (2, 12, 5, 14, 17, 19), (3, 10, 8, 13, 18, 21), (4, 11, 9, 15, 20, 24)

}
and

D3 =
{
(1, 16, 6, 17, 22, 23), (5, 2, 12, 7, 14, 19), (3, 10, 8, 13, 18, 21), (4, 11, 9, 15, 20, 24)

}
.

Then, D1, D2 and D3 are ones of possible partitions for k = 24. Note that they

are PDT(24). Therefore, a solution to Pure Difference Tuple Problem might not

be unique.

(iii) One of the possible partition for k = 18 is{
(1, 6, 5, 7, 11, 12), (2, 13, 3, 15, 16, 18), (4, 10, 14), (8, 9, 17)

}
.

Surprisingly, it is a PDT(18) which will be proved in Theorem 3.10. �
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Let D be a partition of the set {1, 2, 3, . . . , k} into a pure difference 6-tuples,

b pure difference 3-tuples and c singletons. Note that if a =

⌊
k

6

⌋
, b =

⌊
k − 6a

3

⌋
and c = k − 6a − 3b, then D is certainly a PDT(k). However, the converse does

not hold as we see in Example 3.3 (iii).

3.2 Classification of 2-cliques, 3-cliques and 4-cliques

In this section, we define the base blocks corresponding to a pure difference

6-tuple, a pure difference 3-tuple and a singleton. This set of base blocks obtained

from a solution PDT(k) will be used to form our cyclic clique decomposition of Ck
n

into cliques of order at most 4 in our construction.

We introduce a classification of 2-cliques, 3-cliques and 4-cliques according to

the parity of their edge lengths. For convenience, we call an edge with odd length

(and even length) an odd edge (and even edge, respectively).

3.2.1 2-cliques

For a singleton {x}, where x ∈ {1, 2, 3, . . . , k}, we define the corresponding

base block to be the 2-clique K2{0, x} in Ck
n with length x. Such graph is shown

in Figure 3.2.

Figure 3.2: K2{0, x} corresponding to a singleton {x}

3.2.2 3-cliques

For a pure difference 3-tuple (x, y, x + y), we define the corresponding base

block to be the 3-clique K3{0, x, x + y} which contains edges of lengths x, y and

x+ y as illustrated in Figure 3.3.
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Figure 3.3: K3{0, x, x+ y} corresponding to a pure difference 3-tuple (x, y, x+ y)

By considering each case which depends on the parities of elements x and y in

a pure difference triple (x, y, x + y), there are four different cases of a 3-clique as

shown in Table 3.1 where we represent odd edges and even edges as dash lines and

bold lines, respectively.

Remark 3.4. There are only two types of base blocks corresponding to pure

difference 3-tuples as follows:

1) 3-clique of type O2E containing 2 odd edges and 1 even edge, and

2) 3-clique of type E3 containing all 3 even edges.

x y x+ y Graph K3{0, x, x+ y} Type

Even Odd Odd O2E

Odd Even Odd O2E

Odd Odd Even O2E

Even Even Even E3

Table 3.1: Types of K3{0, x, x+ y}
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3.2.3 4-cliques

For a pure difference 6-tuple (x, y, z, x + y, y + z, x + y + z), we define the

corresponding base block to be the 4-clique K4{0, x, x + y, x + y + z} illustrated

in Figure 3.4. The edges of length x, y, z and x + y + z are called border edges

and the edges of length x+ y and y + z are called diagonal edges. Note that there

are exactly four 3-cliques contained in the 4-clique K4{0, x, x+ y, x+ y+ z} as its

subgraphs.

Figure 3.4: K4{0, x, x + y, x + y + z} corresponding to a pure difference 6-tuple

(x, y, z, x+ y, y + z, x+ y + z)

By considering each case which depends on the parities of elements x, y and z

in a pure difference 6-tuple (x, y, z, x+ y, y + z, x+ y + z), we have eight different

forms of a 4-clique as shown in Table 3.2.

Remark 3.5. There are only three types of base blocks corresponding to pure

difference 6-tuples as follows:

1) 4-clique of type E6 containing all 6 even edges,

2) 4-clique of type O4E2 containing 4 odd edges and 2 even edges, and

3) 4-clique of type O3E3 containing 3 odd edges and 3 even edges.
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x y z x+ y y+ z x+y+z
Graph

K4{0, x, x+ y, x+ y + z}
Type

Odd Odd Odd Even Even Odd O4E2

Odd Odd Even Even Odd Even O3E3

Odd Even Odd Odd Odd Even O4E2

Odd Even Even Odd Even Odd O3E3

Even Odd Odd Odd Even Even O3E3

Even Odd Even Odd Odd Odd O4E2

Even Even Odd Even Odd Odd O3E3

Even Even Even Even Even Even E6

Table 3.2: Types of K4{0, x, x+ y, x+ y + z}

For Table 3.2, we obtain some properties of base blocks corresponding to pure

difference 6-tuples concluded in the next proposition.
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Proposition 3.6. Let K4(V ) be the base block corresponding to a pure difference

6-tuple.

(i) If K4(V ) is of type O3E3, then it always contains exactly one 3-clique

subgraph of type E3.

