
CHAPTER IV

T H E  L O R E N Z  E Q U A T I O N S

Sets o f  coup led  nonlinear differentia l equations can also y ie ld  so lu tions that are 

exam ples o f d e t e r m i n i s t i c  c h a o s .  The c la ss ic  exam p le  is  the L o r e n z  e q u a t i o n s .  In 

th is chapter we w i l l  describe and interpret the L o re n z  system o f n on linea r d iffe ren tia l 

equations.

I n t r o d u c t io n

In 1963 E .N . L o re n z  wrote a rem arkab le  paper. In it he described  a three- 

parameter fa m ily  o f  three-dimensional ord inary d iffe ren tia l equations w h ich  appeared, 

when integrated n u m e rica lly  on a computer, to have extrem ely com p lica ted  solutions. 

These equations, now  know  as the L o r e n z  e q u a t i o n s ,  have been stud ied by many 

authors in the year since 1963.

L o re n z ’s search fo r a three-dimensional set o f  o rd inary  d iffe ren tia l equations 

which w ou ld  m ode l some o f the unpredictable behav iou r w h ich we no rm a lly  associate 

w ith  the w eather [Lo ren z  1963]. The equations w h ich  he even tua lly  h it upon were 

derived from  a m ode l o f  flu id  convection. They are

= o ( Y  -  X ) ,

i r  = r X  - Y  - Xz ,  (4.1)  

<££ = X Y  - b Z ,
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where X  is p roportiona l to the intensity o f convective  motion,

Y  is proportional to the temperature d iffe rence between ascending 

and descending currents,

z  is proportional to the distortion (from  linear) o f the vertica l temperature 

temperature profile,

a  is the so -ca lled  the P r a n d t l  n u m b e r ,

r  = R a/Rc; where

R a is  the R a y l e i g h  n u m b e r ,

R ç  is  a c r i t i c a l  n u m b e r ,

and r  is  the so-ca lled n o r m a l i z e d  R a y l e i g h  n u m b e r  (Fo r deta ils 

see A pp end ix  B),

b is a constant related to the given space.

N o te  also that we o n ly  consider pos itive  va lu es o f  Ü, r, and b. B r ie f ly ,  the 

o r ig in a l derivation [Lo renz 1963] can be described as fo llow s. A  tw o-d im ensiona l flu id  

a ll is  warmed from  be low  and cooled from above and the resulting convective  m otion is 

m ode lled  by partia l d iffe ren tia l equations (See A p p e n d ix  B). The va riab le s in  these 

equations are expanded into an in fin ite  number o f modes, a ll but three o f w h ich  are then 

set iden tica lly  to zero. The three remaining modes g ive  the Eqs.(4.1).

F o r  w ide ranges o f  va lues o f parameters, approx im ate  so lu tions to the Eqs, 

(4.1), calculated on a com puter, look extremely com p lica ted  F ig . 4.1 show the pro jec­

tion  onto the X Z -p la n e  o f  one such solution ca lcu la ted  when 0 = 1 0 ,  b = 8/3 and 

r  = 28. Note that the tra jectory shown does not in tersect its e lf i f  we cons ide r the fu ll 

three-dimensional p icture (See also Fig. 4.2).
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F ig u r e  4 .1  A  num erica lly  computed solution to the L o re n z  equations projected onto 

the x z  - p lane when a  = 10, b = 8/3 and r  = 28. [Sparrow  1982]

W e  shou ld  note that the figure  appears to have va r io u s  ‘ turbulent’ properties as 

fo llow s:

1. The trajectory shown in  F ig . 4.1 is not periodic.

2. The  figu re  does not appear to shown a transient phenom enon. H ow eve r long  

we continue the num erica l integration the tra jectory continues to w ind  around 

and around, f irs t on one side, then on the other, w ithou t ever setting dow n to 

either period ic o r stationary behaviour.

3. The genera l fo rm  o f  the figure  does not depend at a ll on our cho ice  o f in it ia l 

cond itions o r on our cho ice  o f  integrating routine.

