
CH APTER II

TH E  D Y N A M IC  E Q U A T IO N S

Before going into the actual object of this work concerning the L o r e n z  

n o n l i n e a r  d y n a m i c  m o d e l ,  it may be useful to recall some of theoretical background 

underlying the theory to be developed. In this chapter we will first present the system of 

governing equations in a precise form. We will then introduce some of the frequently 

used approximations. The approximate systems have formed the basis for most of 

attempts to account for the g l o b a l  c i r c u l a t i o n .

The Exact Equations

It is convenient to group the laws governing the atmosphere into two categories. 

First there are the basic hydrodynamic and thermodynamic laws which apply to all or 

large class of fluid systems. These include the laws of conservation of momentum, 

mass and energy. These laws are expressed mathematically in Newton’s second law of 

motion, the continuity equation and the thermodynamic energy equation, which state 

that matter can neither be created nor destroyed 1 momentum can be altered only by a 

force and the internal energy can be altered by the performance of work or the addition 

or removal of heat. The ideal gas law also belongs in this category, although it is less 

general than the other laws.

The remaining laws are the ones needed to express the forces and the heating in 

terms of the current state of the atmosphere and its environment. This category includes 

the laws governing the absorption, emission and transfer of infra-red radiation, by the 

various atmospheric constituents, notably carbon dioxide, ozone and the various phase
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of water. It includes the l a w  o f  t u r b u l e n t  v i s c o s i t y  and c o n d u c t i v i t y .  In principle these 

laws could perhaps be derived from the basic laws of hydrodynamics and thermo­

dynamics, but no one has succeeded in accomplishing this task. Finally, it includes the 

laws governing the evaporation and condensation of water, and the conversion of cloud 

droplets into raindrops and snow crystals. The list is by no means exhaustive.

The equations representing the basic hydrodynamic and thermodynamic laws 

may be written as

d V
d t

= - 2 Q  X  V  -  a V p  +  ~ g  +  F , (2.1)

d a
d t

=  a V - v ' , (2.2)

d T
d t

= -(y-l)r V-V* +  ^ Q / c v , (2.3)

d p
d t

=  - y p  V-V + (y-1) Q / a , (2.4)

p a = R T , (2.5)

where r  is the position vector with respect to the Earth’s center,

V is the velocity relative to rotating Earth, 

p is the air pressure,

T is the air temperature,

a is the specific volume of air (a = 1/p ; where p is the density of air), 

Q  is the Earth’s angular velocity, 

g  is the apparent acceleration of Earth’s gravity,

Cy is the specific heat of air at constant volume (J.kg'fK'1),

Cp is the specific heat of air at constant pressure (J.kg'fK’1),

R is the gas constant for air (R = Cp - Cy), 

y = Cp/Cy approximately 7/5,
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F  is the frictional force per unit mass,

Q is the rate change of heating per unit mass.

Note that the time derivatives in equations (2.1)-(2.4) are total time derivatives, 

referring to the rate of change at a point which moves with the flow.

Equations (2.1)-(2.5) are so-called the e x a c t  e q u a t i o n s ,  although even they 

contain a number of approximations. In a sense they are too exact. Examination reveals 

that they posses certain properties which render them somewhat awkward for a study 

of the global circulation.
Eq.(2.1) represents Newton’s second law of motion. As written, it applies to a 

gas or a liquid. This equation is written for a frame of reference which rotates with 

angular velocity Q .  The absolute acceleration differs from the apparent acceleration by 

the Coriolis acceleration 2Q  X V  and the centripetal acceleration Q  X (i2 X r). The 

rotation of the system is therefore fully taken into account by introducing the C o r i o l i s  

a c c e l e r a t i o n  -2 Q  X V  and a p p a r e n t  g r a v i t y ^  which differs from the absolute 

gravity by - Q  X (.Q X r), and otherwise regarding the system as if it were not rotating. 

Once this has been accomplished, it is permissible for most purposes to treat the Earth 

(except for topographic features) as a sphere instead of an ellipsoid, with a gravitational 

force of constant magnitude directed toward the center.

Eq.(2.2) represents the continuity equation. As written, it applies equally well to 

a gas or a liquid. This equation describes the law of conservation of mass.

