CHAPTER I

THE DYNAMIC EQUATIONS

Before going into the actual object of this work concerning the L 0 1811
nonlinear d ynan icmodel it may be useful to recall some of theoretical background
underlying the theory to be developed. In this chapter we will first present the system of
governing equations in a precise form. We wiill then introduce some of the frequently

used approximations. The approximate systems have formed the basis for most of

attempts to account for the | [0 0 al circulation,

The Exact Equations

It is convenient to group the laws governing the atmosphere into two categories.
First there are the basic hydrodynamic and thermodynamic laws which apply to all or

large class of fluid systems. These include the laws of conservation of momentum,
mass and energy. These laws are expressed mathematically in Newton’s second law of
motion, the continuity equation and the thermodynamic energy equation, which state
that matter can neither be created nor destroyed 1 momentum can be altered only by a

force and the internal energy can be altered by the performance of work or the addition

or removal of heat. The ideal gas law also belongs in this category, although it is less

general than the other laws.

The remaining laws are the ones needed to express the forces and the heating in
terms of the current state of the atmosphere and its environment. This category includes
the laws governing the absorption, emission and transfer of infra-red radiation, by the

various atmospheric constituents, notably carbon dioxide, ozone and the various phase



of water. It includes the [a W 0 fturbulent viscosity anatinductivity, 1n principle these
lavws could perhaps be derived from the basic laws of hydrodynamics and thermo-
dynamics, but no one has succeeded iNn accomplishing this task. Finally, it includes the
laws governing the evaporation and condensation of water, and the conversion of cloud
droplets into raindrops and snow crystals. The list is by no means exhaustive.

The equations representing the basic hydrodynamic and thermodynamic laws

may be written as
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where [ is the position vector with respect to the Earth’s center,

V is the velocity relative to rotating Earth,

P is the air pressure,

T is the air temperature,

a is the specific volume of air (a = 1/p ; where p is the density of airn),

Q is the Earth’s angular velocity,
g is the apparent acceleration of Earth’s gravity,
Cy is the specific heat of air atconstantvolume (J.kg'fK'D,
(@ 's] is the specific heat of air atconstantpressure (J.kg'fK’ D,
R is the gas constant for air (R = o - Cy),

Yy = Cp/Cy approximately 7/5,



F is the frictional force per unit mass,
Q is the rate change of heating per unit mass.

Note that the time derivatives in equations (2.1)-(2.4) are total time derivatives,
referring to the rate of change at a point which moves with the flow.

Equations (2.1)-(2.5) are so-called the ¢ 11 (| ¢ qua tions, although even they
contain a number of approximations. In a sense they are too exact. Examination reveals
that they posses certain properties which render them somewhat awkward for a study
or we (lODA circulation.

Eq-(2.-1) represents Newton’s second law of motion. As written, it applies to a
gas or a liquid. This equation is written for a frame of reference which rotates with
angular velocity Q . The absolute acceleration differs from the apparent acceleration by
the Coriolis acceleration ZQ X | and the centripetal acceleration Q X az X rN. The
rotation of the system is therefore fully taken into account by introducing the ( 0 [ i0lis
acceleration -=20 X U ana pparentgravity® which differs from the absolute
gravity by Q X «Q X r), and otherwise regarding the system as if it were not rotating.
Once this has been accomplished, it is permissible for most purposes to treat the Earth
(except for topographic features) as a sphere instead of an ellipsoid, with a gravitational
force of constant magnitude directed toward the center.

Eq.(2.-2) represents the continuity equation. As written, it applies equally well to
a gas or a liquid. This equation describes the law of conservation of mass.

Eq-(2-3) represents the first law of thermodynamics, while Eq.(2.5) is the
equation of state. As written, they apply to an ideal gas. Certain modifications are
Nneeded to then apply to an atmosphere where water can appear in different phases or in
varying amounts. In formulating Eq.(2.3) we have noted that the internal energy per

unit mass is CVT , and we have used the customary assumption that the work done upon

a unit mass in compressing it is given by -p we will presently consider the



implications of this assumption. We have then used Eqgs.(2.2) and (2.5) to express the
work as 'RT V- V , after which Eq.(2.3) follows.

