CHAPTER IV

THE LORENZ EQUATIONS

Sets of coupled nonlinear differential equations can also yield solutions that are
examples of determ inistic chaos. The classic example isthe Lorenz equations. In
this chapter we wiill describe and interpret the Lorenz system of nonlinear differential

equations.

Introduction

In 1963 E.N. Lorenz wrote a remarkable paper. In it he described a three-
parameter family of three-dimensional ordinary differential equations which appeared,
when integrated numerically on a computer, to have extremely complicated solutions.
These equations, now know as the Lorenz equations, have been studied by many
authors in the year since 1963.

Lorenz’'s search for a three-dimensional set of ordinary differential equations
which would model some of the unpredictable behaviour which we normally associate
with the weather [Lorenz 1963]. The equations which he eventually hit upon were

derived from a model of fluid convection. They are
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where X is proportional to the intensity of convective motion,
Y is proportional to the temperature difference between ascending
and descending currents,
L is proportional to the distortion (from linear) of the vertical temperature
temperature profile,

a is the so-called the Prandtlnumber,

r =Ra/Rc; where
Ra is the Rayleigh number,
R¢ isacritical number,
and r is the so-called norm alized Rayleigh number (For details
see Appendix B),
b is a constant related to the given space.

Note also that we only consider positive values of U, r, and b. Briefly, the
original derivation [Lorenz 1963] can be described as follows. A two-dimensional fluid
all is warmed from below and cooled from above and the resulting convective motion is
modelled by partial differential equations (See Appendix B). The variables in these
equations are expanded into an infinite number of modes, all but three of which are then
setidentically to zero. The three remaining modes give the Egs.(4.1).

For wide ranges of values of parameters, approximate solutions to the Egs,
(4.1), calculated on a computer, look extremely complicated Fig. 4.1 show the projec-
tion onto the XZ-plane of one such solution calculated when 0=10, b = 8/3 and

r = 28. Note that the trajectory shown does not intersect itself if we consider the full

three-dimensional picture (See also Fig. 4.2).
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Figure 4.1 A numerically computed solution to the Lorenz equations projected onto

the X Z - plane when a = 10, b = 8/3 and r = 28. [Sparrow 1982]

W e should note that the figure appears to have various ‘turbulent’ properties as
follows:

1. The trajectory shown in Fig. 4.1 is not periodic.

2. The figure does not appear to shown a transient phenomenon. However long
we continue the numerical integration the trajectory continues to wind around
and around, first on one side, then on the other, without ever setting down to
either periodic or stationary behaviour.

3. The general form of the figure does not depend at all on our choice of initial
conditions or on our choice of integrating routine.

4. The exact sequence of loops which the trajectory makes is extremely sensitive to
both changes in initial conditions and changes in the integrating routine. As a
consequence of this, it is not possible to predict the detail of how the trajectory

will develop over anything other than a very short time interval.
X

Lorenz’s original paper [Lorenz 1963] was titled “D eterm inistic Non-periodic
Flows”. Notice that the Lorenz equations are deterministic. They contain no random,

noisy or stochastic terms and we know that they determine that a unique flow which is
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valid for all time. The suggestion, motivated partly by Lorenz’s work, that complicated
‘turbulent’ behaviour in system with an infinite number of degrees of freedom (such as
the atmosphere) might be modelled by simple deterministic finite-dimensional system
(such as the Lorenz equations) is one of the reason why the Lorenz equations have
attracted so much attention.

This question of the relationship between ‘turbulent’ behaviour in the real world
and ‘turbulent’ behaviour in finite-dimensional systems is still unresolved. Consequen-
tly we should state at once that Lorenz himself admits [Lorenz 1979] that the Eqs.(4.1)
are not the realistic model of his original fluid dynamical problem if the parameter r is
far from unity. In addition, if we examine higher-dimensional problem then it seems
that the type of behaviour observed in Fig. 4.1 does not always occur in the same way.
However, these two observations do not imply that there is no relationship between
infinite-dimensional and finite-dimensional ‘turbulent’, nor that the Lorenz equations
are irrelevant to the debate about this relationship. Because of the amount of interest
generated by the Lorenz equations, other authors have sought to discover, or stumble
upon, other real world problems for which the Eqs.(4.1) are an accurate model when r
is much larger than one. They have had some success.