4. The exact sequence o f loops which the trajectory m akes is extrem ely sensitive to 

both changes in  in it ia l cond itions and changes in  the in tegrating routine. A s  a 

consequence o f  this, it is not possib le to p red ict the deta il o f  how  the trajectory 

w ill develop over anything other than a very short tim e interval.
X

Lo re n z ’s o r ig in a l paper [Lo renz 1963] was tit led  “ D e t e r m i n i s t i c  N o n - p e r i o d i c  

F l o w s ” . N o tice  that the Lo re n z  equations are de te rm in istic . T hey  conta in no random , 

no isy  or stochastic terms and we know  that they determ ine that a unique f low  w h ich  is
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va lid  fo r a ll time. The suggestion, m otivated partly by Lo ren z ’s w ork, that com plicated 

‘turbulent’ behav iour in  system w ith an in fin ite  number o f  degrees o f  freedom  (such as 

the atmosphere) m ight be modelled by s im p le  determ in istic fin ite -d im ens iona l system 

(such as the L o re n z  equations) is one o f  the reason w hy the L o re n z  equations have 

attracted so much attention.

Th is  question o f  the relationship between ‘turbulent’ behaviour in  the real w orld  

and ‘ turbulent’ behav iour in  fin ite-d im ensional systems is s t ill unresolved. Consequen­

tly  we shou ld state at once that Lorenz h im se lf admits [Lo renz 1979] that the Eqs.(4.1) 

are not the rea lis t ic  m ode l o f his o rig ina l f lu id  dynam ica l prob lem  i f  the parameter r is 

far from  unity. In add ition , i f  we exam ine h igher-d im ensiona l prob lem  then it seems 

that the type o f  behav iou r observed in F ig . 4.1 does not a lw ays o ccu r in the same way. 

H ow ever, these tw o observations do not im p ly  that there is  no re la tionsh ip  between 

in fin ite -d im ens iona l and fin ite -d im ens iona l ‘ turbulent’, nor that the Lo ren z  equations 

are irre levan t to the debate about th is re lationsh ip. Because o f  the amount o f interest 

generated by the L o re n z  equations, other authors have sought to d iscover, or stum ble 

upon, other real w o rld  prob lem s fo r w h ich  the Eqs.(4.1) are an accurate model when r 

is much larger than one. They have had some success.

Haken [Haken 1975] derives the Lo ren z  equations from  a prob lem  o f irregu lar 

sp ik ing  in lasers, M a lk u s  [M a lkus 1972] and Y o rke  &  Y o rke  [Y o rke  and Y o rke  1978] 

both studied a p rob lem  o f  convection in a torioda l region, and K no b lo ch  [Knob lo ch  

1981] d iscusses a de riva tion  from  a d isc dynamo. M a lku s  has constructed a laboratory 

water w hee l w h ich  behave in a s im ila r  fash ion  to the Eqs.(4 .1) and from  whose 

equations o f  m otion  the Eqs.(4.1) can be derived [Lo renz 1963], T h is  de riva tion  is 

described in A p p e n d ix  B. U s ing  asym ptotic methods, Ped lo sky  [Ped losky 1972] and 

Ped losky  &  Frenzen [Ped losky and Frenzen 1980] have derived  the Lo ren z  equations 

from  a study o f the dynam ics o f a w eak ly  unstable, fin ite  am plitude, b o ro c lin ic  wave 

(two-layer m odel), B r in d le y  &  M o ro z [B rind ley  and M o ro z  1980] obtain the equations



39

in  a s im ila r  p rob lem  (con tinuous ly  s tra tif ied  m odel), and G ib b o n  &  M cG u in n e ss  

[G ibbon  and M cG u in n e ss  1980] d iscuss both the tw o-laye r b a ro c lin ie  m odel and a 

laser problem .