Eq.-(2.-4) may be derived from Eqgs.(2:;2) and (2.3) with the aid of Eq.(2.5). It is
often mMmore convenient to use the density p as a dependent variable in place of its

specific volume a.

A. Components Equations in Spherical Coordinates
For practical reasons it is often desirable to express the EqQ.(2.1) in scalar form.
The Earth is sufficiently spherical in shape to justify the use of a spherical coordinate

system. Because of the curvature of the spherical coordinate system, the components of

the acceleration dalr are not the timqg derivatives of the components of V. Additional

terms involving the time derivatives of l | and k occur. Thus the equations of motion

become
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where X is the longitude measured eastward,
“=is the latitude measured northward,
z is the elevation measured upward,
r is the magnitude of r,

is the eastward component of y )

V is the northward component of V s

IV is the upward component of ,

a is the Earth’s mean radius,



Q is the magnitude of Q
g is the magnitude of (|,

F fa F q, Fi1 are the components off .

We have noted that the velocity components . Vand are the scalar products

of V with the unit vectors;
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B. The Potential Temperature and the Specific Entropy

It is often advantageous to write the equations in terms of the potential

temperature

0 = r1ffi.

2.9
or the related specific entropy (of an ideal gas)
= CpInO i (2.10)
where K: R/Cp is about 2/7 and the constant PO = 1000 mb has been introduced to
make O and T dimensionally similar. It follows from Eq.(2.3) and (2.4) that
dd&t . H:)o]l k 8_ . 2 11
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Eq.(2.12) reveals the nature of the thermodynamic assumptions which occurs in

the usual formulation of the governing equations. According to Eq.(2.12), the rate

change of entropy equals the ratio of the rate change of heating to the temperature. It is a

fundamental principle of thermodynamics that this is so during a reversible process, but

Nnot necessarily during on an irreversible process.



c. The Angular Momentum and Energy Equations

Equations (2.1) - (2.8), together with suitable expressions for F and Q, are

principle sufficient for a mathematical study of the circulation. Qualitative arguments are

nevertheless often more readily presented in terms of angular momentum and energy.

The absolute angular momentum (per unit mass) about the Earth’s axes is given

by the formula

M = Qr'leosl<p w108 <, (2.13)
The Erst term on the right-hand side of Eq.(2.13) represents the $0-(4 /¢l (
nmomentum , the absolute angular momentum which would be present if the atmosphere

were in solid rotation with the Earth.

The second term is the relative angular momentum, associated with the motion
relative to the Earth. The terms in Eq.(2.6) containing 1/r, depending upon the curvature
of the coordinate system, and the terms containing Q , depending upon the rotation, drop

out in the angular-momentum equation

Oc—+rcos¢F,1, (2.14)
dA

it
which state that the absolute angular momentum is altered only by a torque. An

equivalent statement would be that relative angular momentum is altered only by a

torque, provided the ( 0 riolis to [l¢ is included.

Likewise, per unit mass, the kinetic energy, potential energy and internal energy

(of an ideal gas) are given by
K = "V v, 0 = g and - CyT,

where K is the kinetic energy per unit mass,

o is the potential energy per unit mass,

is the internal energy per unit mass.
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According to Eqgs.(2.1) - (2.8), we can obtain the equation of total energy
£(k+0+i) :—aV'pV+V'F +Q1 (2.15)

when integrated over any region with a fixed boundary, the term -aVv p V represents

the work done on this region by the pressure force on the boundary; thus in general it

describes a transfer of energy from one region to another.

The angular-momentum and energy principles are fundamental in any treatment

of the circulation. If in some approximate formulation of the equations they are not

retained, the results are likely to be unrealistic. A spurious energy source may cause the

wind to increase without limit.

D. Basic Equations for the Real Atmosphere

For the real atmosphere the many equations governing radiation, turbulence,

phase change of water, and other processes, are required. It is beyond the scope of this

discussion to present all of the relevant equations. However, we will indicate the

modifications of Eqgs.(2.1) - (2.5) required by the presence of water.

