CHAPTER
SPIN - GLASS
1.1 Physical Description

'Spin - glass'(1-4) refers to magnetic alloys where the spins
on the impurities become locked or frozen in. No long range correla-
tion exist between the spins. However there is some short range

ordering below a characteristic temperature Tg.

Typical systems of spin - glasses are di]utelsubstitutiona1
magnetic alloys, such as CuMn or AuFe, with magnetic impurity concen-

3

trations ¢ roughly between 10° and lﬁl. The first of the two metals,

Au in the alloy is the host, and the second, Fe, the impurity.

The explosion of interest in this subject arose from some
fascinating and important measurements by Cannella and Mydosh (5) who
observed a cusp-like peak in a.c. susceptibility of the AuFe alloy at
a well defined temperature Tg, known as the spin - glass freezing
temperature. The measurements suggested that some type of phase
transition was occuring. This fact was not readily explainable in
terms of the accepted ideas at that time on dilute magnetic alloys.
Much of the early theoritical work on spin glasses was devoted to
trying to understand the a.c. susceptibility data. A calculation
which had a considerable influence in this respect was due to Edwards

and Anderson (6)

1.2 Edwards and Anderson Model



.Recently a theory of spin - glass was proposed by Edwards and
Anderson (6) (refer hereafter as EA) in which a classical Heisenberg

model with a random distribution of exchange interactions is considered.

The essence of EA theory is that, despite the random arrange-
ment of spins, there is nevertheless a certain configuration which
minimizes the potential energy of the system and which corresponds to
the ground state. As the spin moves into this ground state there is
a well defined magnetic transition giving rise to a cusp like peak in
the a.c. susceptibility. EA have introduced anorder parameter, q ,
such that if one observes that a spin has a value Si(l) at time tl,
then if it is studied a long time later at time tss there is a non-

vanishing probability that Si(z)

will be pointing in the same direc-
tion. Above the freezing temperature Tg the order parameter q is

zero. Below Tg one can write

q increase towards unity as the temperature approaches the

absolute zero.

The theory of EA predicted a cusp in the susceptibility
although the expect shape of the cusp is somewhat different from that
observed experimentally. A considerable amount of theoritical work

has stemmed from the original calculation of EA.
1.3 Sherrington and Kirkpatrick Model

Following EA's pioneering work David Sherrington and Scott
Kirkpatrick (7) (refer hereafter as S.K.) proposed an infinite-range

model of spin - glass in which every spin is coupled with all others



pairwise and the distribution of the exchange interaction is assumed
to be Gaussian. This is an extension of the infinite-range model of
ordering ferromagnets, which we can treat exactly by the mean-field

theory.

S.K, however, studied this model using a physically and
mathematically unconventional replica method. One calculates for
integer n the nEﬁ power of the partition function but at the end let
n— 0, i.e. use the identity

In z =  lim (zn - 1)
n—0 0
to obtained the various thermodynamic quantities such as internal

energy, susceptibility, specific heat and entropy.
1.4 Difficulties Existing in the Solution

Due to the pathology of the replica method, however, S.K.
obtained unphysical results, in particular a negative entropy at zero

temperature. Otherwise, their results were physically very appealing.

The origin of the difficulties was associated with the inter-
change of the order of N— = (N are Ising spins) 1limit and the n— 0
1imit (introduced by the replica method) in the evaluation of the free

energy.
1.5 TAP Method

In order to remedy the unphysical result, D.J. Thouless, P.W.
Anderson and R.G. Palmer (8) (refer hereafter as TAP) developed a mean-
field theory for S.K. model. Making use of the Bethe approximation,

they obtained a self-consistent equation. They solved it in two limit-



ing temperature regime, i.e., in the vicinity of the critical tempera-
ture Tg and at very low temperatures. The low temperature behavior of
the system is described by means of a mean field theory which taking
into account the spin fluctuation led among other results to a zero

entropy at T =0 K in contrast to the negative value derived by S.K.

Above the critical temperature the correct S.K. equations were
regained, by a high temperature expansion of the free energy in which

the contribution of a class of loop diagrams was included.
1.6 Other Techniques to Solve Spin - Glass Problem

1.6.1 Nakanishi Method

TAP found that in the infinite-range model there exist an
extra field besides the conventional mean field. This extra field is
due to the two-spin cluster effect, indicating the importance of the

cluster effect in spin - glasses.

