CHAPTER II

GENERAL CHARACTERISTICS OF CONGRUENCE-FREE COMMUTATIVE SEMIRINGS WITH 1.

SECTION 1 BASIC THEOREMS

The purpose of this chapter is to investigate properties which are common to all types of congruence-free commutative semirings with 1. As will become apparent later, Theorem 2.1.1 is a key element in many of the proofs in this thesis.

2.1.1 Theorem. Let S be a congruence-free commutative semiring with1. Then S is MC.

Proof: Choose an $x \in S$ which is not a multiplicative zero. Define a relation \sim on S as follows:

For y, z \in S, y \sim z iff xy = xz. \sim is trivially an equivalence relation. Suppose y \sim z. Then xy = xz, so for all a \in S, xy + xa = xz + xa. Thus x(y + a) = x(z + a). Therefore (y + a) \sim (z + a). Also, a(xy) = a(xz), so x(ay) = x(az). Thus ay \sim az. Therefore \sim is an congruence relation. Thus \sim = S \times S or \sim = Δ . Suppose \sim = S \times S. Then xa = xb for all a, b \in S. Therefore x.1 = xb, for all b \in S. Thus x = xb for all b \in S, and so x is a multiplicative zero which contradicts our initial assumption. Therefore \sim = Δ i.e. S is MC.

2.1.2 Corollary. Every congruence-free commutative semiring with 1 which has a multiplicative zero can be embedded in a quotient semifield. Every congruence-free commutative semiring with 1 which has no multiplicative zero can be embedded in a quotient division semiring.

Proof: Follows from Theorem 2.1.1. and Chapter I. #

2.1.3 Theorem. Let S be a congruence-free commutative semiring w.1 and let QS be its quotient semifield or quotient division semiring. Then QS is congruence-free.

Proof: Suppose that \sim' is a nontrivial congruence relation on QS. Since we can consider S to be a subsemiring of QS we can define on S by x \vee y iff x \wedge' y in QS. \vee is clearly a congruence relation on S.

Therefore $= \Delta$ or $S \times S$. Since \sim' is not trivial, there exist $\frac{x}{y}, \frac{x}{y}'$ \in QS such that $\frac{x}{y}, \frac{x}{y}'$ and $\frac{x}{y} \neq \frac{x'}{y}'$. Therefore $xy \sim' yx'$, and thus $xy \sim yx'$. But since $\frac{x}{y} \neq \frac{x}{y}'$, $xy' \neq yx'$. Therefore $\infty = S \times S$ since S is congruence-free. But there exist $\frac{a}{b}$, $\frac{a}{b}$ \in QS such that $\frac{a}{b}, \sqrt[4]{\frac{a}{b}}$. Therefore $ab \sim' ab$, and so $ab \sim' ab$. Thus $\omega \neq S \times S$ which is a contradiction. Thus QS is congruence-free.

The converse of the theorem above is in general false. \mathbb{Z}^{T} is not congruence-free but \mathbb{Q}^{T} is congruence-free. However, with the help of the following concept we can obtain a partial converse to Theorem 1.1.3.

on S. \sim is said to be MC iff for all nonzero x and for all a,b \in S, xa \sim xb implies a \sim b. S is said to be MC congruence-free iff the only possible MC congruences on S are S x S and Δ .

Thus in a division semiring or a semifield S, S is congruence-free iff S is MC congruence-free. In a commutative semiring with 1, congruence-free implies MC congruence-free. If S is a commutative semiring and α an MC congruence on S claim that $\frac{S}{\alpha}$ is MC. Suppose that $x,y \in S$ and [x][y] = [x][z] in $\frac{S}{\alpha}$. Then [xy] = [xz]. Thus $xy \cap xz$ so if x is nonzero then $y \cap z$ since x is MC. Thus $\frac{S}{\alpha}$ is MC. The following theorem is a partial converse to Theorem 2.1.3.

