
CHAPTER VI

D IS C U S S IO N S  AND C O N C L U S IO N S

In this chapter, we will discuss about the results that we obtained from the 
previous chapter and then make conclusions and comments.

D iscu ss io n s  and R esu lts

In the previous chapter, we applied the Lorenz model to the atmospheric 
circulation. This model is based on the quasi-geostrophic vorticity equation which is a 
simplified equation. The one important assumption is that the vertical vorticity is 
omitted and Coriolis parameter replaced by a constant value (f0). This assumption will 
be true in the case of the vertical vorticity is less than the Coriolis parameter (f), that is 
better in the mid-latitude region. We have calculated equilibrium states o f the truncated 
spectral model for some special cases of the atmospheric circulation.

We first discuss about the equilibrium states o f a conservative flow as shown in 
Fig. 5.2 as follows:

In Fig. 5.2a, the streamfunction spreads from the western domain to the eastern 
domain and no circulation occurs.

In Fig. 5.2b and Fig. 5.2c, the streamfunction patterns are complicate, because 
there are some circulations occurring. Fig. 5.2b shows that there are three circulations 
occurring. One is a negative circulation centered at about (3.14, 0.60), and the others are 
positive circulations centered at about (1.57, 2.50) and (4.71, 2.50). Fig. 5.2c shows 
that there are three circulations occurring. One is a negative circulation centered at about
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(3.14, 1.26), and the others are positive circulations centered at about (1.57, 1.88) and 
(4.71, 1.88).

By the stability consideration of equilibrium states for a conservative flow, we 
obtain that

(i) the equilibrium states (0.100000, 0, 0) and (0.100000, 0.055989, 0) are stable 
equilibrium states, since all three eigenvalues o f the stability M0 in Eq.(5.17) 
have non-positive real parts.

(ii) the equilibrium  states (0.100000, 0 .223957, 0), (0.100000, 0.280026, 0), 
(0.100000, 0.336015, 0), (0.100000, 0 .392๓ 4, 0) and (0.1000๓ , 0.447993,0) 
are unstable equilibrium states, since one o f three eigenvalues of the stability Mq 
in Eq.(5.17) have positive real pan.

The results show that when h(/H increases, the asymptotic stability of (X0, Y0, 
z 0) gives way to instability.

We then discuss about the equilibrium states of a topographically and thermally 
driven flow as shown in Fig. 5.3 and Fig. 5.4 as follows:

In Fig. 5.3a and Fig. 5.4a, there are three circulations occurring in each case. 
Two of these are negative, and the other one is positive.

In Fig. 5.3b and Fig. 5.4b, there are three circulations occurring in each case. 
Two of these are positive, and the other one is negative.

Fig. 5.3c and Fig. 5.4c show the inflow of streamfunctions from the western 
domain to the eastern domain. In Fig. 5.3c, there are some parts of streamfunctions 
return back to the western domain, so that some positive circulations occur.

We now consider the stability of equilibrium states of a topographically and 
thermally driven flow as shown in Table 5.2 - 5.3. We obtain that

(i) when V|/j is small, there is only one equilibrium state. Since all three eigenvalues 
of the stability M0 in Eq.(5.21) have negative real parts, so that the equilibrium
state is stable.
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(ii) when Y4 is larger, there are three equilibrium states; two of these are stable, the
other is unstable.
This result shows that when Yi increases, the behaviour o f our system gives 

way to be complicate.

In the special case for «bo = 45°, L/a = 1/4, ท = 2, ho/H = 0.05, k = lO'2, and 
Y i = 0.20 , Table 5.2 gives two stable equilibrium  states (0.027221, -0.046929, 
-0.012219) and (0.181164, 0.041285, -0.001332), and one unstable equilibrium state 
(0.080004, 0.068762,-0.008486). From the numerical results as shown in Table 5.4 - 
Table 5.9 in the previous chapter, the phase portrait o f the flow are shown in Fig. 6.1 - 
Fig. 6.6.