(ii) If K4(V ) is of type O4E2, then two even edges must be both diagonal edges

or two opposite border edges.

3.3 Cyclic Clique Decompositions of Ck
n into Cliques of Or-

der at Most 4 for 3 ≤ k ≤ 26

From now on, in this work, Bk denotes the corresponding set of base blocks

obtained from a PDT(k). Note that if a PDT(k) contains a, b and c pure difference

6-tuples, pure difference 3-tuples and singletons, respectively, then Bk contains a

4-cliques, b 3-cliques and c 2-cliques.

We say that a cyclic clique decomposition of Ck
n into cliques of order at most

4 is optimal if it contains the minimum number of cliques among all such possible

clique decompositions obtained by clicking the base blocks. Recall that clicking

means applying the isomorphism i → i+ 1 on V (Ck
n).

Our study establishes the condition on integers k and n to ensure that a cyclic

clique decomposition of Ck
n into cliques of order at most 4 obtained from PDT(k)

is optimal.

Theorem 3.7. Let k and n be integers such that k ≥ 3 and k <
⌊n
2

⌋
. If n > 3k,

then a solution PDT(k) yields an optimal cyclic clique decomposition of Ck
n into

cliques of order at most 4.

Proof. In order to find a cyclic clique decomposition of Ck
n into cliques of order

at most 4, we first partition {1, 2, 3, . . . , k}, the set of edge lengths of Ck
n, into

pure difference 6-tuples, pure difference 3-tuples, or singletons. Afterward, we

obtain the corresponding set of base blocks containing exactly one edge of length

i ∈ {1, 2, 3, . . . , k}. Since clicking preserves edge lengths of a graph and Ck
n has
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n edges of length i for each i ∈ {1, 2, 3, . . . , k}, it follows that clicking each base

block n− 1 times yields the desired decomposition of Ck
n.

Our construction method can be summarized as the following steps:

Step 1 Obtain a solution, PDT(k), of the Pure Difference Tuple Problem.

Step 2 Get the set of base blocks Bk corresponding to PDT(k) in Step 1.

Step 3 Apply clicking n−1 times to each base block in Bk and get the desired

decomposition of Ck
n.

Therefore, a PDT(k) yields a cyclic clique decomposition of Ck
n into cliques of

order at most 4.

Next, we show that such a decomposition is optimal when n > 3k.

First, we claim that the union of base blocks must not contain repeated edge

lengths. As an optimal cyclic clique decomposition is obtained from clicking base

blocks n− 1 times, the only possible base blocks of Ck
n with repeated edge lengths

must be as given in Figure 3.5.

Figure 3.5: Base blocks with repeated edge lengths

However, since n > 3k and k <
⌊n
2

⌋
, Ck

n has neither edge of length n

3
nor n

2
.

Thus the union of all base blocks cannot contain repeated edge lengths. In other

words, the set of edge lengths of each base block form a partition of {1, 2, 3, . . . , k}

which can be obtained from a PDT(k).
It remains to make sure that some 2-cliques and 3-cliques obtained from PDT(k)

cannot form a new 3-clique nor a new 4-clique in Ck
n. Otherwise, we will obtain

a smaller set of base blocks. In order to achieve that, we claim that the following

two properties hold when n > 3k.
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(i) Ck
n contains no 3-clique K3{0, x, x+ y} with edges of the length x, y and z

where x+ y + z = n.

(ii) Ck
n contains no 4-clique K4{0, x, x+ y, x+ y + z} with border edges of the

length x, y, z and w where x+ y + z + w = n.

Figure 3.6: 3-clique and 4-clique mentioned in (i) and (ii), respectively

We prove (i) by using contrapositive arguments. Suppose that K3{0, x, x+ y}

is a clique of Ck
n with edges of the length x, y and z where x+y+z = n as in Figure

3.6 (i). Since x, y and z are all at most k, we have n = x+ y+ z ≤ k+ k+ k ≤ 3k.

Thus, the property (i) holds if n > 3k.

Next, we prove (ii), suppose that K4{0, x, x + y, x + y + z} is a clique of Ck
n

with border edges of length x, y, z and w where x+ y+ z+w = n as in Figure 3.6

(ii). Then, the diagonal edges joining vertices 0 and x+ y is of the length at most

k. Since z ≤ k and w ≤ k, we have n = (x+ y) + z + w ≤ k + k + k ≤ 3k. Thus,

the property (ii) holds if n > 3k.

Hence, a solution PDT(k) yields an optimal cyclic clique decomposition of Ck
n

into cliques of order at most 4..

Consequently, it is crucial to determine a solution PDT(k). In this work, we

have succeeded in determining PDT(k) for 3 ≤ k ≤ 26. By Theorem 3.7, this

yields an optimal cyclic clique decomposition of Ck
n into cliques of order at most 4

for 3 ≤ k ≤ 26 and all natural numbers n > 3k.

From now on, we let Ck(n) be such an optimal cyclic clique decomposition of

Ck
n into cliques of order at most 4 when 3 ≤ k ≤ 26 and n > 3k.
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Next, we give a solution PDT(k) and Ck(n) for 3 ≤ k ≤ 26 and all natural

numbers n > 3k.