2.1.4 Theorem. Let S be an MC commutative semiring wiht 1 and QS its quotient semifield or quotient division semiring. Then S is MC congruence-free if QS is congruence-free.

are multiplicative zeros so ab' = ba' i.e. ab' v ba'.

Case 3: x is a multiplicative zero but x is not. But then $\dot{x}y \sim \dot{y}x = x$. Thus $1(\dot{x}y) \sim x(\dot{x}y)$. Thus since $\dot{x}y$ is nonzero and \dot{x} is MC, $1 \sim x$. Thus $\dot{x} = S \times S$ which is a contradiction.

Case 4: x is a multiplicative zero but x is not. Just reverse the roles of x and x in Case 3.

In sum, α' is well defined. Clearly $\frac{x}{y}\sqrt[3]{\frac{x}{y}}$, for all $\frac{x}{y} \in QS$. Also $\frac{x}{v}\sqrt{\frac{a}{b}}$ implies $\frac{a}{b}\sqrt{\frac{x}{v}}$. Suppose that $\frac{x}{y_1} \frac{x^2}{y_2} \frac{x}{y_2} \frac{x}{y_3} \frac{x}{y_3} \frac{x^2}{y_3} \frac{x}{y_3}$. Then $x_1 y_2 \frac{x}{y_1} \frac{x}{y_2}$ and $x_2y_3 \sim y_2x_3$. Therefore $x_1y_2y_3 \sim y_1x_2y_3$ and $x_2y_3y_1 \sim y_2x_3y_1$. Thus $x_1y_2y_3^{\sim}y_2x_3y_1$. Since n is MC and y_2 is nonzero we get $x_1y_3 \sim x_3y_1$. Thus $\frac{x_1}{y_1}, \frac{x_3}{y_2}$. Therefore x' is transitive and thus \sim' is an equivalence relation on QS. Claim that \sim' is a congruence on QS. Suppose that $\frac{x}{y_1} \sim \frac{x}{y_2}$. Choose $\frac{a}{b_1} \in QS$. We want to show that $\frac{a}{b_1} + \frac{x}{y_1} \sim \frac{a}{b_1} + \frac{x}{y_2}$ This is true iff $(a_1y_1 + b_1x_1)y_2b_1 \sim (x_2b_1 + a_1y_2)b_1y_1$. Since $x_1y_2 \sim y_1x_2$ we have $x_1y_2b_1 \sim y_1x_2b_1$. By multiplying again by b_1 and by commutativity we get that $b_1x_1y_2b_1 \sim x_2b_1b_1y_1$ (1) Now $a_1y_1y_2b_2 = a_1y_2b_2y_1so a_1y_1y_2b_1 = a_1y_2b_1y_1$ (2). Thus by adding both sides of equation (2) to equation (1) we get that $b_1 x_1 y_2 b_1 + a_1 y_1 y_2 b_1 \sim x_2 b_1 b_1 y_1 + a_1 y_2 b_1 y_1$. Thus by the distributive law we get that $(b_1x_1 + a_1y_1)y_2b_1 \sim (x_2b_1 + a_1y_2)b_1y_1$. or in other words $\frac{a}{b_1}$ + $\frac{x}{y_1}$ $\frac{x}{\sqrt{y_2}}$ + $\frac{a}{b_1}$ 1Since the selection of these elements was arbitrary we have proven that the equivalence relation preserves addition.

Thus to show that \sim is a congruence on QS we must now show that \sim preserves multiplication.

To show that \sim' preserves multiplication suppose $\frac{x}{y} \sim' \frac{x_1}{y_1}$ and choose $\frac{a}{b} \in QS$. Thus $xy_1 \sim yx_1$, so $abxy_1 \sim abyx_1$. Thus $\frac{a}{b} \frac{x}{y} \sim' \frac{a}{b} \frac{x_1}{y_1}$.

Thus \sim' is a congruence relation on QS, so \sim' = Δ or QS \times QS. Suppose that \sim' = Δ .

