POLYMER-LAYER SILICATE NANOCOMPOSITES IN SOLUTION: LINEAR PEO AND HIGHLY BRANCHED DENDRIMER FOR ORGANIC WASTEWATER TREATMENT

Ms. Korawan Ratanarat

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2003 ISBN 974-17-2326-1

128376432.

Thesis Title:	Polymer-Layer Silicate Nanocomposites in Solution: Linear
	PEO and Highly Branched Dendrimer
	for Organic Wastewater Treatment
By:	Korawan Ratanarat
Program:	Polymer Science
Thesis Advisors:	Asst. Prof. Rathanawan Magaraphan
	Dr. Manit Nithitanakul
	Assoc. Prof. David C. Martin

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

> K. Bunyalunt. College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

Kathanaman Mayongon-

(Asst. Prof. Rathanawan Magaraphan)

(Dr. Manit Nithitanakul)

(Assoc. Prof. David C. Martin)

arkasın

(Assoc. Prof. Sujitra Wongkasemjit)

Ratana Rujnowant

(Asst. Prof. Ratana Rujiravanit)

ABSTRACT

4472008063 : POLYMER SCIENCE PROGRAM Korawan Ratanarat: Polymer-Layer Silicate Nanocomposites in Solution: Linear PEO and Highly Branched Dendrimer for Organic Wastewater Treatment Thesis Advisors: Asst. Prof. Rathanawan Magaraphan, Dr. Manit Nithitanakul and Assoc. Prof. David C. Martin 67 pp. ISBN 974-17-2326-1
Keywords : Dendrimer/ Poly(amidoamine)/ Clay/ Organoclay/ Montmorillonite/

Poly(ethylene oxide)/ Adsorption/ Wastewater

Based on the concept of organic matter adsorption from aqueous systems, highly active site species were required for good adsorption of organic waste in water. Poly(amidoamine) (PAMAM) dendrimer, the highly-branched structure that emanates from a central core, was used in cooperation with montmorillonite (MMT), a smectite clay of high surface area in nanocomposite form which acts as an effective adsorbent in organic wastewater treatment applications. Due to the inorganic character of MMT, the organic adsorption ability of MMT was improved by replacing the exchangeable cations via an ion-exchange reaction with octadecylamine and di(hydrogenated tallow)dimethylammonium chloride. These modifying agents differ in their chemical structures. The PAMAM/MMT nanocomposites (prepared by solution technique) were compared with poly(ethylene oxide)/MMTs, the nanocomposites with linear polymer molecules (prepared by melt technique) for organic waste adsorption. All nanocomposites were characterized using WAXS, TGA and FT-IR. The viscosity of the nanocomposites in aqueous solution was studied. The ability to remove organic contaminants from aqueous solution, based on different molecular structures of organically modified clays (PAMAM/MMTs and linear PEO/MMT nanocomposites), were evaluated using UV/VIS spectroscopy.

บทคัดย่อ

กรวัลถิ์ รัตนะรัต: การกำจัดสารอินทรีย์ในน้ำเสียโดยใช้พอลิเอทิลีนออกไซด์และเดน ใดรเมอร์สำหรับพอลิเมอร์-เลเยอร์ซิลิเกตนาโนคอมพอสิทในสารละลาย (Polymer-Layer Silicate Nanocomposites in Solution: Linear PEO and Highly Branched Dendrimer for Organic Wastewater Treatment) อ. ที่ปรึกษา: ผศ.คร. รัตนวรรณ มกรพันธ์, คร. มานิตย์ นิธิธนากุล และ รศ.คร. เควิค ซี มาร์ติน 67 หน้า ISBN 974-17-2326-1