Eq.(2.3) represents the first law of thermodynamics, while Eq.(2.5) is the 

equation of state. As written, they apply to an ideal gas. Certain modifications are 

needed to then apply to an atmosphere where water can appear in different phases or in 

varying amounts. In formulating Eq.(2.3) we have noted that the internal energy per 

unit mass is CVT , and we have used the customary assumption that the work done upon 

a unit mass in compressing it is given by -p we will presently consider the
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implications of this assumption. We have then used Eqs.(2.2) and (2.5) to express the 

work as -RT V- V  , after which Eq.(2.3) follows.

Eq.(2.4) may be derived from Eqs.(2;2) and (2.3) with the aid of Eq.(2.5). It is 

often more convenient to use the density p as a dependent variable in place of its 

specific volume a.

A. Components Equations in Spherical Coordinates

For practical reasons it is often desirable to express the Eq.(2.1) in scalar form. 

The Earth is sufficiently spherical in shape to justify the use of a spherical coordinate 

system. Because of the curvature of the spherical coordinate system, the components of

the acceleration dy_ are not the timq derivatives of the components of V. Additional 

d t
terms involving the time derivatives of i ,  J  and k  occur. Thus the equations of motion 

become

u v  - 1  น พ  + ( i n  s i n  ( p )  V - [ l £ 2  c o s  ( p )  พ -------s —  + F \  , (2.6)dt r r r cos 0 3 ^

น 2  - | v w  - (2Q s i n ( p )  น  -  +  F < p ’ (2-7)

a t  d ( p

= Y  น2 +  J V 2 + [ i Q c o s t p ]  น - g  - a  - -  + F z , (2.8)

where X  is the longitude measured eastward,

<t> is the latitude measured northward, 

z is the elevation measured upward, 

r is the magnitude of r,

น  is the eastward component of V ,

V is the northward component of V ,

IV is the upward component of V ,  

a is the Earth’s mean radius,



8

Q is the magnitude of Q  

g is the magnitude of g ,

F  f a  F q ,  F z  are the components of F .

We have noted that the velocity components น, V and พ are the scalar products 

of V  with the unit vectors;

i k  X i, and

B. The Potential Temperature and the Specific Entropy

It is often advantageous to write the equations in terms of the potential 

temperature

0  = r l f f i .  (2.9)

or the related specific entropy (of an ideal gas)

ร = Cpln 0 , (2.10)

where K = R/Cp is about 2/7 and the constant Po = 1000 mb has been introduced to 

make 0  and T dimensionally similar. It follows from Eq.(2.3) and (2.4) that

d &  _ [ P o ] k Q _  (2 11)

d t  \ P I  C p '

d s  _ Q  
d t  T  ’

(2 .1 2 )

Eq.(2.12) reveals the nature of the thermodynamic assumptions which occurs in 

the usual formulation of the governing equations. According to Eq.(2.12), the rate 

change of entropy equals the ratio of the rate change of heating to the temperature. It is a 

fundamental principle of thermodynamics that this is so during a reversible process, but 

not necessarily during on an irreversible process.
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c . The Angular Momentum and Energy Equations

Equations (2.1) - (2.8), together with suitable expressions for F  and Q, are 

principle sufficient for a mathematical study of the circulation. Qualitative arguments are 

nevertheless often more readily presented in terms of angular momentum and energy.

The absolute angular momentum (per unit mass) about the Earth’s axes is given 

by the formula

The Erst term on the right-hand side of Eq.(2.13) represents the s o - c a l l e d  Q  -  

m o m e n t u m ,  the absolute angular momentum which would be present if the atmosphere 

were in solid rotation with the Earth.

The second term is the relativè angular momentum, associated with the motion 

relative to the Earth. The terms in Eq.(2.6) containing 1/r, depending upon the curvature 

of the coordinate system, and the terms containing Q ,  depending upon the rotation, drop 

out in the angular-momentum equation

which state that the absolute angular momentum is altered only by a torque. An 

equivalent statement would be that relative angular momentum is altered only by a 

torque, provided the C o r i o l i s  t o r q u e  is included.