3.3.1 PDT(k) and Ck(n) for 3 ≤ k ≤ 11

A PDT(k) and an optimal cyclic clique decomposition Ck(n) of Ck
n into cliques

of order at most 4 for 3 ≤ k ≤ 11 and all natural numbers n > 3k are given below.

Case k = 3, 4, 5

When k = 3, we have PDT(3) =
{
(1, 2, 3)

}
and hence, the set of corresponding

base block is B3 =
{
K3{0, 1, 3}

}
. The base block in B3 is shown in Figure 3.7.

Figure 3.7: The base block K3{0, 1, 3} in C3
n

Apply clicking n− 1 times to the base block in B3, we obtain that

C3(n) =
{
K3{i, i+ 1, i+ 3} : 0 ≤ i ≤ n− 1

}
is an optimal cyclic clique decomposition of C3

n into cliques of order at most 4.

Next, by adding the singleton {4} to PDT(3), we obtain PDT(4). Similarly,

PDT(5) is obtained by adding the singleton {5} to PDT(4). Hence, we have

PDT(4) =
{
(1, 2, 3), {4}

}
and

PDT(5) =
{
(1, 2, 3), {4}, {5}

}
.

Consequently, the corresponding sets of base blocks are

B4 =
{
K3{0, 1, 3}, K2{0, 4}

}
and

B5 =
{
K3{0, 1, 3}, K2{0, 4}, K2{0, 5}

}
.

The base blocks in B5 are shown in Figure 3.8.
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Figure 3.8: The base blocks in B5

Therefore, we have

C4(n) =
{
K3{i, i+ 1, i+ 3}, K2{i, i+ 4} : 0 ≤ i ≤ n− 1

}
and

C5(n) =
{
K3{i, i+ 1, i+ 3}, K2{i, i+ 4}, K2{i, i+ 5} : 0 ≤ i ≤ n− 1

}
.

Since the set of base blocks Bk are determined by a solution PDT(k), from now

on, we only show a solution PDT(k) and the decomposition Ck(n) of Ck
n obtained

from Bk.

Case k = 6, 7, 8

When k = 6, we have PDT(6) =
{
(1, 3, 2, 4, 5, 6)

}
which yields the correspond-

ing set of base blocks B6 =
{
K4{0, 1, 4, 6}

}
. Hence,

C6(n) =
{
K4{i, i+ 1, i+ 4, i+ 6} : 0 ≤ i ≤ n− 1

}
.

Using PDT(6), we obtain

PDT(7) =
{
(1, 3, 2, 4, 5, 6), {7}

}
and

PDT(8) =
{
(1, 3, 2, 4, 5, 6), {7}, {8}

}
.

Figure 3.9: The base blocks corresponding to elements in PDT(8)

Therefore, we have

C7(n) =
{
K4{i, i+ 1, i+ 4, i+ 6}, K2{i, i+ 7} : 0 ≤ i ≤ n− 1

}
and

C8(n) =
{
K4{i, i+ 1, i+ 4, i+ 6}, K2{i, i+ 7}, K2{i, i+ 8} : 0 ≤ i ≤ n− 1

}
.
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Case k = 9, 10, 11

When k = 9, we have PDT(9) =
{
(3, 2, 4, 5, 6, 9), (1, 7, 8)

}
which yields the

corresponding set of base blocks B9 =
{
K4{0, 3, 5, 9}, K3{0, 1, 8}

}
. Hence,

C9(n) =
{
K4{i, i+ 3, i+ 5, i+ 9}, K3{i, i+ 1, i+ 8} : 0 ≤ i ≤ n− 1

}
.

Using PDT(9), we obtain

PDT(10) =
{
(3, 2, 4, 5, 6, 9), (1, 7, 8), {10}

}
and

PDT(11) =
{
(3, 2, 4, 5, 6, 9), (1, 7, 8), {10}, {11}

}
.

Figure 3.10: The base blocks corresponding to elements in PDT(11)

Therefore, we have

C10(n) =
{
K4{i, i+ 3, i+ 5, i+ 9}, K3{i, i+ 1, i+ 8},

K2{i, i+ 10} : 0 ≤ i ≤ n− 1
}

and

C11(n) =
{
K4{i, i+ 3, i+ 5, i+ 9}, K3{i, i+ 1, i+ 8},

K2{i, i+ 10}, K2{i, i+ 11} : 0 ≤ i ≤ n− 1
}
.

3.3.2 PDT(k) and Ck(n) for k = 12, 18

When k = 12, 18, it is natural to try to partition the set {1, 2, 3, . . . , k} into
k

6
pure difference 6-tuples. However, the following two lemmas and Theorem 3.10

show that such a partition does not exist. To achieve that, we begin with the

investigation of a partition of the set
{
1, 2, 3, . . . ,

k

2

}
into pure difference 3-tuples

in Lemma 3.8.
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Lemma 3.8. Let k be a positive integer. If k ≡ 12, 18 (mod 24), then there is no

partition of the set
{
1, 2, 3, . . . ,

k

2

}
into k

6
pure difference 3-tuples.