C h a o t ic  O r d in a r y  D if f e r e n t ia l  E q u a t io n s

w e now  know  o f  a great num ber o f  set ร o f o rd in a ry  d iffe re n t ia l equations 

derived, c o n v in c in g ly  o r not, from  an even greater num ber o f  rea l w o r ld  prob lem s, 

w h ich  have so lu tion s  that lo o k  lik e  F ig . 4.1. These equations are genera l ca lle d  

“ C h a o t i c ” , as are their num erica lly  ca lcu lated solutions. [He llem an 1980, L ich tenberg 

and L ieberm an 1982]

W hen  a system  is  bounded, as w e ll as d iss ipa tive , w e can deduce that a ll 

trajectories eventua lly  tend towards some bounded set o f zero vo lum e  ly in g  in  the phase 

space. Though  there are techn ica l d is tin c tion s w h ich  a llow  US to de fine  th is set in 

various d iffe rent ways, we can state that we are especia lly  interested in  the bound set o f 

zero vo lum e  ca lle d  the n o n - w a n d e r i n g  s e t .  T h is  set con ta in s  a ll the recurrent 

behaviour o f  the f lo w  and we expect that a ll true trajectories w il l  tend towards it. The 

non-wandering set m ay have several components. A  com ponent m igh t be a stationary 

po in t, a pe riod ic  o rb it, o r some more com plica te  set o f  zero vo lum e . I f we know  the 

structure o f  the non -w andering  set, the w ay that the f lo w  behaves on the non­

wandering set, and the parts o f the non-wandering set w h ich are attracting, then we can 

sensib ly c la im  that we know  all the important things about our d iffe ren tia l equations. If, 

fo r some p ra c tica l app lica tion , we need to know  how  a pa rticu la r tra jectory w ith  a 

p a rt icu la r set o f  in it ia l cond it io n s  behaves, we can attempt to d isco ve r th is by  

experiment. Even tua lly , though, the trajectory w ill move close to the non-wandering set 

and its behaviour w il l be governing by the motion o f the flow  on th is set.
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W e can use the term “chao tic” to describe the num erica l phenom enon seen in 

figures such as F ig . 4.1. W e  w il l not use expressions l ik e  “ c h a o t i c  a t t r a c t o r ”  or 

“ s t r a n g e  a t t r a c t o r ”  unless we have a spec ia l reason to b e lie ve  that we rea lly  are 

seeing an approx im ate trajectory w h ich  ly in g  close to a single (strange) attracting piece 

o f the non-w andering  set. In this way w e w il l  avo id confusing w hat we see w ith what 

we understand.

A p p ro a c h  to  th e  L o re n z  E q u a t io n s

The actual techniques, num erica l and mathematical, w h ich  w e w il l  use to study 

the Lorenz equations w il l be introduced. O u r general aim  w ill be to d iscover as much as 

possib le  about the behaviour o f the system  fo r a w ide range o f  param eter values. In 

particu lar, we w i l l  hope to understand the m any d ifferent k ind s  o f  chao tic behaviour 

that have been observed by other authors.

The  n o t io n  o f  b ifu rca tion  is  cen tra l to th is approach. A s  we change the 

parameters, the behav iou r o f the f lo w  w il l o n ly  change in an im portan t way when the 

topo logy o f  the non-wandering set changes. Each time th is occu rs, we say there is a 

b i f u r c a t i o n .  M a n y  b ifu rcations can be dea lt w ith theo re tica lly  at a lo ca l level; our 

prob lem  w il l be to f it  them a ll together in to  a g lobal picture. I f  w e  can bu ild  a g lobal 

picture, how ever tentative, that a llow s US to exp la in the observed changes in  behaviour 

v ia a th eo re tica lly  acceptable sequence o f  b ifu rca tions, o u r understand ing o f the 

behav iour at p a rt icu la r  parameter va lues w il l  be enhanced. I f  w e cannot, then the 

problem s in vo lv e d  in  bu ild ing  the g loba l p icture may suggest to US where we should 

look to find  as yet unobserved bifurcations.

It must be remembered that any g loba l statements we m ake w il l  be tentative. 

Non-linear system s o f  ord inary d iffe ren tia l equations are not w e ll understood, and the



41

Lo ren z  equations are no exception. There are two leve ls (at least) at w h ich  any g lobal 

picture w il l be uncertain.