We also introduce the Liapunov exponent as quantitative measure to characterize 
the chaotic behaviour of the system [Schuster 1984],

Rewrite the solutions o f Eqs.(5.24) in the form

XN = x ( t o  + N A t ) ,

Y n  = r ( ro  + N r i r ) ,  ( 6 .1 )

Zn = z  (to + NAt ) ,

where N is the number of iterations,
(Xh , Yh, Zn) is the state of the flow at the tim e t = to + N At when an initial 

condition ( X o ,  Yo , Zo) has been chosen.

Likewise, when an initial condition ( X q + e, To + £> Z o  + e) has been chosen, 
the solutions of Eqs.(5.24) can be written in the form
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X* = X*(to + NAt) ,

Yn = Y* (to + NAt) , (6 .2 )

Z*N = z* (to + NAt) ,

where
(x ^ , Ytf, z ^) is the state o f the flow at the tim e t = to + N At when an initial 

condition (Xo + e, Yq + e, Zo + e) has been chosen; in this study 
we choose e = 10-6.

By the definition o f the Liapunov exponent [Schuster 1984], the Liapunov 
exponents of (Xo, Lo. Zo)are

Ax (X0, Y 0 , Z o) 

Ay(X0) Yo , Zo) 

Az (Xo, Yo , Zo)

-  lim lim 1 X*N - XN
N  —» oo £ ->0 N i/n, £

lim lim 1 h t Yn - yn
N  —> o° £L->0 N £

lim lim 1 h t Z*N - Zn
N  —> £ —> 0 N £

(6 .3 )

where
^ x { X o ,  Yo , Zo) is the Liapunov exponent in X-component,
'พ (*0, Yo ,  Zo) is the Liapunov exponent in Y-component,
Az (Xo, Yo , Z q ) is the Liapunov exponent in Z-component.

If the Liapunov exponents are all negative the system  will be considered as a 
n orm ally  system , on the other hand if one of the Liapunov exponents is positive the 
system must be considered as a chaotic system . The calculations of the Liapunov 
exponents are shown in Fig. 6.7 - Fig. 6.9.
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Figure 6 .1
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(c)
Phase portrait o f a topographically and therm ally driven flow for 
<J>0 = 45°, L/a = 1/4, ท = 2, h(/H = 0.05, k = 10-2, and Vi = 0.20 with 
the initial condition (0.020000, -0.046000, -0.012000) projected onto;
(a) XY-plane (b) XZ-plane (c) YZ-plane
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Figure 6.2
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(c)
Phase portrait of a topographically and therm ally driven flow for 
<J)0 = 45°, L/a = 1/4, ท = 2, ho/H = 0.05, k = 10-2, and V* = 0.20 with 
the initial condition (0.020001, -0.046001, -0.012001) projected onto;
(a) XY-plane (b) XZ-plane (c) YZ-plane
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Figure 6.3

( b )

(c)
Phase portrait of a topographically and therm ally driven flow for 
<j>0 = 45°, L/a = 1/4, ท = 2, h^/H = 0.05, k = 10'2, and Yi ะะ 0.20 with 
the initial condition (0.080000, 0.068762, -0.008486) projected onto;
(a) XY-plane (b) XZ-plane (c) YZ-plane
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(c)
F ig u re  6 .4  Phase portrait of a topographically and therm ally driven flow for 

4>0 = 45°, L/a = 1/4, ท = 2, h()/H = 0.05, k ะ= 10"2, and Vi = 0.20 with 
the initial condition (0.080001,0.068763, -0.008485) projected onto;
(a) XY-plane (b) XZ-plane (c) YZ-plane
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Figure 6.5
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(c)
Phase portrait o f a topographically and therm ally driven flow for 
4>0 = 45°. L/a = 1/4, ท = 2, h(/H = 0.05, k = 10'2, and Vi = 0.20 with 
the initial condition (0.181000, 0.041000, -0.001000) projected onto;
(a) XY-plane (b) XZ-plane (c) YZ-plane
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Figure 6 .6