The hydrodynamic equations (2.1) and ((2.2) appear to remain virtually

unaltered.

INn the equation of state (2.5), the gas constant R must be replaced by the

slightly greater variable gas "[11§li1!" appropriate to a mixture of air and water. Thus

Eq.(2.5) becomes
Tv = «-q)T + (RJR)QT =16
where Rw is the gas constant for water,
q is the specific humidity,
Tv is the virtual temperature of air.
Throughout much of the atmosphere Ty and T differ by less than |1°c, but near

the surface of Earth the difference may exceed 4°c.
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The more important effects of water vapour appear in the thermodynamic
equations (2.3) and (2.4). The internal energy of dry air must be replaced by the internal

energy of moist air, given by

. 2.17)
where c is the specific heat of water,
L is the latent heat of condensation at temperature T.
Alternatively, the release of latent heat, given approximately by - L may be

included as part of the heating. In either event the specific humidity q must be included
as an additional dependent variable.

A common simplification is the assumption that liquid water falls out
immediately upon forming from condensation. In this case g may be considered to
remain constant, except in ascending saturated air, where it retains its saturation value
and near the Earth, where it may increase as aresult of turbulent diffusion. Thus

= (-«f-0f 0 <*or

(2.18)

where E is the upward turbulent transfer of water vapour per unit horizontal area,

W-’ o is the value of q which saturated air at temperature T and pressure p.

It would be more realistic to retain the liquid water content as another dependent
variable, in which case g would retain its saturation value in descending air containing
liquid water. If the solid water content is retained as still another variable, the possibility

of supercooled water clouds in place of ice-crystal clouds must be recognized.
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The Hydrostatic Equation

One of the most perminent features of the circulation is hydrostatic equilibrium
which is the approximate balance between gravity and the vertical pressure gradient

force. The familiar hydrostatic equation can be written as

o _ 10
5 -Pg , ¢ ’

Since the hydrostatic equation is diagnostic, its introduction leaves the new

system with no prognostic equation for . There are two prognostic equations for p,

namely the thermodynamic equation (2.4) and the hydrostatic equation obtained by

integrating Eq.(2.19) with the upper boundary condition p =0 at z — oo.Thus

oo

D gV, (2.20)

Elimination of £ and “p. from EqQgs.(2.4) and ((2.20) yields an additional
dt

diagnostic equation, which may be solved for

in terms of the remaining variables

using the lower boundary condition =0 at z — O.

The Primitive Equations

Since the field of vertical motion is assumed to be that field required to maintain
hydrostatic equiilibrium by compensating for the effects of the horizontal motions. With
itself defined in terms of the other variables there is no need for an explicit

expression for dw and with the aid of the diagnostic equations the system reduces to a
dt

closed system of three equations in the three dependent variables Vand P-
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We now present the new system of equations in two forms. The first form uses
the coordinate system of Eqqs.(2.6) - (2.-8). In the second form we use the pressure p

instead of elevation z as the vertical coordinate.

WwWith z as the vertical coordinate, the new system may be written

~ = -/k X -2V R (2.21)
)

S m
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where f is the Coriolis parameter (f = 2Q sin <,
is the horizontal velocity [ = i+ V]),

Here Vv denotes a horizontal differential operator.Wherever 1/r would ordinarily occur it
is to be replaced by 1/7a, where a is the Earth’s mean radius,; thus the components of
the equation of motion become

6*' = t-q]fpuv + fv - —ly— Eb + Fi 2.25)
¥ a a cos pdx

(2.26)

The total and the local time derivatives of a scalar | are connected by the

relation

i g o
T TV g
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2.28)

d— Vios (p)

= — Wy
TR NN i )
is assumed to be

while the horizontal divergence is

V-Uu

AN element of volume

with an analogous expression for Vv —p X U .
For other purposes it is far

azcos tdA, dj) dz.
is suitable.