The  firs t is  the num erica l and observational level. W e  can o n ly  ever do a fin ite  

number o f num erica l experiments at a fin ite  number parameter va lues, each w ith on ly  

f in ite  accuracy. It is  a lw ays poss ib le  that, fo r some param eter va lu es we have not 

exam ined, the behav iou r is  com plete ly  d ifferent, or that there are strange things going 

on in  some reg ion  o f  phase space that we have not investigated. W h ils t  we w ill take as 

m uch care w ith  ou r num erica l experim ents as seems approp ria te , we can never 

com p lete ly  d ispe l doubts o f th is k ind. H ow ever, un til num erica l experim ent ind icate  

where we have gone wrong, the picture we have w ill be the best ava ilab le  description o f 

the Lo ren z equations. P rov id ing  the p icture is self-consistent, it m ay rem ain o f interest 

even i f  it eventua lly  transpires that it is not an accurate description o f  the Lo renz system.

The  second le ve l o f  uncertainty is  the theoretica l one. E ven  i f  we assume that 

our num erica l experim ents are not m is lead ing, our theoretica l know ledge  may not be 

adequate fo r US to be able to answer a ll the questions about the f low  that we w ou ld like.

S im p le  P ro p e r t ie s  o f  the L o re n z  E q u a t io n s

W e  now  exam ine some o f properties o f the Eqs.(4.1) [Lo ren z  1963, M arsden

1977] ะ

A .  S y m m e t r y

The Lo ren z equations, Eqs.(4.1), have a natural symmetry (X , Y , Z) —  (-X , -Y , 

Z). Th is  sym m etry persists for all values o f the parameters.

B .  T h e  Z - a x i s

The Z -a x is , X  = Y  = 0, is invariant. A l l  trajectories w h ich  start on the Z -ax is  

rem ain on it and tend towards the o r ig in  (0, 0, 0) on ly  i f  b > 0. Furtherm ore, a ll 

trajectories w h ich  rotate around the Z -a x is  do so in a c lo ckw ise  d ire c tion  when v iew
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from  above the p lane z  = 0. T h is  fo llo w s  from  the fact that i f  X  = 0 then d X  > 0 w hen
dt

Y  > 0 and d X  < 0 when Y  < 0. W e  can g ive  a partia l descrip tion  o f  pe riod ic  orb its in  
dt

the system  by  coun ting  the num ber o f  tim es they w ind  around the Z -ax is . T h is  

description w il l  not change as we alter the the parameters, p ro v id in g  the same period ic 

orb it continues in  existence.

c .  D i v e r g e n c e  o f  t h e  F l o w

The d ivergence o f the flow , D;

„  _  d x  dŸ d z  ,, .1. . .
D  sa f  + 3 r  + §  -  - { b  + o +l)(4.2)

w h ich  is  negative since b and o  are positive. D eno tin g  a typ ica l element o f 

phase-space vo lum e by T(t), we thus have a contraction o f the form

r  (t) = r  (0) exp [- (b + a  +1) t] , (4.3)

Hence a ll trajectories w ill ultimately become confined to some form  o f lim iting  m anifo ld 

o f vo lum e zero.

D .  C r i t i c a l  P o i n t s

The po ints satisfying the cond ition  X  = Y  = Z  = 0 a re

1. X  = Y  = z  = 0, co rrespond ing to the state o f n o  c o n v e c t i o n ,  that is, pure 

conduction.

2. X  = Y  = Vb (r - 1 ), Z  = r - 1 and X  = Y  = -Vb (r - 1), z  = r - 1, correspon­

d ing  to the state o f s t e a d y  c o n v e c t i o n .  Note that the steady convective states 

on ly  ex ist fo r r > 1.
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E .  S t a b i l i t y  P r o p e r t i e s

The linearized  transformation near a c r it ica l po in t is the form

5 X ] ' - o  o  O' s x \
SY = (<T - Z) -1 - X SY
sz> ly X -bi \ s z i

(4 .4 )

From  w h ich  w e can deduce the stab ility  properties o f  the c r it ica l points.

1. ( X , Y ,  Z ) = ( 0 , 0 , 0 ) :

F o r  r  < 1 th is is  stable, that is, a ll e igenva lues have negative rea l parts; fo r 

r  < 1, one e igenva lue acquires a po s it iv e  rea l part. The  c r it ic a l po in t is 

unstable and hence convention w il l  start on in fin itestim a l perturbation. Note 

that the s ta b ility  o f  the c r it ic a l po in t depends on ly  on the va lu e  o f the 

(norm alized) Rayle igh number.