Proof. For the sake of convenience, we write k = 6a where a ≡ 2, 3 (mod 4).

Let X =

{
1, 2, 3, . . . ,

k

2

}
. Suppose that X can be partitioned into k

6
pure

difference 3-tuples, namely
{
(xi, x

′
i, yi) : i ∈

{
1, 2, 3, . . . ,

k

6

}}
.

Thus, we have yi = xi + x′
i for 1 ≤ i ≤ k

6
.

Now, we compute the sum of all elements in X as
k/6∑
i=1

(xi + x′
i + yi) =

k/2∑
i=1

i =
k

4

(
k

2
+ 1

)
.

On the other hand,
k/6∑
i=1

(xi + x′
i + yi) =

k/6∑
i=1

(yi + yi) = 2

k/6∑
i=1

yi.

Therefore, we get
k/6∑
i=1

yi =
k

8

(
k

2
+ 1

)
=

3a(3a+ 1)

4
.

Next, we consider 3a(3a+ 1)

4
where a ≡ 2 or 3 (mod 4).

Case 1 a ≡ 2 (mod 4)

We get 3a ≡ 2 (mod 4) and 3a+ 1 ≡ 3 (mod 4).

Therefore, 3a(3a+ 1) ≡ 2 (mod 4).

Thus, we have
k/6∑
i=1

yi =
3a(3a+ 1)

4
/∈ Z, which is a contradiction.

Hence, the partition of the set
{
1, 2, 3, . . . ,

k

2

}
into k

6
pure difference 3-tuples

does not exist when k = 6a and a ≡ 2 (mod 4).

Case 2 a ≡ 3 (mod 4)

Then, 3a ≡ 1 (mod 4) and 3a+ 1 ≡ 2 (mod 4).

That is, 3a(3a+ 1) ≡ 2 (mod 4).

We have
k/6∑
i=1

yi =
3a(3a+ 1)

4
/∈ Z, which is a contradiction.

Hence, the partition of the set
{
1, 2, 3, . . . ,

k

2

}
into k

6
pure difference 3-tuples

does not exist when k = 6a and a ≡ 3 (mod 4).
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Lemma 3.9. Let k be a positive integer such that k ≡ 12, 18 (mod 24). The base

blocks corresponding to pure difference 3-tuples and pure difference 6-tuples satisfy

the followings.

(i) There is no k

6
base blocks which are 3-cliques of type E3 whose sets of edge

lengths form a partition of the set {2, 4, 6, . . . , k}.

(ii) There is no k

6
base blocks which are 4-cliques of type O3E3 whose sets of

edge lengths form a partition of the set {1, 2, 3, . . . , k}.

Proof. (i) Suppose the contrary, there is k

6
3-cliques of type E3 whose sets of edge

lengths form a partition of the set {2, 4, 6, . . . , k}.

This yields a partition of
{
1, 2, 3, . . . ,

k

2

}
into k

6
pure difference 3-tuples which

contradicts the statement of Lemma 3.8.

(ii) Again, suppose the contrary, there is k

6
4-cliques of type O3E3 whose sets

of edge lengths form a partition of the set {1, 2, 3, . . . , k}. By Proposition 3.6 (i),

each 4-clique of type O3E3 always contains exactly one 3-clique subgraphs of type

E3. Hence, we obtain k

6
3-cliques of type E3 whose sets of edge lengths form a

partition of the set {2, 4, 6, . . . , k}. However, this contradicts (i).

The next theorem is the key to solve the Pure Difference Tuple Problem of

order k = 12, 18

Theorem 3.10. If k = 12, 18, then there is no PDT(k) which contains k

6
pure

difference 6-tuples.

Proof. Suppose that the statement is false when k = 12. Then, there is a set of

base blocks B12 containing two 4-cliques whose sets of edge lengths form a partition

of {1, 2, 3, . . . , 12}.

According to our classification of 4-cliques described in Remark 3.5, there are

only three types of 4-cliques, namely O3E3, O4E2 and E6.

We assume that Bk contains p, q and r 4-cliques of type O3E3, O4E2 and E6,

respectively. Hence, p+ q + r = 2.

Since the set {1, 2, 3, . . . , 12} contains 6 odd integers and 6 even integers, we

obtain the equation 3p+ 4q = 6 = 3p+ 2q + 6r. Thus, q = 3r.
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Therefore, we have 2 = p + q + r = p + 4r which forces r = 0 = q and hence,

p = 2. Consequently, we must have two 4-cliques of type O3E3 whose sets of edge

lengths form a partition of {1, 2, 3, . . . , 12}, which contradicts Lemma 3.9 (ii).

We can obtain the result for the case k = 18 by the similar argument.

Theorem 3.10 implies that when k = 12, 18, any PDT(k) contains at least k

6
+1

elements. Therefore, if we can find a partition of the set {1, 2, 3, . . . , k} into k

6
− 1

pure difference 6-tuples and 2 pure difference 3-tuples, then such a partition has

to be a PDT(k). Finally, we obtain a PDT(12) and a PDT(18) as shown below.