สิ่งสำคัญสำหรับสารที่ใช้ดูดซับสารอินทรีย์ในกระบวนการบำบัดน้ำเสียคือการมีหมู่ที่ ว่องไวในการทำปฏิกิริยามาก พอลิอะมิโดแอมีนซึ่งเป็นพอลิเมอร์ที่มีกิ่งสาขาแผ่ขยายออกจาก สูนย์กลาง (เดนไดรเมอร์) จึงถูกนำมาใช้ร่วมกับมอนด์มอริลโลไนด์ ซึ่งเป็นดินกลุ่มซีแมกไท้ที่มี พื้นที่ผิวสูงในรูปนาโนคอมพอสิทสำหรับเป็นสารดูดซับสารอินทรีย์ในน้ำเสียที่มีประสิทธิภาพ เนื่องจากความเป็นสารอนินทรีย์ของมอนด์มอริลโลไนด์ จึงต้องมีการปรับปรุงความสามารถใน การดูดซับสารอินทรีย์โดยการแลกเปลี่ยนประจุบวกของสารอนินทรีย์ที่มีอยู่ในโครงสร้างของ มอนด์มอริลโลไนด์ด้วยสารประกอบพวกแอมีนได้แก่ octadecylamine และ di(hydrogenated tallow) dimethylammonium chloride การศึกษาครั้งนี้ได้ทำการเปรียบเทียบนาโนคอมพอสิท ของพอลิอะมิโดแอมีนกับดินซึ่งเตรียมโดยวิธีสารละลายกับนาโนคอมพอสิทของพอลิเอทิลีนออก ไซด์ซึ่งเป็นพอลิเมอร์ที่มีโครงสร้างเป็นเส้นกับดินซึ่งเตรียมโดยวิธีหลอมเหลว โดยใช้ WAXS, TGA และ FT-IR และศึกษาลักษณะของนาโนคอมพอสิทในน้ำโดยดูจากความหนืดของสาร ละลาย นอกจากนี้ยังศึกษาความสามารถในการดูดซับสารอินทรีย์ของนาโนคอมพอสิทที่ใช้ดินที่ ถูกปรับปรุงสภาพและพอลิเมอร์ต่างชนิดกัน โดยใช้ UV/VIS spectroscopy

ACKNOWLEDGEMENTS

This thesis work is partially funded by Postgraduate Education and Research Programs in Petroleum and Petrochemical Technology (PPT Consortium). I would like to thank the Petroleum and Petrochemical College, Chulalongkorn University, where I have gained my knowledge and enriched my skill in polymer science. I would also like to give my appreciation to the Unilever Thai Holdings Co., Ltd. for kindly support of the chemical used in this thesis work.

I would like to express grateful thank to Asst. Prof. Rathanawan Magaraphan and Dr. Manit Nithitanakul, my advisors, who gave me many useful suggestions and a lot of motivation.

I also appreciate the PPC staffs and friends, who gave me a lot of help with willingness. Finally, I would like to thank my parents, who gave me much mutual encouragement and take care of me with love.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	x
List of Figures	xii
Abbreviations	xv

PAGE

CHAPTER

I	INTRODUCTION		1	
	1.1 Theoretical Background		2	
		1.1.1	Dendrimer	2
		1.1.2	Clay	5
		1.1.3	Polymer-Clay Nanoconposite	7
		1.1.4	Symplex	9
		1.1.5	Adsorption Process	10
Π	LITERATURE SURVEY			13
	2.1	Dendr	rimer	13
	2.2	Polym	ner-Clay Nanocomposite	14
	2.3	Organ	ic Impurities Adsorption from Water	16
III	EX	PERIN	MENTAL	17
	3.1	Mater	ial	17
	3.2	Equip	ment	17
		3.2.1	Atomic Adsorption Spectrometer (AAS)	17
		3.2.2	Fourier-Transform Infrared Spectrometer	
			(FT-IR)	18

IV

3.2.3	Thermogravimetric Analyzer (TGA)	18
3.2.4	Wide-Angle X-ray Diffractometer (WAXS)	18
3.2.5	Capillary Viscometer	18
3.2.6	Dynamic Light Scattering	19
3.2.7	UV/VIS Spectrometer	19
3.2.8	Transmission Electron Microscope (TEM)	19
3.3 Metho	odology	20
3.3.1	Preperation of Organically Modified	
	Montmorillonite	20
3.3.2	Preparation of PEO/MMT Nanocomposites	20
3.3.2	Preparation of PAMAM/MMT	
	Nanocomposites	20
3.3.4	Adsorption Test	20
RESULTS	S AND DISCUSSION	22
4.1 Chara	cterization of Organically Modified MMT	22
4.1.1	AAS	22
4.1.2	FT-IR	22
4.1.3	XRD	23
4.1.4	TGA	25
4.2 Chara	cterization of PEO/MMT Nanocomposites	26
4.2.1	Characterization of PEO/Na-MMT	
	Nanocomposites	26
4.2.2	Characterization of PEO/OC-MMT	
	Nanocomposites	27
4.2.3	Characterization of PEO/OH-MMT	
	Nanocomposites	28
4.3 Physic	cal Behavior of PEO/MMT Nanocomposites	
in Aq	ueous Solution	29