2. (X , Y ,  Z )  = (±Yb (r - 1), ±Yb (r - 1), r  - 1)

F o r  r  > 1, the e igenvalues consist o f  one rea l negative roo t and a pa ir o f 

co m p le x  conjugate roots. T h is  p a ir  o f  c r it ic a l po in ts can be shown to 

become unstable i f
o  (a  + b + 3) 

r ( a - b -  1)
a cond ition  that can on ly  be satisfied fo r pos itive  r i f  a  > b + 1. In Lo ren z ’s 

study [Lo renz 1963], Lorenz chose the parameter values b = 8/3 and a  = 10. 

W ith  th is  cho ice , the steady (or convective ) states becom e unstable at

r = 470/19 ร  24 .74.... and the contraction  rate is D  = -13.67, w h ich  is, in

fact, extrem ely fast.
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W e  now  sum m arize  what happens to the so lu tions o f  the L o re n z  equations, 

Eqs.(4.1), as r  is  gradually  increased fo r b = 8/3 and a  = 10.

(i) 0 < r  < 1 :

T he  o rig in  is a g loba lly  attracting stationary so lution and a ll trajectories (i,e., a ll 

d iffe rent in it ia l conditions) eventua lly  spiral into it.v

(ii) 1 < r  < 24.74 ะ

T he  o r ig in  becomes unstable and b ifurcates in to  a p a ir  o f  lo c a lly  attracting 

stationary solutions

c = (Vb (r - 1), Vb (r - 1), r - 1) and ๙ = ( - Y b ( r -  1), - Y b ( r -  1), r - 1)

V ir tu a l ly  a ll trajectories converge to either c or c . T he  exceptions are the set 

o f  trajectories that stay in the v ic in ity  o f the origin. A t  around r  is about 13.926, 

the o r ig in  develops in to  a hom o c lin ic  point. Beyond th is r va lue, th t “  b a s i n s  o f  

a t t r a c t i o n ”  around c and c are no longer distinct and trajectories ca cross back­

w ard and forward between the tw o before settling down.

Cm) r s  24 .74 :

A s  m entioned, th is is the c r it ic a l va lue at w h ich  the steady states c and c" 
becom e unstable. How ever, the H o p f analysis shows that as th is crit ica l values 

o f  r is  passed, there is an inverted bifurcation; that is, the lim it  po in t c and c  do 

not become stable lim it cycles.

(iv) r >  24 .74 :

T ra jecto rie s  integrated in th is reg im e show rem arkab le behaviour. In Lo ren z ’s 

o r ig in a l paper [Lorenz 1963], he studied the trajectory w ith  the in it ia l condition 

(x, y, z) = (0, 1, 0) at a va lue o f  r = 28. For this va lue  o f  r, the unstable steady 

states are c = (6f l ,  6VT, 27) and c  = (-6f l ,  -6 f l ,  27). H is  com putations
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showed that once certa in  transient o sc illa t io n s  had d ied away, the m otion  

became h i g h l y  e r r a t i c .  T h is  is a result o f  the so lu tion  sp ira ling  around one o f 

the fixed  points, c and c , fo r some arb itrary pe riod  and then jum p ing  to the 

v ic in ity  o f  the other f ix ed  po in t, sp ira ling  around that fo r a w h ile  and then 

jum p ing  back to the other, and so on. T h is  com b ina tion  o f sp ira ling  out and 

return ing g ives rise  to the stretching and fo ld in g  m echanism  d iscussed earlie r 

and results in  a h igh ly  com plex m anifo ld , nam ely, a form  o f s t r a n g e  a t t r a c t o r .  A  

typ ica l orb it on th is attractor is shown in F ig . 4.2. The  apparent regu larity o f this 

structure in the figu re  is  deceptive - the attractor is  h igh ly  com plex. The power 

spectrum  o f  tra jecto ry  is  essen tia lly  con tinuous , in d ica ting  h ig h ly  c h a o t i c  

m o t i o n .

Lorenz attractor

F ig u r e  4 .2  So lu tion o f the Lo renz equations com puted at r = 28. The horizonta l

plane is at z ะะ 27. [G u lick  1992]
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