Thus \sim = Δ since if $x \sim y$ and $x \neq y$ then $\frac{x}{i} \neq \frac{y}{i}$ but $\frac{x}{i} \sim \frac{y}{i}$ which is a contradiction. Suppose that ~ 2 = QS \times QS. Then $\frac{x}{i} \sim \frac{y}{i}$ for all $x,y \in S$. Thus $1.x \sim 1.y$ for all $x \neq S$. Thus $x \sim y$ for all $x \neq S$. Therefore ~ 2 = S \times S.

Thus as \sim was an arbitrary MC congruence relation on S we have the desired result. #

Thus in particular \mathbb{Z}^+ is MC congruence-free since \mathbb{Q}^+ is congruence-free. The converse of Theorem 2.1.3 is in general false. $S = \mathbb{Q}^+ \cup \{\infty\}$ with the trivial structure is MC congruence-free because S is an ∞ -semifield but $S = \mathbb{Q}S$ is not congruence free. As an example of a nontrivial MC congruence consider $S = \mathbb{Z}^+ \times \mathbb{Z}^+$ with the usual addition and multiplication. Then define a relation \mathbb{Z}^+ on S by saying that $(x,y) \sim (a,b)$ iff x = a. \mathbb{Z}^+ is obviously a congruence on S, and supposing that $(a,b)(x,y) \sim (a,b)(x_1,y_1)$ then $(ax,by) \sim (ax_1,by_1)$. Thus $ax = ax_1$, so $x = x_1$. Therefore $(x,y) \sim (x_1,y_1)$. Thus ω is MC.

In an arbitrary commutative semiring with 1, a multiplicative zero may neither be an additive zero nor an additive identity. For example let $S = Z_0^+ \times Z_\infty^+$ with the usual addition and multiplication. Then $(0, \, \omega)$ is a multiplicative zero but not an additive zero or an

additive identity. In fact many interesting pathologies may occur. For example let $S = \{\text{open intervals } (a, \infty) \mid a \in \mathbb{R}^{3} \}$ Let multiplication be set intersection and addition be set union. Then S is a commutative semiring. The open interval $(0, \infty)$ is both the multiplicative identity and the additive zero. But in a congruence—free semiring with 1 we get the following:

2.1.5 Theorem. Let S be a congruence-free commutative semiring with 1 which has a multiplicative zero a. Then a is either an additive identity or an additive zero.

Notation: Let S be a semiring. An **e**lement in S which is a multiplicative zero and an additive identity is called a zero element of S and we shall always denote it by O. An element in S which is both a multiplicative zero and an additive zero is called an infinity element of S and we shall always denote it by ∞ .

This property that the multiplicative zero acts as an additive identity or an additive zero is also true for semifields which is another indication of the similarity of congruence-free semirings with multiplicative zero and semifields. The next theorem concerning additive cancellativity is another exact analogue of the semifield case.

element. If $S' = \phi$ we are done, so suppose $S' = \{x_1\}$ for some $x_1 \in S$. We distinguish two cases :

Case 1 : S has no multiplicative zero

Case 2 : S has a multiplicative zero

In Case 1 suppose $S' = \{x_1\}$. Then there exist $a \neq b \in S$ such that $x_1 + a = b + x_1$. Without loss of generality assume that $a \neq x_1$. Then $ax_1 \neq x_1^2$. But $ax_1 + a^2 = ab + ax_1$. Also $a^2 \neq ab$ since S is MC. Thus $S' \supseteq \{x_1, ax_1\}$, so $ax_1 = x_1$. Therefore a = 1, so $x_1 + 1 = b + x_1$ where $b \neq 1$. But $b(x_1 + b) = b(x_1 + 1)$. Thus $bx_1 + b = b + bx_1$. but $bx_1 \in S'$, since $b \neq a = 1$ and thus $b^2 \neq b$. Also $bx_1 \neq x_1$ since $b \neq 1$. Thus $||S^1|| > 1$ which is a contradiction. Thus in Case 1, $S' = \phi$ and we are done.