For many purposes this new system
more convenient to introduce pressure p as a new vertical coordinate; thus p becomes
“ replaces

an independent variable while z becomes a dependent variable, and
In this system the continuity equation becomes the

as a further dependent variable.
diagnostic equation, and the complete system may be written
o
- = -fk X - gWZ + F, (2.29)
(33
= KT(B/p + QICp (2.30)
—_
v
1 = — (2.31)
dz
RT (2.32)
dp gp
Likewise, the components of the equation of motion become
du tantp 0 i1 .
1] 2.33
a v - + Fa- @52
acos (pdo
(2.34)

dt
SI%, 2 f1.C 0, +
a *

The total and the local time derivatives of a scalar X are connected by the

(2.35)

relation
—+

&

+ 0 v
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or with the aid of Eq.(2.31)

(2.36)

while die horizontal divergence is

. ----El'-----./..a +_aVC03 (D \’ 2.37)

acos PBA i

with an analogous expression for Vv —p X . It is understood that the partial derivatives
d fd t‘ d ’d X s d{d tp and VV are now to be interpreted as derivatives with p held constant, so
that their meaning is not the same as in equations (2.21)-(2.24). Formally Eq.(2.37) is
identical with Eq.(2.28), but the partial derivatives have their altered meaning. An
element of mass is assumed to be (I/g)aZcos JdA, ct=dp.

For some purposes a satisfactory approximation is obtained by assuming as a
lower boundary the coordinate surface p — PO = constant, with O = O as a lower
boundary condition. The height of the lower boundary is then considered variable. In
particular this approximation does not introduce spurious sources of angular
momentum and energy. It has the effect of eliminating the so-called ¢ {te1114 | grav |[y
Wave, whose propagation involves oscillations of the total mass within a vertical

column.

Equations (2.21) - (2.24) and their equivalent forms (2.29) - (2.32) are the so-
called primitive equations- This designation has arisen from their use iNn Nnumerical
weather prediction, where they have been taken as the starting point for the derivation
of the simpler | £ stro D hic model which we will presently consider. Apparently it was

thought improbable that anyone would attempt to use the exact equatlons’ which are

more primitve wan we PIMITIVE eQUALIONS.
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Vorticity and Divergence Equations

For many purposes it is advantageous to express the horizontal wind field in

terms of its vorticity G and its divergence 8
¢ = - X k (2.38)
5 = - , (2.39)

Here V denotes differentiation dong an isobaric surface, dthough the slightly different
vorticity and divergence fields defined by the same formulas with V denoting differen-
tiation dong a horizontd surface, have dso been used.

If the stream function \\r and the velocity potential X are defined by the equations

' V] || =P (2.40)

vVo2r = : (2.41)

the rotational non-divergence wind fields r and the divergence irrotationd wind field

d defined
4
—
@ 9 < V (2.42)
—
X
& = VZ (2.43)
satisfy the relation
= r+  d- (2.44)

It should be observed thatin acirculation which is symmetric with respect to the
Earth’s axis, such as Hadley's circulation, the zonal motion is completely determined
by ur, while the meridional motion Vis completely determined by d- In the more

general case, the eastward and northward motion are determined respectively by r and

d
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A form of Eq.(2.21) which is exactly equivalent but more convenient for many

purposes is

~ = ~(¢+f)kxd -CD™ . v(gz+~"n] + F , (2.45)
From Eq.(2.44) we may derive the vorticity equation
Nozigv(e ) - )N - (ct)s - veo- M oxk o+ vE X Kk,
(2.46)

and the divergence equation
D =7-v(ct/l x*-a>|"-(c+A-VIfl-|( +vASZ+£M) +V.F,
(2.47)

In dealing with certain features of the circulation, rather than the total circulation,
we may neglect the weaker field Ud and hence 8 and COtogether. The vorticity equation
by itself then becomes a closed system, provided that the friction F can be expressed in

terms of Ur. If F also neglected, the vorticity equation reduces to

, (2.48)
or equivalently,
f(c+/) = 0, (2.49)

The sum C + f is the absolute vorticity. Eq.(2.49) expresses the conservation of
absolute vorticity.