Case k = 12

We have

PDT(12) =
{
(1, 8, 3, 9, 11, 12), (2, 5, 7), (4, 6, 10)

}
which yields the corresponding set of base blocks

B12 =
{
K4{0, 1, 9, 12}, K3{0, 2, 7}, K3{0, 4, 10}

}
as shown in Figure 3.11.

Figure 3.11: The base blocks in B12

Therefore, we have

C12(n) =
{
K4{i, i+ 1, i+ 9, i+ 12}, K3{i, i+ 2, i+ 7},

K3{i, i+ 4, i+ 10} : 0 ≤ i ≤ n− 1
}
.

Case k = 18

We have

PDT(18) =
{
(1, 6, 5, 7, 11, 12), (2, 13, 3, 15, 16, 18), (4, 10, 14), (8, 9, 17)

}
which yields the corresponding set of base blocks
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B18 =
{
K4{0, 1, 7, 12}, K4{0, 2, 15, 18}, K3{0, 4, 14}, K3{0, 8, 17}

}
as shown in Figure 3.12.

Figure 3.12: The base blocks in B18

Therefore, we have

C18(n) =
{
K4{i, i+ 1, i+ 7, i+ 12}, K4{i, i+ 2, i+ 15, i+ 18},

K3{i, i+ 4, i+ 14}, K3{i, i+ 8, i+ 17} : 0 ≤ i ≤ n− 1
}
.

3.3.3 PDT(k) and Ck(n) for k = 13, 14, 19, 20

According to Subsection 3.3.1, a solution PDT(k) for each of the cases k = 3, 6

or 9 yields a solution PDT(k + 1) and a PDT(k + 2). However, a PDT(13) and

PDT(14) cannot be obtained from a PDT(12). Similarly, PDT(19) and PDT(20)
cannot be obtained from a PDT(18). On the other hand, a PDT(13) and a PDT(19)
can yield a PDT(14) and a PDT(20), respectively.

Case k = 13, 14

We have

PDT(13) = {(3, 1, 8, 4, 9, 12), (2, 5, 6, 7, 11, 13), {10}}

which yields the corresponding set of base blocks

B13 = {K4{0, 3, 4, 12}, K4{0, 2, 7, 13}, K2{0, 10}}.

Therefore, we have

C13(n) = {K4{i, i+ 3, i+ 4, i+ 12}, K4{i, i+ 2, i+ 7, i+ 13},

K2{i, i+ 10} | 0 ≤ i ≤ n− 1}.

Using PDT(13), we obtain

PDT(14) = {(3, 1, 8, 4, 9, 12), (2, 5, 6, 7, 11, 13), {10}, {14}}.
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Figure 3.13: The base blocks corresponding to elements in PDT(14)

Therefore, we have

C14(n) = {K4{i, i+ 3, i+ 4, i+ 12}, K4{i, i+ 2, i+ 7, i+ 13},

K2{i, i+ 10}, K2{i, i+ 14} | 0 ≤ i ≤ n− 1}.

Case k = 19, 20

We have

PDT(19) =
{
(1, 7, 10, 8, 17, 18), (2, 4, 9, 6, 13, 15), (3, 11, 5, 14, 16, 19), {12}

}
which yields the corresponding set of base blocks

B19 =
{
K4{0, 1, 8, 18}, K4{0, 2, 6, 15}, K4{0, 3, 14, 19}, K2{0, 12}

}
.

Therefore, we have

C19(n) =
{
K4{i, i+ 1, i+ 8, i+ 18}, K4{i, i+ 2, i+ 6, i+ 15},

K4{i, i+ 3, i+ 14, i+ 19}, K2{i, i+ 12} : 0 ≤ i ≤ n− 1
}
.

Using PDT(20), we obtain

PDT(20) =
{
(1, 7, 10, 8, 17, 18), (2, 4, 9, 6, 13, 15), (3, 11, 5, 14, 16, 19), {12}, {20}

}
.

Figure 3.14: The base blocks corresponding to elements in PDT(20)

Therefore, we have

C20(n) =
{
K4{i, i+ 1, i+ 8, i+ 18}, K4{i, i+ 2, i+ 6, i+ 15},

K4{i, i+ 3, i+ 14, i+ 19}, K2{i, i+ 12}, K2{i, i+ 20} : 0 ≤ i ≤ n− 1
}
.
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3.3.4 PDT(k) and Ck(n) for k = 15, 16, 17, 21, 22, 23

Similarly, we determine a PDT(k) when k = 15, 21, which will consequently

yield a PDT(k+1) and PDT(k+2). Note that a solution PDT(k) when k = 15, 21

contains
⌊
k

6

⌋
pure difference 6-tuples and one pure difference 3-tuple.

Case k = 15, 16, 17

We have

PDT(15) =
{
(5, 1, 8, 6, 9, 14), (2, 10, 3, 12, 13, 15), (4, 7, 11)

}
which yields the corresponding set of base blocks

B15 =
{
K4{0, 5, 6, 14}, K4{0, 2, 12, 15}, K3{0, 4, 11}

}
.

Therefore, we have

C15(n) =
{
K4{i, i+ 5, i+ 6, i+ 14}, K4{i, i+ 2, i+ 12, i+ 15},

K3{i, i+ 4, i+ 11} : 0 ≤ i ≤ n− 1
}
.