In Case 2 (let $^{\circ}$ be the multiplicative zero in S. Suppose $S' = \{x_1\}$ and suppose $x_1 = \alpha$. Then $\alpha \neq 0$ since 0 is AC so $\alpha = \infty$. Now consider the set $S \setminus S' = S \setminus \{\infty\}$. Define a relation p on S by xpy iff x = y or $x,y \in S \setminus S'$. Clearly p is an equivalence relation on S. Suppose xpy and $x \neq y$. Then $x,y \in S \setminus S'$. Choose $z \in S$, $z \neq \infty$. Then $zx \neq \infty$ since S is MC. Thus $zx,zy \neq \infty$ and zx, $zy \in S \setminus S'$, so zxpzy. Clearly $\infty xp\infty y$. Now $x + \infty = \infty$ and $y + \infty = \infty$ so $x + \infty py + \infty$. Suppose $x + z = \infty$ where z is chosen as above. Then $x + z = \infty + z$. But $z \in S \setminus S'$. Thus $x = \infty$ which is a contradiction, so $x + z \neq \infty$ Similarly $y + z \neq \infty$. Thus x + z, $y + z \in S \setminus S'$, and so $x + z \neq y + z$. Thus p is a congruence on S, so $p = \Delta$ or $S \times S$. But $||S \setminus S'|| \geq 2$ since ||S'|| = 1 and ||S|| > 2. Thus $p \neq \Delta$. Clearly $p \neq S \times S$ a contradiction. Thus $x_1 \neq \infty = \infty$.

Now suppose $x_1 \neq \alpha$. Then there exist $a \neq b \in S$ such that $x_1 + a = x_1 + b$. Thus $x_1(x_1 + a) = x_1(x_1 + b)$ and so $x_1^2 + x_1^2 = x_1^2 + x_1^2$. Now $a \neq b$ and S is MC, so $x_1^2 \neq x_1^2 = x_1^2 =$

The following example shows that the assumption that ||S|| > 2 is necessary.

2.1.1 Example: Let $S = \{0,1\}$. Define + by 1 + 1 = 1, 0 + 1 = 1 + 0 = 1 and 0 + 0 = 0. Define multiplication by 1.0 = 0.1 = 0.0 = 0 and 1.1 = 1. It is easy to verify that S is a congruence-free commutative semiring with 1. 0 is AC but 1 is not AC in S, since 1 + 0 = 1 + 1 but $1 \neq 0$. This algebraic structure is called the Boolean 0-semifield.

In Theorem 2.1.5 we have shown that if S is a congruence-free commutative semiring with 1 then either S has no multiplicative zero or if S has a multiplicative zero a then $a = \infty$ or a = 0. It turns out that congruence-free commutative semiring, with 1 have radically different structures depending on whether or not they have a multiplicative zero and the type of multiplicative zero. We will

study each case separately in chapters III, IV and V. To simplify things we introduce the following notation. If S is a congruence-free commutative semiring with 1 then we say that S is:

"Type I" if S has a multiplicative zero which is an additive identity

"Type II" if S has a multiplicative zero which is an additive zero

"Type III" If S has no multiplicative zero.

From now on we shall call a congruence-free commutative semiring with 1 which is Type I a "Type I semiring" etc.

Section 2.2 Double Ideals

2.2.1 Definition: Let S be a semiring. Then $\phi \neq D \subseteq S$ is a double ideal iff x + d, d + x, dx and $xd \in D$, for all $d \in D$, $x \in S$,

Thus S is always a double ideal in S. $\{\infty\}$ is a double ideal in a semiring with ∞ . $\{x \ge 3 \mid x \in Z^{\mathsf{T}}\}$ is a double ideal in Z^{T} .

Definition. Let S be a semiring with an infinity element, Then S is sid to be double ideal free iff the the only double ideals of S are S and $\{\infty\}$.