CHAPTER

V

	4.3.1	PEO/Na-MMT Nanocomposites in	
		Aqueous Solution	29
	4.3.2	PEO/OC-MMT Nanocomposites in	
		Aqueous Solution	32
	4.3.3	PEO/OH-MMT Nanocomposites in	
		Aqueous Solution	34
4.4	Chara	cterization of PAMAM/MMT	
	Nanoc	composites	35
	4.4.1	XRD	35
	4.4.2	FT-IR	36
4.5	Adsor	ption Test	38
	4.5.1	PEO/MMT Nanocomposites	38
	4.5.2	PAMAM/MMT Nanocomposites	41
CC RE	DNCLU	SIONS NCES	45 46
AP	PEND	ICES	49
Ар	pendix	A Calculation of Na ⁺ -exchanged	
		percentage by atomic adsorption	
		spectroscopy	49
Ар	pendix	B Viscosity and particle size measurement	
		data of PEO/MMT nanocomposites	54
Ар	pendix	C UV standard calibration curve for	
		adsorption test	60
Ар	pendix	D Mass balance equation for calculation	
		of adsorption test	62
Ар	pendix	E Adsorption data of pure Na-MMT,	
		OC-MMT and OH-MMT	63

CHAPTER

Appendix F	Adsorption data of PEO/Na-MMT,	
	PEO/OC-MMT and PEO/OH-MMT	
	nanocomposites	64
Appendix G	Adsorption data of PAMAM/Na-MMT,	
	PAMAM/OC-MMT and PAMAM/OH-	
	MMT nanocomposites at 10 wt% MMTs	66

CURRICULUM VITAE

67

LIST OF TABLES

TABLE

3.1	UV maximum wavelength (λ_{max}) of adsorbate studied	21
4.1	Na ⁺ exchanged percentage using two types of modifying	
	agents	22
4.2	Basal spacings of Na-MMT and organically modified	
	MMTs	24
Al	Light wavelengths of sodium lamp and their intensities	49
A2	Relationship between concentration and absorbance of	
	standard sodium solution for OC-MMT	50
A3	Na^+ concentration of the supernatant of OC-MMT	51
A4	Relationship between concentration and absorbance of	
	standard sodium solution for OH-MMT	52
A5	Na^+ concentration of the supernatant of OH-MMT	53
B1	Specific viscosity data of PEO/Na-MMT nanocomposites	
	in aqueous solution as a function of Na-MMT loading	54
B2	Specific viscosity data of 0.1g/100ml PEO/Na-MMT	
	nanocomposites in aqueous solution in the presence of	
	NaCl as a function of Na-MMT loading	55
B3	Particle size data obtained from dynamic light scattering of	
	PEO/Na-MMT nanocomposites in aqueous solution as a	
	function of Na-MMT loading	56
B4	Particle size data obtained from dynamic light scattering of	
	0.1g/100ml PEO/Na-MMT nanocomposites in aqueous	
	solution in the presence of NaCl as a function of Na-MMT	
	loading	57
B5	Specific viscosity data of PEO/OC-MMT nanocomposites	
	in aqueous solution as a function of OC-MMT loading	58
B6	Specific viscosity data of 0.1g/100ml PEO/OC-MMT	
	nanocomposites in aqueous solution in the presence of	

TABLE

	NaCl as a function of OC-MMT loading	58
B 7	Specific viscosity data of PEO/OH-MMT nanocomposites	
	in aqueous solution as a function of OH-MMT loading	59
B 8	Specific viscosity data of 0.1g/100ml PEO/OH-MMT	
	nanocomposites in aqueous solution in the presence of	
	NaCl as a function of OH-MMT loading	59
C1	Relationship between concentration and absorbance of	
	standard toluene in n-hexane solution	60
C2	Relationship between concentration and absorbance of	
	standard xylene in cyclohexane solution	61
E1	Toluene adsorption data of pure Na-MMT, OC-MMT	
	and OH-MMT	63
E2	Xylene adsorption data of pure Na-MMT, OC-MMT	
	and OH-MMT	63
F1	Toluene adsorption data of PEO/Na-MMT, PEO/OC-MMT	
	and PEO/OH-MMT nanocomposites	64
F2	Xylene adsorption data of PEO/Na-MMT, PEO/OC-MMT	
	and PEO/OH-MMT nanocomposites	65
Gl	Toluene adsorption data of PAMAM/Na-MMT, PAMAM/	
	OC-MMT and PAMAM/OH-MMT nanocomposites	
	at 10 wt% MMTs	66
G2	Xylene adsorption data of PAMAM/Na-MMT, PAMAM/	
	OC-MMT and PAMAM/OH-MMT nanocomposites	
	at 10 wt% MMTs	66