(c)
Phase portrait of a topographically and therm ally driven flow for 
$0 = 45°, L/a = 1/4, ท = 2, h()/H = 0.05, k = 10-2, and Yi = 0.20 with 
the initial condition (0.181001, 0.041001, -0.001001) projected onto;
(a) XY-plane (b) XZ-plane (c) YZ-plane
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Figure 6.7
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(c)
Liapunov exponent o f the state (0.020000, -0.046000, -0.012000) of a 
topographically and thermally driven flow for <j)0 = 45°, L/a = 1/4, ท = 2,
h(/H = 0.05, k = 10'2, and Yi = 0.20;
(a) in X-component (b) in Y-component (c) in Z-component
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Figure 6.8
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(c)
Liapunov exponent o f the state (0.080000, 0.068762, -0.008486) of a 
topographically and thermally driven flow for <J)0 = 45°, L/a ะ= 1/4, ท = 2,
ho/H = 0.05, k = 10-2, and Vi = 0.20;
(a) in X-component (b) in Y-component (c) in Z-component
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Figure 6.9
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(c)
Liapunov exponent of the state (0.181000, 0.041000, -0.001000) of a 
topographically and thermally driven flow for (เ)0 = 45°, L/a = 1/4, ท = 2,
ho/H = 0.05, k = 10-2, and Yi = 0.20;
(a) in X-component (b) in Y-component (c) in Z-component
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Fig. 6.1 and Fig. 6.2 show the phase flow near an equilibrium state (0.027221, 
-0.046929, -0.012219). The solutions have converged to this equilibrium state. Since 
eigenvalues of the stability matrix M0 are X = -0.015, -0.007 ± 0.156 i, this equili­
brium state is a stable spiral point and a damped oscillation occurred. Moreover, since 
the Liapunov exponent o f the state (0.020000, -0.046000, -0.012000) of the flow as 
shown in Fig. 6.7 are all negative, hence that the behaviour of our system near the 
equilibrium  state (0.027221, -0.046929, -0.012219) is not sensitive to the initial 
condition.

Fig. 6.5 and Fig. 6.6 show the phase flow near an equilibrium state (0.181164, 
0.041285, -0.001332). The solutions have converged to this equilibrium state. Since 
eigenvalues of the stability matrix M0 are X = -0.009, -0.011 ± 0.305 i, so that this 
equilibrium state is a stable spiral point and a damped oscillation occurred. Moreover, 
since the Liapunov exponent of the state (0.181000, 0.041000, -0.001000) of the flow 
as shown in Fig. 6.9 are all negative, hence that the behaviour of our system near the 
equilibrium  state (0.181164, 0.041285, -0.001332) is not sensitive to the initial 
condition.

Fig. 6.3 and Fig. 6.4 show the phase flow near an equilibrium state (0.080004, 
0.068762, -0.008486). Since eigenvalues of the stability  matrix are X = 0.079, 
and -0.054 ± 0.022 i, so that this equilibrium state is a unstable spiral point. In Fig.
6.3, the solution have converged to a stationary point, while in Fig. 6.4, the solutions 
have diverged. The results, in Fig. 6.3 and in Fig. 6.4, are far different though the initial 
conditions are tiny different - i.e. the difference of initial conditions equals (0.000001, 
0.000001, 0.000001). Moreover, since the Liapunov exponent of the state (0.080000, 
0.068762, -0.008486) of the flow as shown in Fig. 6.8 are positve, hence that the 
behaviour of our system near the equilibrium state (0.080004, 0.068762, -0.008486) is 
sensitive to the initial condition.. These results show that tiny difference in initial 
conditions can lead to far different values after a period of time. This sensitive
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dependence led US to consider the system as a chaotic sy s tem , so that we can not do a 
very-long-range forecasting.

C o n c lu s io n s  and C om m ents

From  this study, when we applied the Lorenz model to the quasi-geostrophic 
vorticity o f the atmospheric circulation, the system will be treated as a finite system of 
ordinary differential equations. W e have studied in detail the properties of its solutions. 
Our prin-cipal results concern the stability or instability o f solutions. We have obtained 
num erical solutions of a system o f three ordinary differential equations designed to 
represented a topographically and thefmally driven flow for «bo = 45°, L/a = 1/4, ท = 2, 
h0/H  = 0.05, k = 10 2, and Yi = 0.20. The equations possess three steady-state 
solutions. One of these is found to be unstable. From the num erical results, the system 
has been treated as a chaotic system because of the sensitive dependence. This result 
show that our model is a reasonable one, although it can not indicate the acceptable 
forecasts because it is a highly truncated spectral model. One m ust eventually deal with 
more accurate models by using a fairy large number of degree o f freedom.
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