2.2.3 Definition Let S be a semiring without an infinity element. Then S is said to be <u>double ideal free</u> iff S is the only double ideal of S. Thus every ring, division semiring and semifield is double ideal free. Z^{\dagger} is not double ideal free.

2.2.1 Proposition. Let S be a congruence-free commutative semiring with 1. Then S is double ideal free

Proof: First suppose S is type III and let $M \subseteq S$ be a proper double ideal. Then $\sim = (M \times M) \cup \Delta$ is a congruence on S. Thus $M = \emptyset$, M = S or $M = \{x_1\}$ for some $x_1 \in S$. $M = \emptyset$ is excluded by definition 2.2.1. M = S is excluded by assumption. Thus $M = \{x_1\}$ for some $x_1 \in S$. But x_1 , a $\in M$ for all a $\in S$. Therefore x_1 is a multiplicative zero which contradicts the fact that S is type III. Therefore S is double ideal free.

Now suppose S is type I or type II. Then define II and \sim as before. As above M = $\{x_1\}$ for some $x_1 \in S$.

We showed that x_1 is a multiplicative zero. $x_1 = 0$ is impossible since then M = S. Thus by (efinition 2.2.2, S is double ideal free. #

The converse to the theorem above is in general false. $\mathbb{Q} \times \mathbb{Q} = \mathbb{Q} \times \mathbb{Q} = \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} = \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} = \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} = \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} = \mathbb{Q} \times \mathbb{Q} = \mathbb{Q} \times \mathbb$

2.2.2 Proposition: If S is a congruence-free commutative semiring with 1 then if S has no infinity element then S + S = S. If S has an infinity element then either S + S = S or S + S = $\{\omega\}$.

Proof: S + S is a double ideal. Therefore if S is type III or type I, S + S = S. Suppose that S is type II. Then since S is double ideal free S + S = S or S + S = $\{\infty\}$. #

2.2.3 Proposition: Let S be a commutative semiring with 1 or with an additive identity a. Then S has a maximum proper double ideal or

S has no proper double ideal.

Proof: Suppose S has a proper double ideal. Let $M = U \{S' \mid S' \in S \text{ such that } S' \text{ is a proper double ideal} \}$. M is obviously a double ideal. Now suppose S has 1. Then $1 \notin S'$ for all proper double ideals S'. Thus $1 \notin M$, so $M \in S$. Similarly if $a \in S$ then $a \notin S'$, for all proper double ideals S'. Thus $a \notin M$. Thus $M \in S$. Clearly $M \supseteq S'$ for any proper double ideal S'.

2.2.4 Corollary: If S is a commutative semiring with ∞ (||S||>1) which has an additive identity or a multiplicative identity then S has a maximum proper double ideal.

Proof: $\{\omega\}$ is a proper double ideal. Now apply Proposition 2.2.3. #

2.2.4 Definition: Let S be a semiring and J a double ideal in M. Then J is said to be prime iff $xy \in J \Rightarrow x \in J$ or $y \in J$ for all $x,y \in S$

2.2.5 Theorem: Let S be a commutative semiring with 1 which has a proper double ideal. Then the maximum proper double ideal M is prime.

Proof: Suppose for $x,y \in S$, $xy \in M$. Suppose also that $x,y \in N$. Then $y^{-1} \not\in S$ since if it were then $x = (xy)y^{-1} \in M$. Then $ky \ne 1$, for all $k \in S$. Suppose that ky + d = 1 for some $k,d \in S$, Then $x = x(yk + d) = xyk + xd \in M$ since $xy \in M$ and M is a double ideal. Thus $x \in M$ which is a contradiction. Thus for all $d,k \in S$, $ky + d \ne 1$. Thus the set $S^1 = M \cup \{ky \mid k \in S\} \cup \{ky + d \mid k,d \in S\}$ is a double ideal which does not contain 1. i.e. S^1 is a proper double ideal of S. But S^1 properly contains M since $y \in S^1$ and $y \in M$. This contradicts the maximality of M. Thus x or $y \in K$ i.e. M is prime. #

The converse of this theorem is false. In \mathbb{Z}^+ with xy defined as max(x,y). and x+y defined as max(x,y), $\{x \geq 3 \mid x \in \mathbb{Z}^+\}$ is prime but not maximal.