Likewise, per unit mass, the kinetic energy, potential energy and internal energy 

(of an ideal gas) are given by

K  = ^ - V  - V ,  0  =  g z  and I  - -  C y T ,

where K  is the kinetic energy per unit mass,

M  =  Q r ' 1 c o s 1 < p + r  c o s  < p  น  , (2.13)

dM  
d t

(2.14)

0  is the potential energy per unit mass,

is the internal energy per unit mass.
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According to Eqs.(2.1) - (2.8), we can obtain the equation of total energy

£ ( k + 0  +  i ) =  - a V  -pV +  V - F  + Q  1 (2.15)

when integrated over any region with a fixed boundary, the term -a V  - p V  represents 

the work done on this region by the pressure force on the boundary; thus in general it 

describes a transfer of energy from one region to another.

The angular-momentum and energy principles are fundamental in any treatment 

of the circulation. If in some approximate formulation of the equations they are not 

retained, the results are likely to be unrealistic. A  spurious energy source may cause the 

wind to increase without limit.

D. Basic Equations for the Real Atmosphere

For the real atmosphere the many equations governing radiation, turbulence, 

phase change of water, and other processes, are required. It is beyond the scope of this 

discussion to present all of the relevant equations. However, we w ill indicate the 

modifications of Eqs.(2.1) - (2.5) required by the presence of water.

The hydrodynamic equations (2.1) and (2.2) appear to remain virtually 

unaltered. In the equation of state (2.5), the gas constant R must be replaced by the 

slightly greater variable gas “ c o n s t a n t ”  appropriate to a mixture of air and water. Thus 

Eq.(2.5) becomes

T v  = (1 - q ) T  + ( R J R ) q T  , (2.16)

where Rw is the gas constant for water, 

q is the specific humidity,

Tv is the virtual temperature of air.

Throughout much of the atmosphere Ty and T differ by less than l°c, but near 

the surface of Earth the difference may exceed 4°c.
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The more important effects of water vapour appear in the thermodynamic 

equations (2.3) and (2.4). The internal energy of dry air must be replaced by the internal

energy of moist air, given by

I

I  =  C \ ( \  - q ) T  + { c - R w ) q T  +  L q  , (2.17)

where c is the specific heat of water,

L  is the latent heat of condensation at temperature T.

Alternatively, the release of latent heat, given approximately by - L  may be

included as part of the heating. In either event the specific humidity q must be included 

as an additional dependent variable.

A common simplification is the assumption that liquid water falls out 

immediately upon forming from condensation. In this case q may be considered to 

remain constant, except in ascending saturated air, where it retains its saturation value 

and near the Earth, where it may increase as a result of turbulent diffusion. Thus

= ( - « f -  if ■ ?<* or
(2.18)

where E

qs(T, p)

is the upward turbulent transfer of water vapour per unit horizontal area, 

is the value of q which saturated air at temperature T and pressure p.

It would be more realistic to retain the liquid water content as another dependent 

variable, in which case q would retain its saturation value in descending air containing 

liquid water. If the solid water content is retained as still another variable, the possibility 

of supercooled water clouds in place of ice-crystal clouds must be recognized.
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The Hydrostatic Equation

One of the most perminent features of the circulation is hydrostatic equilibrium 

which is the approximate balance between gravity and the vertical pressure gradient 

force. The familiar hydrostatic equation can be written as

Since the hydrostatic equation is diagnostic, its introduction leaves the new 

system with no prognostic equation for พ. There are two prognostic equations for p, 

namely the thermodynamic equation (2.4) and the hydrostatic equation obtained by 

integrating Eq.(2.19) with the upper boundary condition p = 0 at z = oo.Thus

Elimination of ^£ and p̂. from Eqs.(2.4) and (2.20) yields an additional 

dt dt

diagnostic equation, which may be solved for พ in terms of the remaining variables 

using the lower boundary condition พ = 0 at z = 0.

The Prim itive Equations

Since the field of vertical motion is assumed to be that field required to maintain

hydrostatic equilibrium by compensating for the effects of the horizontal motions. With

พ itself defined in terms of the other variables there is no need for an explicit

expression for dw and with the aid of the diagnostic equations the system reduces to a 

dt

closed system of three equations in the three dependent variables น ,  V and p.

(2.19)

(2 .20 )
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We now present the new system of equations in two forms. The first form uses 

the coordinate system of Eqs.(2.6) - (2.8). In the second form we use the pressure p 

instead of elevation z as the vertical coordinate.