Using PDT(15), we obtain

PDT(16) =
{
(5, 1, 8, 6, 9, 14), (2, 10, 3, 12, 13, 15), (4, 7, 11), {16}

}
and

PDT(17) =
{
(5, 1, 8, 6, 9, 14), (2, 10, 3, 12, 13, 15), (4, 7, 11), {16}, {17}

}
.

Figure 3.15: The base blocks corresponding to elements in PDT(17)

Therefore, we have

C16(n) =
{
K4{i, i+ 5, i+ 6, i+ 14}, K4{i, i+ 2, i+ 12, i+ 15},

K3{i, i+ 4, i+ 11}, K2{i, i+ 16} : 0 ≤ i ≤ n− 1
}

and

C17(n) =
{
K4{i, i+ 5, i+ 6, i+ 14}, K4{i, i+ 2, i+ 12, i+ 15},

K3{i, i+ 4, i+ 11}, K2{i, i+ 16}, K2{i, i+ 17} : 0 ≤ i ≤ n− 1
}
.
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Case k = 21, 22, 23

We have

PDT(21) =
{
(1, 13, 6, 14, 19, 20), (3, 8, 10, 11, 18, 21), (4, 5, 7, 9, 12, 16),

(2, 15, 17)
}

which yields the corresponding set of base blocks

B21 =
{
K4{0, 1, 14, 20}, K4{0, 3, 11, 21}, K4{0, 4, 9, 16}, K3{0, 2, 17}

}
.

Therefore, we have

C21(n) =
{
K4{i, i+ 1, i+ 14, i+ 20}, K4{i, i+ 3, i+ 11, i+ 21},

K4{i, i+ 4, i+ 9, i+ 16}, K3{i, i+ 2, i+ 17} : 0 ≤ i ≤ n− 1
}
.

Using PDT(21), we obtain

PDT(22) =
{
(1, 13, 6, 14, 19, 20), (3, 8, 10, 11, 18, 21), (4, 5, 7, 9, 12, 16),

(2, 15, 17), {22}
}

and

PDT(23) =
{
(1, 13, 6, 14, 19, 20), (3, 8, 10, 11, 18, 21), (4, 5, 7, 9, 12, 16),

(2, 15, 17), {22}, {23}
}
.

Figure 3.16: The base blocks corresponding to elements in PDT(23)

Therefore, we have

C22(n) =
{
K4{i, i+ 1, i+ 14, i+ 20}, K4{i, i+ 3, i+ 11, i+ 21},

K4{i, i+ 4, i+ 9, i+ 16}, K3{i, i+ 2, i+ 17},

K2{i, i+ 22} : 0 ≤ i ≤ n− 1
}

and

C23(n) =
{
K4{i, i+ 1, i+ 14, i+ 20}, K4{i, i+ 3, i+ 11, i+ 21},

K4{i, i+ 4, i+ 9, i+ 16}, K3{i, i+ 2, i+ 17},

K2{i, i+ 22}, K2{i, i+ 23} : 0 ≤ i ≤ n− 1
}
.



33

3.3.5 PDT(k) and Ck(n) for k = 24, 25, 26

In this subsection, we determine a PDT(24). In contrast to the cases when

k = 12, 18, we show that it is possible to find a PDT(24) containing 4 pure difference

6-tuples. Consequently, a PDT(25) and a PDT(26) immediately follow.

Case k = 24, 25, 26

We have

PDT(24) =
{
(1, 16, 6, 17, 22, 23), (2, 12, 7, 14, 19, 21),

(3, 5, 10, 8, 15, 18), (4, 9, 11, 13, 20, 24)
}

which yields the corresponding set of base blocks

B24 =
{
K4{0, 1, 17, 23}, K4{0, 2, 14, 21}, K4{0, 3, 8, 18}, K4{0, 4, 13, 24}

}
.

Figure 3.17: The base blocks corresponding to elements in PDT(26)

Therefore, we have

C24(n) =
{
K4{i, i+ 1, i+ 17, i+ 23}, K4{i, i+ 2, i+ 14, i+ 21},

K4{i, i+ 3, i+ 8, i+ 18}, K4{i, i+ 4, i+ 13, i+ 24} : 0 ≤ i ≤ n− 1
}
.

Using PDT(24), we obtain

PDT(25) =
{
(1, 16, 6, 17, 22, 23), (2, 12, 7, 14, 19, 21),

(3, 5, 10, 8, 15, 18), (4, 9, 11, 13, 20, 24), {25}
}

and

PDT(26) =
{
(1, 16, 6, 17, 22, 23), (2, 12, 7, 14, 19, 21),

(3, 5, 10, 8, 15, 18), (4, 9, 11, 13, 20, 24), {25}, {26}
}
.
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Therefore, we have

C25(n) =
{
K4{i, i+ 1, i+ 17, i+ 23}, K4{i, i+ 2, i+ 14, i+ 21},

K4{i, i+ 3, i+ 8, i+ 18}, K4{i, i+ 4, i+ 13, i+ 24},

K2{i, i+ 25} : 0 ≤ i ≤ n− 1
}

and

C26(n) =
{
K4{i, i+ 1, i+ 17, i+ 23}, K4{i, i+ 2, i+ 14, i+ 21},

K4{i, i+ 3, i+ 8, i+ 18}, K4{i, i+ 4, i+ 13, i+ 24},

K2{i, i+ 25}, K2{i, i+ 26} : 0 ≤ i ≤ n− 1
}
.