Haken [Haken 1975] derives the Lorenz equations from a problem of irregular
spiking in lasers, Malkus [Malkus 1972] and Yorke & Yorke [Yorke and Yorke 1978]
both studied a problem of convection in a toriodal region, and Knobloch [Knobloch
1981] discusses a derivation from a disc dynamo. Malkus has constructed a laboratory
water wheel which behave in a similar fashion to the Eqgs.(4.1) and from whose
equations of motion the Eqs.(4.1) can be derived [Lorenz 1963], This derivation is
described in Appendix B. Using asymptotic methods, Pedlosky [Pedlosky 1972] and
Pedlosky & Frenzen [Pedlosky and Frenzen 1980] have derived the Lorenz equations
from a study of the dynamics of a weakly unstable, finite amplitude, boroclinic wave

(two-layer model), Brindley & Moroz [Brindley and Moroz 1980] obtain the equations
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in a similar problem (continuously stratified model), and Gibbon & McGuinness
[Gibbon and McGuinness 1980] discuss both the two-layer baroclinie model and a

laser problem.

Chaotic Ordinary Differential Equations

we now know of a great number of set of ordinary differential equations
derived, convincingly or not, from an even greater number of real world problems,
which have solutions that look like Fig. 4.1. These equations are general called
“Chaotic”, as are their numerically calculated solutions. [Helleman 1980, Lichtenberg
and Lieberman 1982]

When a system is bounded, as well as dissipative, we can deduce that all
trajectories eventually tend towards some bounded set of zero volume lying in the phase
space. Though there are technical distinctions which allow US to define this set in
various different ways, we can state that we are especially interested in the bound set of
zero volume called the non-wandering set. This set contains all the recurrent
behaviour of the flow and we expect that all true trajectories will tend towards it. The
non-wandering set may have several components. A component might be a stationary
point, a periodic orbit, or some more complicate set of zero volume. If we know the
structure of the non-wandering set, the way that the flow behaves on the non-
wandering set, and the parts of the non-wandering set which are attracting, then we can
sensibly claim that we know all the important things about our differential equations. If,
for some practical application, we need to know how a particular trajectory with a
particular set of initial conditions behaves, we can attempt to discover this by
experiment. Eventually, though, the trajectory will move close to the non-wandering set

and its behaviour will be governing by the motion of the flow on this set.
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We can use the term “chaotic” to describe the numerical phenomenon seen in
figures such as Fig. 4.1. We will not use expressions like “chaotic attractor” or
“strange attractor” unless we have a special reason to believe that we really are
seeing an approximate trajectory which lying close to a single (strange) attracting piece
of the non-wandering set. In this way we will avoid confusing what we see with what

we understand.

Approach to the Lorenz Equations

The actual techniques, numerical and mathematical, which we w ill use to study
the Lorenz equations will be introduced. Our general aim will be to discover as much as
possible about the behaviour of the system for a wide range of parameter values. In
particular, we w ill hope to understand the many different kinds of chaotic behaviour
that have been observed by other authors.

The notion of bifurcation is central to this approach. As we change the
parameters, the behaviour of the flow will only change in an important way when the
topology of the non-wandering set changes. Each time this occurs, we say there is a
bifurcation. Many bifurcations can be dealt with theoretically at a local level; our
problem will be to fit them all together into a global picture. If we can build a global
picture, however tentative, that allows US to explain the observed changes in behaviour
via a theoretically acceptable sequence of bifurcations, our understanding of the
behaviour at particular parameter values will be enhanced. If we cannot, then the
problems involved in building the global picture may suggest to US where we should
look to find as yet unobserved bifurcations.

It must be remembered that any global statements we make will be tentative.

Non-linear systems of ordinary differential equations are not well understood, and the
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Lorenz equations are no exception. There are two levels (at least) at which any global
picture will be uncertain.

The first is the numerical and observational level. We can only ever do a finite
number of numerical experiments at a finite number parameter values, each with only
finite accuracy. It is always possible that, for some parameter values we have not
examined, the behaviour is completely different, or that there are strange things going
on in some region of phase space that we have not investigated. W hilst we will take as
much care with our numerical experiments as seems appropriate, we can never
completely dispel doubts of this kind. However, until numerical experiment indicate
where we have gone wrong, the picture we have will be the best available description of
the Lorenz equations. Providing the picture is self-consistent, it may remain of interest
even if it eventually transpires that it is not an accurate description of the Lorenz system.

The second level of uncertainty is the theoretical one. Even if we assume that
our numerical experiments are not misleading, our theoretical knowledge may not be

adequate for US to be able to answer all the guestions about the flow that we would like.

Simple Properties of the Lorenz Equations

We now examine some of properties of the Egs.(4.1) [Lorenz 1963, Marsden

1977]

A Symmetry

The Lorenz equations, Eqs.(4.1), have a natural symmetry (X, Y, Z) — (-X, -Y,

Z). This symmetry persists for all values of the parameters.