In order to make a further investigation, Nakanishi (9) formu-
lated a theory in which the effect of the two and three spin cluster
is taken into account exactly and apply it mainly to the infinite-

range model.

Incidentally it is not hard to show that the approximation
made in the two - spin cluster theory is generally equivalent to the
Bethe approximation, which TAP used, therefore it is quite natural

that Nakanishi method reproduces TAP's result.

1.6.2 Differential Operators Technique

Takahito Kaneyoshi (10) proposed a method for evaluating the

spin - glass ordering temperature beyond its mean field value.



By introduced the method of differential operators (10), a new
type of series expansion for the parameter q is derived under the

restriction of P(Jij) = P(- Jij)

He evaluated the series two ways; one using a decoupling

approximation, another calculated term by term using diagram method.

The series depicted by diagrams reduces to a polynomial equa-
tion. After finding a solution of a n-order polynomial equation,
where n is the highest power in it, the Tg can be determined from the

extrapolation of each order Tg to %—-—ﬂ 0

1.6.3 The work of M.W. Klein, L.J. Schowalter and P. Shukla

Since the replica method gives a negative entropy, some mean
field method which avoid the replica trick are the Bethe-Peierls-
Weiss (BPW) method (11,14,16), the self-consistent mean random field

approximation (MRF) and the method present by TAP (8).

Klein et al (14) use a modified BPW method couple with the
probability distribution of internal fields compare the predictions of
various mean field approximation with each other. When the effective
number of neighbors z approaches infinity, they show that all the
magnetic properties arising from the BPW, MRF-and S.K. method are
jdentical. Also, the internal energy in the BPW method is identical

to that obtained by S.K. while the MRF gives a different result.

By integrating the BPW internal energy and adding a plausible
phenomenological constant of integration they obtained TAP free energy,
using this free energy they find that any probability distribution of
fields H which does not go to zero at zero field is unphysical in that

it gives a negative entropy.



1.7 Prototype Model of a Spin Glass

A model in which the bonds between Ising spins can take
on only two values Jl and J2 with the distribution of bonds being
totally random has been proposed as being a prototype model of a spin

glass.

Syozi et al (15) has applied the n-replica method of
Edwards and Anderson to this model. Three phases, ferromagnetic, anti-
ferromagnetic and Mattis phases are seen to arise for different concen-
trations. They found that for the quenched system, the lower bound of
the critical concentration is 0.853 (which is the critical concentration
of the annealed system). They point out that this was due to the
frustration effect in the quenched system disturbing the ferromagnetic

order.

1.8 Difference between Quenched and Annealed system

In both the quenched and annealed systems (17-22), the
magnetic impurities are distributed completely randomly throughout the
crystal. In the quenched system, the spins are frozen at the (approxi-
mate) distribution existing before their rapid quenching down to a
final temperature is done. The system is lowered to the final tempera-
ture so fast that the spins in the system do not have enough time to
relax to the equilibrium distributions existing at the intermediate
temperatures between the initial and final temperatures. Therefore the
spins of the system can assume the configuration expected of a system

making a reversible transition from T to Tf.

In the annealed system, however, the temperature is lowered

slowly enough so that the spins can come into equilibrium existing at



each of the intermediate temperatures. At each step, the system
assumes the lowest ground state energy configuration possible and so
the final configuration assumed at Tf will have an energy lowered

than that of the quenched system.

To calculate the free energy of a quenched system (17), one
has to compute the free energy for a given distribution of impurities,
and then average all their possible configurations. In order to get
the free energy of an annealed system (17), we have to sum up simulta-

neously over spins and impurities configurations.
Mathematically, the quenched free energy can be written as(21)

Fq = -kT.<.1n Z)

and the annealed free energy

Fa = - kT In (2)

As a consequence of Jensen's inequality
¢F N > fF (x))
for the mean value of any convex function f (x) of a random variable
X, the quenched free energy is bounded from below by the annealed free

energy: F_ > F

q a

In our calculation we deal with quenched system of prototype

model of a spin glass.
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