CHAPTER IV

CONCLUSION AND OPEN PROBLEMS

4.1 Conclusion

1) Given natural numbers k and n ≥ 3 such that k <
⌊n
2

⌋
, we recount what we

have done so far. First, we introduce Pure Difference Tuple Problem and use it to

construct an optimal cyclic clique decomposition of k-power of an n-cycle Ck
n into

cliques of order at most 4. Secondly, the desired decomposition can be obtained

by the set of the base blocks Bk corresponding to a solution to Pure Difference

Tuple Problem, PDT(k). Therefore, it suffices to determine a PDT(k).
For each natural number 3 ≤ k ≤ 26, a solution PDT(k) where k ≡ 0 (mod 3)

and k ̸= 12, 18 yields PDT(k + 1) and PDT(k + 2). In particular, PDT(k + 1)

is obtained by adding a singleton {k + 1} to PDT(k). Similarly, PDT(k + 2) is

obtained by adding a singleton {k + 2} to PDT(k + 1). Hence, |PDT(k + 1)| =

|PDT(k)| + 1. On the other hand, we found that |PDT(12)| = |PDT(13)| and

|PDT(18)| = |PDT(19)|
Table 4.1 lists a solution PDT(k) to Pure Difference Tuple Problem for 3 ≤

k ≤ 26.

k pure difference pure difference singleton(s)

6-tuple(s) 3-tuple(s)

3 - (1, 2, 3) -

4 - (1, 2, 3) {4}

5 - (1, 2, 3) {4}, {5}
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k pure difference pure difference singleton(s)

6-tuple(s) 3-tuple(s)

6 (1, 3, 2, 4, 5, 6) - -

7 (1, 3, 2, 4, 5, 6) - {7}

8 (1, 3, 2, 4, 5, 6) - {7}, {8}

9 (3, 2, 4, 5, 6, 9) (1, 7, 8) -

10 (3, 2, 4, 5, 6, 9) (1, 7, 8) {10}

11 (3, 2, 4, 5, 6, 9) (1, 7, 8) {10}, {11}

12 (1, 8, 3, 9, 11, 12) (2, 5, 7), (4, 6, 10) -

13 (3, 1, 8, 4, 9, 12), (2, 5, 6, 7, 11, 13) - {10}

14 (3, 1, 8, 4, 9, 12), (2, 5, 6, 7, 11, 13) - {10}, {14}

15 (5, 1, 8, 6, 9, 14), (2, 10, 3, 12, 13, 15) (4, 7, 11) -

16 (5, 1, 8, 6, 9, 14), (2, 10, 3, 12, 13, 15) (4, 7, 11) {16}

17 (5, 1, 8, 6, 9, 14), (2, 10, 3, 12, 13, 15) (4, 7, 11) {16}, {17}

18 (1, 6, 5, 7, 11, 12), (2, 13, 3, 15, 16, 18) (4, 10, 14), (8, 9, 17) -

19 (1, 7, 10, 8, 17, 18), (2, 4, 9, 6, 13, 15), - {12}

(3, 11, 5, 14, 16, 19)

20 (1, 7, 10, 8, 17, 18), (2, 4, 9, 6, 13, 15), - {12}, {20}

(3, 11, 5, 14, 16, 19)

21 (1, 13, 6, 14, 19, 20), (3, 8, 10, 11, 18, 21), (2, 15, 17) -

(4, 5, 7, 9, 12, 16)

22 (1, 13, 6, 14, 19, 20), (3, 8, 10, 11, 18, 21), (2, 15, 17) {22}

(4, 5, 7, 9, 12, 16)

23 (1, 13, 6, 14, 19, 20), (3, 8, 10, 11, 18, 21), (2, 15, 17) {22}, {23}

(4, 5, 7, 9, 12, 16)
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k pure difference pure difference singleton(s)

6-tuple(s) 3-tuple(s)

24 (1, 16, 6, 17, 22, 23), (2, 12, 7, 14, 19, 21), - -

(3, 5, 10, 8, 15, 18), (4, 9, 11, 13, 20, 24)

25 (1, 16, 6, 17, 22, 23), (2, 12, 7, 14, 19, 21), - {25}

(3, 5, 10, 8, 15, 18), (4, 9, 11, 13, 20, 24)

26 (1, 16, 6, 17, 22, 23), (2, 12, 7, 14, 19, 21), - {25}, {26}

(3, 5, 10, 8, 15, 18), (4, 9, 11, 13, 20, 24)

Table 4.1: A solution PDT(k) for 3 ≤ k ≤ 26

Let 3 ≤ k ≤ 26 and k ̸= 12, 18. Note that |PDT(k)| depends on the largest

possible number of 6-tuples which can be obtained from {1, 2, 3, . . . , k}. Hence, we

have that

|PDT(k)| =
⌊
k

6

⌋
+

⌊
k − 6

⌊
k
6

⌋
3

⌋
+

(
k − 6

⌊
k

6

⌋
− 3

⌊
k − 6

⌊
k
6

⌋
3

⌋)
.