B. The Z-axis
The Z-axis, X =Y =0, is invariant. All trajectories which start on the Z-axis
remain on it and tend towards the origin (0, 0, 0) only if b > 0. Furthermore, all

trajectories which rotate around the Z-axis do so in aclockwise direction when view
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from above the plane L =0. This follows from the fact that if X =0 thend X >0 when
dt

Y >0 and dX <0 when Y <0. We can give a partial description of periodic orbits in
dt

the system by counting the number of times they wind around the Z-axis. This

description will not change as we alter the the parameters, providing the same periodic

orbit continues in existence.

C. Divergence of the Flow

The divergence of the flow, D;

" X dY z 1 . .
=/ o af +8r +§° - b +o fh

which is negative since b and o are positive. Denoting a typical element of

phase-space volume by T(t), we thus have a contraction of the form
r @ = r Oexp[-(b+a+1)1 , (4.3)

Hence all trajectories will ultimately become confined to some form of limiting manifold

of volume zero.

D. Critical Points
The points satisfying the condition X =Y =Z =0are

1. X =Y =L =0, corresponding to the state of no convection, thatis, pure

conduction.

2. X =Y =VD(r- 1),2 =r- 1and X =Y ='Vb (r- 1), L=r- 1,correspon-
ding to the state of steady convection. Note that the steady convective states

only exist forr > 1.
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E. Stability Properties

The linearized transformation near a critical point is the form

5X1] '_0 0 O' SX\
SY = (T-zp 12 x SY (4.4)
s> ly X i \szi

From which we can deduce the stability properties of the critical points.

1. (X,Y, Z) =(0,0,0):
For r < 1 this is stable, that is, all eigenvalues have negative real parts; for
r < 1, one eigenvalue acquires a positive real part. The critical point is
unstable and hence convention will start on infinitestimal perturbation. Note

that the stability of the critical point depends only on the value of the

(normalized) Rayleigh number.

2. (X, Y,2) = (xYb (r-1), £Yb (r-1),r-1)
For r > 1, the eigenvalues consist of one real negative root and a pair of

complex conjugate roots. This pair of critical points can be shown to

become unstable if

o (a+hb+3)

. (a-h- )
a condition that can only be satisfied for positive rifa >b + 1. In Lorenz’s
study [Lorenz 1963], Lorenz chose the parameter values b = 8/3 and a = 10.

W ith this choice, the steady (or convective) states become unstable at
r=470/19 24 .74....and the contraction rate is D =-13.67, which is, in

fact, extremely fast.
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We now summarize what happens to the solutions of the Lorenz equations,

Eqgs.(4.1), asr is gradually increased for b = 8/3 and a = 10.

()

(i)

Cm)

(iv)

0<r<1:

The origin is a globally attracting stationary solution and all trajectories (i,e., all

different initial conditions) eventually spiral into it.v

1<r<24.74

The origin becomes unstable and bifurcates into a pair of locally attracting

stationary solutions
C=(b (r-1), Vb (r-1), r- 1) and =(-Yb(r- 1), -Yb(r- 1), r -1

Virtually all trajectories converge to either Cor C . The exceptions are the set
of trajectories that stay in the vicinity of the origin. At around r is about 13.926,
the origin develops into a homoclinic point. Beyond this r value, tht “basins o f
attraction” around Cand C are no longer distinct and trajectories ca cross back-

ward and forward between the two before settling down.

rs 24.74:

1
As mentioned, this is the critical value at which the steady states C and CI
become unstable. However, the Hopf analysis shows that as this critical values
of r is passed, there is an inverted bifurcation; that is, the limit point Cand¢ do

not become stable limit cycles.

r> 24.74:

Trajectories integrated in this regime show remarkable behaviour. In Lorenz’s
original paper [Lorenz 1963], he studied the trajectory with the initial condition
(x,y,2z) =(0, 1,0) at a value of r = 28. For this value of r, the unstable steady

states are C=(6f1, 6VT, 27) and c¢ = (-6f1, -6f1, 27). His computations
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showed that once certain transient oscillations had died away, the motion
became highly erratic. This is a result of the solution spiraling around one of
the fixed points, C and C, for some arbitrary period and then jumping to the
vicinity of the other fixed point, spiraling around that for a while and then
jumping back to the other, and so on. This combination of spiraling out and
returning gives rise to the stretching and folding mechanism discussed earlier
and results in a highly complex manifold, namely, a form of strange attractor. A
typical orbit on this attractor is shown in Fig. 4.2. The apparent regularity of this
structure in the figure is deceptive - the attractor is highly complex. The power
spectrum of trajectory is essentially continuous, indicating highly chaotic

motion.

Lorenz attractor

Figure 4.2 Solution of the Lorenz equations computed at r = 28. The horizontal

plane is at Z 27. [Gulick 1992]
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