Now let S be semiring and J a double ideal in S. Then we can define a natural congruence \sim on S by saying for x,y \in S, x \sim y iff x = y or x,y \in J. To verify that \sim is indeed a congruence note that \sim = Δ U (J × J). Thus \sim is an equivalence relation. But suppose x \in J. Then for all b \in S; xb, bx, x + b and b + x \in J. Thus \sim preserves addition and multiplication and is thus a congruence. Give \circlearrowleft J the natural algebraic structure (i.e. [x + y] = [x+y] and [x][y] = [xy] for all x,y \in S) It is asy to verify that these operations are well defined. This a semiring with an additive zero \simeq = [x] for any x \in J which is also a multiplicative zero, since for all x \in J, y \in S, [x] + [y] = [x + y] = [x] since x + y \in J. Similarly [y] + [x], [x][y] and [y][x] are equal to [x]. Moreover if S has 1 then

2.2.6 Proposition: Let S be an MC commutative semiring with 1 and with a maximum proper ideal M. Then S/M is MC.

Proof: Since S is MC it is sufficient to show that for all $x,y \in S$, $xy \in \mathcal{M}$ implies $x \in W$ or $y \in M$ i.e. that M is prime. This follows from Theorem 2.2.5.

It is possible for S to be AC but for no element in S/M to be AC. For example let $S = Z^+ \times \mathbb{C}^+$ with the usual addition and multiplication. Then $\mathcal{M} = \{(x,y) \in S \mid x > 1\}$ Thus $\alpha + \beta = \infty$ for all α' , $\beta \in S/M$. Thus no element in S/M is AC.

Let S be a commutative semiring with 1 and J a double ideal It is possible that J is not prime. For example let $S = Z^{\dagger}$ with the usual addition and multiplication. Then $J = \{x \not = 4 \mid x \in Z^{\dagger}\}$ is a double ideal but 2.2 \in J. Thus J is not prime. Moreover in S/J [2] . [2] = [2] . [4] soS/J is not MC even though S is MC. Thus the maximality of M is critical in the arguments above.

As is shown in the following example S/M might not be an ∞ -semifield. In factS/M might not be congruence-free.

2.1.2 Example: Let $S = \{\frac{m}{2}, m, n \in Z^{\dagger}\} \cup \{\infty\}$ with the usual addition and multiplication. Let D be a proper double ideal in S and suppose $x \neq \infty$ and $x \in D$. Then $x = \frac{m}{2}$ for some $m, n \in Z^{\dagger}$. Thus we can choose $l \in Z^{\dagger}$ such that $m+l=2^{n}2^{n}1$ for some $n \in Z^{\dagger}$. Thus

$$\frac{m}{2}n + \frac{1}{2}n = \frac{2^{n_1+n}}{2^n} = 2^{n_1} \cdot \text{But } \frac{1}{2}n_1 \in S, \text{ so } \frac{1}{2}n_1 \cdot 2^{n_1} \in D.$$

Thus 1 & D so D = S . Therefore M above = $\{\infty\}$ and $S/M \cong S$.

Thus S/M is not a semifield since 3 has no multiplicative inverse in S.

Also $(S \setminus \{\infty\} \times S \setminus \{\infty\}) \cup \{(\infty,\infty)\}$ is a nontrivial congruence on S so S is not congruence-free. If R is a ring and M a maximal ideal then, of course, R/M is a field. The analogue to this does not hold for commutative semirings modulo the maximum proper double ideal. However by proposition 2.2.6, if S is a commutative semiring with 1 which has a maximal proper double ideal M, then S/M is embeddable in an ∞ -semifield. Using the results developed in Chapter IV on type II semirings it is possible to prove additional interesting results concerning S/M.