With z as the vertical coordinate, the new system may be written

II

Î ะะ) l-s
 

■
ฟ̂

3

-/ k  X  บ  -  a V p  +  F , (2.21)

&
•
เ^ II - y p V - l T  -  y p ^  + [ y - \ ) Q J a , (2.22)

- p  V ■ บ  -  บ  X p  + g  j  V p V  d z  +  (y- 1) Q / a  , (2.23)

J_ = 

a

•vi-

1 dp

g  d z  '
(2.24)

where f is the Coriolis parameter ( f = 2Q sin <J> ),

บ  is the horizontal velocity [ บ  =  u i  +  v j ) ,

Here V denotes a horizontal differential operator.Wherever 1/r would ordinarily occur it 

is to be replaced by 1/a, where a is the Earth’s mean radius,; thus the components of 

the equation of motion become

/i l l  ton (p /y dpQf- = - ~ - u v  + f v  - — ^—  —
d* a a cos <p d x

+ F i (2.25)

(2.26)

The total and the local time derivatives of a scalar X  are connected by the

relation

dX
d t

d x  r 1 r v d x  + u  X X  + พ -^ - , dt dz (2.27)
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while the horizontal divergence is

v - u  = — 1— ( d  d  )—— น + —  V c o s  ( p  ,  
a  c o s  ( p  \3A d t p  )

(2.28)

with an analogous expression for V - p X U .  An element of volume is assumed to be 

a2 cos <t> dA, d(j) dz.

For many purposes this new system is suitable. For other purposes it is far 

more convenient to introduce pressure p as a new vertical coordinate; thus p becomes 

an independent variable while z becomes a dependent variable, and ๓ = “  replaces พ

as a further dependent variable. In this system the continuity equation becomes the 

diagnostic equation, and the complete system may be written

a.
 15

:

II - f k  X บ  -  g W z  + F , (2.29)

II KTœ/p + Q I C p  , (2.30)

Î >

1  =  ° ' (2.31)

d z
d p

R T
g p  ’

(2.32)

Likewise, the components of the equation of motion become

d u
d t

t a n t p  g  d z  „

a “ v - + F>■ -a  c o s  ( p  d /1

(2.33)

d V 
d t

•S I*„ 2 . f 11 . Ç J ,  + F 
a *

(2.34)

The total and the local time derivatives of a scalar X  are connected by the

relation

(IX
d t

dx _
l ) i + Ü V X  + ผ ^ - , ( 2 . 3 5 )
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or with the aid of Eq.(2.31)

(2.36)

while die horizontal divergence is

V - บ
1 / a  a \---- ---------น + —  V cos (p ,

a cos <p \3A dtp
(2.37)

with an analogous expression for V - p X  บ .  It is understood that the partial derivatives 

d / d t ,  d / d X ,  d / d t p  and V  are now to be interpreted as derivatives with p held constant, so 

that their meaning is not the same as in equations (2.21)-(2.24). Formally Eq.(2.37) is 

identical with Eq.(2.28), but the partial derivatives have their altered meaning. An 

element of mass is assumed to be (l/g)a2cos <J) dA, d<t> dp.

For some purposes a satisfactory approximation is obtained by assuming as a 

lower boundary the coordinate surface p = Po = constant, with Û) = 0 as a lower 

boundary condition. The height of the lower boundary is then considered variable. In 

particular this approximation does not introduce spurious sources of angular 

momentum and energy. It has the effect of eliminating the so-called e x t e r n a l  g r a v i t y  

w a v e ,  whose propagation involves oscillations of the total mass within a vertical 

column.

Equations (2.21) - (2.24) and their equivalent forms (2.29) - (2.32) are the so- 

called primitive equations. This designation has arisen from their use in numerical 

weather prediction, where they have been taken as the starting point for the derivation 

of the simpler g e o s t r o p h i c  m o d e l  which we will presently consider. Apparently it was 

thought improbable that anyone would attempt to use the exact equations, which are 

more primitive than the primitive equations.
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V o r t ic i t y  and  D iv e rg e n c e  E q u a t io n s

Fo r m any purposes it is advantageous to express the ho rizon ta l w in d  f ie ld  บ  in 

terms o f its v o rt ic ity  Ç, and its divergence 8 ะ

ç  = พ - บ  X  k  ,

5  = พ - บ  ,

(2 .3 8 )

(2 .3 9 )

Here V  denotes d iffe ren tia tion  dong  an isobaric surface, d though the s lig h t ly  d ifferent 

vo rtic ity  and d ive rgence  fie lds defined by the same form ulas w ith V  denoting differen­

tiation dong  a h o r izo n td  surface, have d so  been used.