Eq.(2.48) contains neither sources nor sinks for absolute vorticity. It strictly
conserves the total kinetic energy and also the total absolute angular momentum, at each

level, and hence allows no conversion between the kinetic energy and other forms of
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energy. Inclusion of friction would merely lead to a dissipation of the kinetic energy. In

dealing with the total circulation it is therefore necessary to retain the divergence.

The Geostrophic Equation

A feature of the circulation in middle and higher latitudes is geostrophic equili-
brium which is the approximate balance between the Coriolis force and the horizontal

pressure gradient force. The familiar geostrophic equation is obtained by

Ug = {glfikxVvz, (2.50)

where Ug is the geostrophic wind.

However, since the wind LTis expressible as the sum of - and a smaller

residual Ud, and also as the sum of Ug and the smaller residual - U, it follows that
uris the sum of Ug and a reasonably small residual ( -Ug)-Ud. The geostrophic
vorticity y -Ug X k is generally a fair approximation to the vorticity C, although it is a
considerable overestimate in intense cyclones. The geostrophic divergence V -Ug bears
little resemblance to the divergence 5 as observed in the atmosphere.

Further modifications are now needed to retain the energy principle. The kinetic
2
energy must be redefined as K = ° and all the quadratic terms in the vorticity

equation except those involving r only must be discarded. The vorticity equation and

the thermodynamic equation then assume the form

3;? V. omv(E+f)xk + V-[jVx\ + V-F X k. (2.51)
aT
. -V Ve mVT xk + VT-Vx + <7E + QICp, (2.52)
3T . -
where G k(T/p) h ameasure of the static stability.

lap
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The atmosphere is said to be statically stable or unstable according to wether 0
increases or decreases with elevation. Eqs.(2.51) and (2.52) describe the so-called
geostrophic model, used extensively in numerical weather prediction, usually with
additional simplifications. Although it is convenient to be rid of most of the quadratic
terms in the vorticity equation, this simplification is too extreme for studying many

aspects of the general circulation.

The Beta Plane

The beta-plane approximation was first introduced by Rossby [Rossby 1939] in
the previously cite paper. In this approximation, the spherical surface of the Earth is
replaced by a plane in which rectangilar Cartesian coordinates (x, y) are introduced. In
Rossby’s original work the plane was of infinite horizontal extent, but in many
subsequent applications it has been restricted to the area between two parallel lines,
which are identified with latitude circles. In the x-direction all dependent variables are
commonly assumed to vary periodically, acquiring their original values after a distance
which is identified with the circumference of the Earth. In the divergence equation, or in
the geostrophic equation , the Coriolis parameter f assigned a constant value. It is also

taken as a constant in the vorticity equation, except in the term -Vy/ -V/ X k where its

northward derivative — is assigned a second constant value p. Thus the term reduces
dy

t0~aT -

The remaining awkward feature of the co-equation result from the variability of
G and the presence of the term v r -V X in Eq.(2.52).

The latter term represents the advection of temperature by 4, and in practice it
is usually discarded. The static stability a is also frequently replaced by a, where the
tilde (~ ) denotes an average over an isobaric surface. Both of these approximations
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upset the energy principle, but this may restored by adding a suitable term depending

upon p and t alone in the thermodynamic equation. The system of equations may be

written as
i -Vyr eveg xk - /37 -fS + V-F* X k, (2.53)
t
a7 N
di -V Yrevr Xk + OCU + «k{caTlp) + Qlcp , (2.54)
i
-RTIp 1 (2.55)
" dp
fo + [RolfpV e = (v. -VFf Xk). VAV v X
¥y IR -V f oxkm{ / (2.56)
dXdp dp

The term containing coT may be omitted in applications where time variations of
T are irrelevant. Usually the variations of a are also suppressed; if they are to be
included, the appropriate equation is obtained from Eq.(2.54). The greatly simplified
co-equation is now seen to be an elliptic differential equation in G since a is almost
invariably positive. In applications involving specific features of the circulation, the
terms containing F and Q are often omitted.

Much effort has been devoted to justifying the use of the beta-plane. The
general conclusion is that it should yield qualitatively realistic results if its application is
restricted tc middle and higher latitudes. Certainly it has rendered some problems

tractable when they could not otherwise have been handled by analytic procedures.
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