LIST OF FIGURES

FIGURE

1.1	The dendritic structure	3
1.2	Components of a dendrimer, poly(amidoamine)	3
1.3	Montmorillonite clay structure	6
1.4	Schematic illustration of the three possible types of	
	polymer-clay nanocomposite	8
1.5	Principle of symplex formation. (a) Neutralization of a	
	polybase with a polyacid; (b) interaction between the	
	halide of a polybase and the alkali salt of a polyacid; (c)	
	matrix polymerization of an anionic monomer preordered	
	along a polycation. A^{-} = anionic group; C^{+} = cationic	
	group; B = free base group	9
3.1	Chemical structure of modifying agents	17
4.1	FT-IR spectra of Na-MMT, OC and OC-MMT	23
4.2	FT-IR spectra of Na-MMT, OH and OH-MMT	23
4.3	XRD spectra of Na-MMT, OC-MMT and OH-MMT	24
4.4	TGA thermograms of Na-MMT, OC, OC-MMT, OH	
	and OH-MMT	25
4.5	XRD spectra of PEO/Na-MMT nanocomposites with	
	various amount of Na-MMT	26
4.6	XRD spectra of PEO/OC-MMT nanocomposites with	
	various amount of OC-MMT	27
4.7	TEM micrograph of PEO/OC-MMT nanocomposite	
	containing 60 wt% OC-MMT	28
4.8	XRD spectra of PEO/OH-MMT nanocomposites with	
	various amount of OH-MMT	29
4.9	Particle size of PEO/Na-MMT nanocomposites in salt-free	
	aqueous solution	30
4.10	Particle size of 0.10 g/100ml PEO/Na-MMT	

FIGURE

	nanocomposites in aqueous solution in the presence of	
	NaCl	31
4.11	Specific viscosity of PEO/Na-MMT nanocomposites in	
	aqueous solution at various concentration	32
4.12	Specific viscosity of 0.10g/100ml PEO/Na-MMT	
	nanocomposites in aqueous solution in the presence of	
	NaCl	32
4.13	Specific viscosity of PEO/OC-MMT nanocomposites in	
	aqueous solution at various concentration	33
4.14	Specific viscosity of 0.10 g/100ml PEO/OC-MMT	
	nanocomposites in aqueous solution in the presence of	
	NaCl	34
4.15	Specific viscosity of PEO/OH-MMT nanocomposites in	
	aqueous solution at various concentration	34
4.16	Specific viscosity of 0.10 g/100ml PEO/OH-MMT	
	nanocomposites in aqueous solution in the presence of	
	NaCl	35
4.17	XRD spectra of PAMAM/Na-MMT, PAMAM/OC-MMT	
	PAMAM/OH-MMT nanocomposites containing 10 wt%	
	MMTs	36
4.18	FT-IR spectra of FT-IR spectra of Na-MMT, PAMAM and	
	PAMAM/Na-MMT nanocomposite	37
4.19	FT-IR spectra of OC-MMT, PAMAM and PAMAM/	
	OC-MMT nanocomposite	37
4.20	FT-IR spectra of OH-MMT, PAMAM and PAMAM/	
	OH-MMT nanocomposite	38
4.21	Amount of toluene adsorb onto nanocomposites at various	
	compositions (initial toluene concentration 86.7 mg/ml at	
	constant concentration of nanocomposite 0.1g/100ml)	39
4.22	Schematic illustration of hydrated Na ⁺ by water in PEO/	

	Na-MMT nanocomposite	39
4.23	Schematic illustration of bridging flocculation occurs in	
	polymer nanocomposite in the presence of high molecular	
	weight polymer	40
4.24	Amount of xylene adsorb onto nanocomposites at various	
	compositions (initial xylene concentration 86.0 mg/ml at	
	constant concentration of nanocomposite 0.1g/100ml)	41
4.25	Schematic illustration of toluene and xylene adsorption of	
	PEO/organoclay nanocomposites	41
4.26	Toluene and xylene adsorption of PAMAM/MMT	
	nanocomposites containing 10 wt% MMTs	42
4.27	Toluene adsorption of PEO/MMTs and PAMAM/MMT	
	nanocomposites containing 10 wt% MMTs	43
4.28	Xylene adsorption of PEO/MMTs and PAMAM/MMT	
	nanocomposites containing 10 wt% MMTs	44
A1	Calibration curve obtained from standard Na ⁺ solutions for	
	OC-MMT	50
A2	Calibration curve obtained from standard Na ⁺ solutions for	
	OH-MMT	52
Cl	Calibration curve of standard toluene in n-hexane solution	60
C2	Calibration curve of standard xylene in cyclohexane solution	61

ABBREVIATIONS

Meq	=	Milliequivalent
MMT	=	Montmorillonite
Na-MMT	=	Sodium montmorillonite
OC	=	Octadecylamine
OC-MMT	=	Octadecylamine modified montmorillonite
OH	=	Di(hydrogenated tallow)dimethylammonium chloride
OH-MMT	=	Di(hydrogenated tallow)dimethylammonium chloride
		modified montmorillonite
PAMAM	=	Poly(amidoamine)
PEO	=	Poly(ethylene oxide)