If we write k = 3s+ t where 0 ≤ t ≤ 2, then

|PDT(3s+ t)| =
⌈s
2

⌉
+ t when 3s+ t ̸= 12, 18.

Therefore, when n > 3k, the size of an optimal cyclic clique decomposition

Ck(n) of Ck
n into cliques of order at most 4 is

|C3s+t(n)| = n
⌈s
2

⌉
+ nt.

Note further that nt is the number of 2-cliques in C3s+t(n) when 3s+ t ̸= 12, 18.

Thus if t = 0 (k is divisible by 3), then C3s+t(n) will be composed of all 4-cliques

and 3-cliques.

2) It is important to point out that an optimal cyclic clique decomposition

does not necessarily give the minimum size among cyclic clique decomposition of

Ck
n into cliques of order at most 4. Example 4.1 illustrates this situation.

Example 4.1. We give two different cyclic clique decompositions of C5
16 into

cliques of order at most 4.



38

(i) We use a PDT(5) to construct a cyclic clique decomposition of C5
16. First,

we have PDT(5) =
{
(1, 2, 3), {4}, {5}

}
. Consequently, the set of corresponding

base blocks is B5 =
{
K3{0, 1, 3}, K2{0, 4}, K2{0, 5}

}
. By clicking each of these

base blocks for 15 times, we obtain that

C1 =
{
K3{i, i+ 1, i+ 3}, K2{i, i+ 4}, K2{i, i+ 5} : 0 ≤ i ≤ 15

}
is a cyclic clique decomposition of C5

16 into cliques of order at most 4, where

|C1| = 48. Observe that the above decomposition is optimal.

(ii) Consider the set of base block B =
{
K4{0, 1, 2, 5}, K3{1, 3, 6}, K2{0, 4}

}
.

Figure 4.1: Applying the isomorphism i → i+ 2 on each base block in B

For each i ∈ {1, 2, 3, 4, 5}, there are totally 2 edges of length i occurring in base

blocks in B. By applying the isomorphism i → i+2 on V (C5
16) to each base block



39

of B for 7 times as shown in Figure 4.1, we obtain that

C2 =
{
K4{i, i+ 1, i+ 2, i+ 5}, K3{i+ 1, i+ 3, i+ 6},

K2{i, i+ 4} : i ∈ {0, 2, 4, . . . , 14}
}

is a cyclic clique decomposition of C5
16 into cliques of order at most 4, where

|C2| = 24.

Note that the construction in (ii) is not optimal but it yields a decomposition

which has less number of cliques than the construction in (i). �

3) We have investigated the construction of cyclic clique decomposition of Ck
n

when k <
⌊n
2

⌋
. However, we would discuss the case when k ≥

⌊n
2

⌋
. Recall that

the set of edge lengths of Kn is
{
1, 2, 3, . . . ,

⌊n
2

⌋}
where Ck

n = Kn. We can then

apply our construction to obtain a cyclic clique decomposition of Kn as follows.

When n is odd, Remark 3.1 is still valid for Kn where k =
⌊n
2

⌋
. Therefore,

we can construct a cyclic clique decomposition of Kn into cliques of order at most

4 by using PDT
(⌊n

2

⌋)
= PDT

(
n− 1

2

)
. However, this decomposition is not

guaranteed to be optimal.

When n is even, Kn has n edges of each length i ∈
{
1, 2, 3, . . . ,

n

2
− 1
}

and has
n

2
edges joining antipodal vertices of length n

2
. Thus,

C ∪ {K2{i, i+
n

2
} : 0 ≤ i ≤ n

2
− 1}

is a cyclic clique decomposition of Kn into cliques of order at most 4, where C is

a decomposition obtained from PDT
(n
2
− 1
)

. Again, this decomposition is not

guaranteed to be optimal.

4.2 Open Problems

1) We mentioned that a PDT(k) might not be unique, see Example 3.3 (ii).

However, to determine a solution PDT(k) can be very complicated especially when

k is large. Therefore, the problem to find PDT(k) still remains open for all natural

numbers k ≥ 27.
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Although our work reveals that |PDT(3s+ t)| ̸=
⌈s
2

⌉
+ t when 3s+ t = 12, 18,

we believe that

|PDT(3s+ t)| =
⌈s
2

⌉
+ t for all 3s+ t ≥ 27 and 0 ≤ t ≤ 2.

Furthermore, we think PDT(3s + t) should contain
⌊
k

6

⌋
pure difference 6-tuples,⌊

k − 6
⌊
k
6

⌋
3

⌋
pure difference 3-tuples and k − 6

⌊
k

6

⌋
− 3

⌊
k − 6

⌊
k
6

⌋
3

⌋
singletons.

2) If n > 3k, then our method provides an optimal cyclic clique decomposition

of Ck
n into cliques of order at most 4. However, whether a cyclic clique decomposi-

tion of Ck
n into cliques of order at most 4 for natural numbers n for 2k+2 ≤ n ≤ 3k

is optimal still remains open.
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