If the stream function \ \ r and the ve loc ity  potential X are defined by the equations

v V  = ? . (2 .4 0 )

V 2*  = . (2 .4 1 )

the rotational non-d ivergence w ind fie lds บ r  and the d ivergence ir ro ta t io n d  w ind  fie ld

บ d  defined

£
1 11 X <1

1

( 2 .4 2 )

1?
* II <
 1

 
N; ( 2 .4 3 )

satisfy the re lation

ป ี = ป ีr  + ป ีd - (2 .4 4 )

It should be observed that in  a c ircu lation w h ich  is sym m etric w ith  respect to the 

Earth ’s axis, such as H ad le y ’s circu lation , the zona l m otion น is com p le te ly  determ ined 

by u r , w h ile  the m e rid iona l m otion V is com p le te ly  determ ined by  บ d - In the more 

general case, the eastward and northward motion are determ ined respective ly  by บ r and 

ปีd.
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A  fo rm  o f  Eq.(2 .21) w hich is exactly equ iva lent but more conven ient fo r many 

purposes is

^  = -( ç + f ) k x ü  -  C D ^  .  v ( g z + ^ ]  + F  , (2 .45 )

F rom  Eq.(2 .44) we may derive the v o r t i c i t y  e q u a t i o n  

^  = - Ü -  v ( c  +  / )  - û ) |^  - ( c + / ) s  - V c o -  ^  X k  +  V F  X k ,

(2.46)

and the d i v e r g e n c e  e q u a t i o n

D  = -(7- v(c+ /l x * -a > |^ -(c + A -V ff l- |(  + v 2(Sz + £^) + v.F,
(2.47)

In dea ling w ith  certain features o f the circu lation, rather than the total c irculation, 

we m ay neglect the weaker fie ld  U d  and hence 8 and CO together. The v o rt ic ity  equation 

by itse lf then becomes a closed system, provided that the fr ic t ion  F  can be expressed in 

terms o f U r . I f  F  a lso neglected, the vortic ity equation reduces to

^  = - V x i f -  v ( c + j ) x k  , (2 .4 8 )

or equivalently,

f ( c + / )  = 0 ,  (2 .4 9 )

The sum Ç + f  is  the absolute vortic ity . Eq.(2.49) expresses the conservation o f 

absolute vorticity.

Eq.(2.48) con ta in s  neither sources nor s inks fo r abso lu te vo rt ic ity . It strictly  

conserves the total k ine tic  energy and also the total absolute angular momentum , at each 

level, and hence a llo w s  no conversion between the k in e tic  energy and other form s o f



18

energy. Inclusion o f  fr ic t ion  w ou ld  merely lead to a d iss ipa tion  o f the k inetic  energy. In 

dea ling w ith the total c ircu la tion  it is  therefore necessary to retain the divergence.

T h e  G e o s t r o p h ic  E q u a t io n

A  feature o f  the c ircu la tion  in m iddle and h igher latitudes is geostrophic e q u ili­

b r ium  w h ich  is the approx im ate balance between the C o r io lis  force and the ho rizon ta l 

pressure gradient force. T he  fam ilia r geostrophic equation is  obtained by

U g  =  { g / f i k x V z ,  ( 2 .5 0 )

where U g  is the g e o s t r o p h i c  w i n d .

H ow ever, s in ce  the w ind  L T i s  express ib le  as the sum  o f บ , -  and a sm a lle r 

residual U d ,  and also as the sum  o f U g  and the sm a lle r re s idua l บ  -  U  g ,  it fo llo w s  that 

u r  is  the sum o f  U g  and a reasonab ly sm all re s idua l ( บ  - U  g )  -  U d . The geostroph ic 

vo rtic ity  y  - U g  X  k  is genera lly  a fa ir approxim ation to the vo rt ic ity  Ç, a lthough it is  a 

considerab le overestimate in  intense cyclones. The geostrophic divergence V  - U g  bears 

litt le  resemblance to the divergence 5 as observed in the atmosphere.

