
MATHEMATICAL SOLVING METHOD
CHAPTER IV

A Theoretical breakthrough curve for adsorption of water vapor from 
natural gas onto a multi-layer adsorber was obtained by solving the set of 
mathematical equations. The calculation was based on an axial dispersion plug flow 
and Linear Driving Force (LDF) model. The method of lines (MOL) combined with 
the central finite difference was applied to express the partial differential equation 
(PDE) in terms of a series of ordinary differential equations (ODE). Then, the 
Runge-Kutta 4th order method was used to solve the finite difference equations using 
computer programming in FORTRAN language to obtain the breakthrough curve 
data and concentration profiles through the bed length.

4.1 Method of Lines (MOL)

The differential mass balance on the adsorption column is given by:
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In order to determine the variation of gas phase concentration with time or 
breakthrough curve, Eq.(4.1) could be rearranged to be:
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Then, the method of lines (MOL) was applied to convert a second order 
derivative and a first order derivative PDE presented in Eq.(4.1) into a set of ordinary 
differential equations by using the central finite difference method with the error of 
0(Az2) as the following:
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For a 2nd order derivative term, — 7& 2

= ^ r ( < w ~ K ,  + c , - J + 0 ( A z ’) (4.3)

For a 1st order derivative term, ~r~

where
i = step size number of axial direction, z ; and 
j = step size number of time, t.

In this model, the mass transfer can be described by Linear Driving Force 
(LDF) model. This model is based on the assumption that the uptake rate of water 
vapor by the adsorbent pellet is linearly proportional to a driving force. This driving 
force is defined as the difference between the equilibrium water concentration and 
the actual uptake on the particle (Brosillon e t a i ,  2001). The model expression can 
be written as

(4.5)

where q -  f ( c  1. .) represents the equilibrium adsorbed phase concentration, which
is t he a dsorption i sotherm e quations. In m odeling, t hese i sotherm e quations พ ere 
obtained by fitting the experimental data as shown in CHAPTER 5.

The Eq.(4.2) can be re-written into the general formula as follows:
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4.2 Boundary and Initial Conditions

The boundary and initial conditions for the adsorption in the column are

c(0,t) = c0 (4.7)
c(z,0)= 0 (4.8)
g(z,0) = 0 ; and (4.9)

pTq
j' I o II o (4.10)
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4.3 Numerical Solution for ODE

The Runge-Kutta 4th order method is the simplest technique used to solve
ODE in Eq.(4.6) in order to predict the water concentration in the gas phase leaving
from the adsorber with time. The explicit Runge-Kutta 4th formula for integrating 
the differential equations can be written as the following.

For concentration of adsorbed (water) in fluid phase;

c,, , . 1 = c u  + - 1  [K C \  11 + 2 X K C 2 , J  + 2 X  1 J  +  1' 1  ] (4.11)

where
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(4.13)
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For concentration of adsorbed in solid phase;

t j b v ,  + 2 * * ?2 „_ , + 2 x K q \ h  1 + / r « v , ]

where

^ 1 , J  = Y t

K q 2 u  = dq_
dt q , j Y K q l i ’j , q '’

f q , j ^ K q 3 .1 . , q]  1 ; and

^ 4,J = ^ K q A ‘J ’q l
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(4.17)

(4.18)

(4.19)

(4.20)

4.4 Other Correlations Relating to the Model

The axial dispersion coefficient (DL) which was the lumped parameter 
accounted for the effects of all mechanisms with contribute to axial mixing was 
calculated by using the expression given by Edwards and Richardson correlation.

D l
2vRr = Y\ 2vR : (4.21)

Pe„ 1 + 2 vR P  y

where y, =0.73, p  = 13.0 and P e o0 =2.0 are constant parameters.
The overall mass transfer coefficient (k) was estimated by using the 

correlation, which was defined by Seader and Henley in 1998 as the following: 1

1 Dp 1 Dp
k K  = 6k f  60D e ’ (4.22)
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where k f  is the mass transfer resistant of the adsorbate from the bulk fluid to the
surface of the particle, which is called mass transfer film coefficient. It was 
determined by Wakao-Funazkri correlation.
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The constant, D e in Eq.(4.22) is effective diffusivity, which can be obtained from the 
following equation:

J _ = 1 _ (  _1_ +  r
D e s  P y D k y

(4.24)

Here, โ  is tortuosity factor. For straight, randomly oriented, and cylindrical pores, it 
may be approximated as โ  = 3 and 4 for 4A zeolite and Silica gel, respectively 
(Yang, 1987). The intrapellet void fraction or porosity of adsorbent pellet, £p was 
estimated from a typical range of numbers shown in Encyclopedia of Chemical 
Technology. The value of £p for silica gel was 0.55 while for 4A zeolite was 0.48.

The molecular diffusion coeffient or bulk diffusion coefficient, D m was 
determined from Chapman-Enskog equation.

-3 rj,3/2D = 1 .8 6 x l0 “Jr
P^AB^L

(4.25)

Molecular diffusivity, also known as Maxwellian diffusion, is caused by collisions of 
molecules with other molecules.

The last diffusion coefficient related to mass transfer within a pore, is 
Knudsen diffusion coefficient which occurs when the molecule in the fluid collide 
with the pore wall.

D k 9 . 7  X 1 0 V p
(  T  r (4.26)
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Finally, the lumped parameter, the overall mass transfer coefficient (k), 
which accounts for all mass transfer resistant, can be obtained by using backward 
substitutions.

FORTRAN language was programmed to solve the set of ODE equations. 
The programming detail, which show the consequence of running loops, were 
reported in Appendix G.
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