Further m od ifica tions are now needed to retain the energy princip le. The k ine tic

บ ?energy must be rede fin ed  as K  =  and a ll the quad ra tic  terms in the v o r t ic ity

equation except those in vo lv in g  บ r  on ly  must be d iscarded. The  vo rtic ity  equation and 

the thermodynam ic equation then assume the form

3Ç
d t

Î t>II ■ v ( £  +  f ) x k  +  V- [ j V x \  + V - F  X k  , (2 .5 1 )

d T
aโ

= - V  !//• ■ V T  x k  +  V T - V x  + <7£ช + Q I C p  , (2 .5 2 )

where G
|3T

l a p  '
k (T/p )J h  a measure o f the static stability.



1 9

The atmosphere is  said to be statica lly stable o r unstable accord ing to wether 0  

increases or decreases w ith  e levation. Eqs.(2.51) and (2.52) describe the so -ca lled  

g e o s t r o p h i c  m o d e l ,  used extens ive ly  in num erica l weather p red iction , u sua lly  w ith  

add itiona l s im p lif ica tion s. A lthough  it is convenient to be r id  o f m ost o f the quadratic 

term s in  the vo rt ic ity  equation, th is s im p lif ica t ion  is  too extrem e fo r studying m any 

aspects o f t h e  g e n e r a l  c i r c u l a t i o n .

T h e  B e ta  P la n e

The beta-plane approxim ation was first in troduced by Rossby [Rossby 1939] in 

the p rev iou s ly  c ite paper. In th is approxim ation, the spherica l surface o f  the Earth  is 

replaced by a plane in w h ich  rectangülar Cartesian coord inates (x, y) are introduced. In 

R o s s b y ’s o r ig in a l w o rk  the p lane was o f in f in ite  h o r izo n ta l extent, but in  m any 

subsequent app lica tions it has been restricted to the area between two pa ra lle l lines, 

w h ich  are identified  w ith  latitude circles. In the x -d irection  a ll dependent variab les are 

com m on ly  assumed to vary  pe riod ica lly , acquiring the ir o r ig in a l values after a distance 

w h ich  is identified w ith the circum ference o f the Earth. In the divergence equation, or in 

the geostrophic equation , the C o r io lis  parameter f  assigned a constant value. It is  also 

taken as a constant in  the vo rt ic ity  equation, except in  the term -V y/  • V / X  k  where its

northward derivative —  is assigned a second constant va lu e  p. Thus the term reduces
d y

t 0 ^ a T -
The rem ain ing aw kw ard feature o f the co-equation result from  the va r ia b ility  o f 

G and the presence o f the term v r  - V X  in Eq.(2.52).

The latter term represents the advection of temperature by บ d , and in practice it
is usually discarded. The static stability a is also frequently replaced by a, where the
tilde ( ~  ) denotes an average over an isobaric surface. Both of these approximations
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upset the energy p r in c ip le , but th is may restored by add ing  a su itable term depending 

upon p and t a lone in  the therm odynam ic equation. T h e  system  o f equations m ay be 

w ritten as

d t
- V y r  • v ç  x k  - /3 ^  - f S  + V -F*  X  k , (2 .53)

d T
d i

- V  1/r • v r  X  k  + O C Û  +  k { cûT / p ) + Q l c p  , (2 .54)

'  d p
- R T I p  1 (2 .5 5 )

f 0  + [ R o l f p V œ  = ( v  - V f  X  k )  .  V ^ V i/ /  . v ^ x  โ  

+  F " ^  - V  f  X k ■{๘/ฬ  .
d X d p  d p

(2 .5 6 )

The term conta in ing coT may be omitted in app lica tions where time variations o f 

T  are irre levant. U su a lly  the varia tions o f a  are a lso  suppressed; i f  they are to be 

in c luded , the appropriate equation is obtained from  Eq.(2 .54). The greatly s im p lif ie d  

co-equation is now  seen to be an e llip t ic  d iffe rentia l equation  in CO, since a  is  a lm ost 

in va ria b ly  positive. In app lica tion s in vo lv ing  sp e c if ic  features o f the c ircu la tion , the 

terms contain ing F  and Q  are often omitted.

M uch  effo rt has been devoted to ju s t ify in g  the use o f the beta-p lane. The 

general conclusion is that it should y ie ld  qualitative ly rea lis t ic  results i f  its application is 

restricted  tc m idd le  and h igher latitudes. C e rta in ly  it  has rendered some prob lem s 

tractable when they cou ld  not otherw ise have been handled by analytic procedures.
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